ACTA PROTOZOOLOGICA
International Journal on Protistology

Editor in Chief: Jerzy SIKORA
Editors: Hanna FABCZAK and Anna WASIK
Managing Editor: Małgorzata WORONOWICZ

Editorial Board

André ADOUTTE, Paris
Christian F. BARDELE, Tübingen
Magdolna Cs. BERECZKY, Göd
Y.-Z. CHEN, Beijing
Jean Cohen, Gif-Sur-Yvette
John O. CORLISS, Albuquerque
Gyorgy CSABA, Budapest
Isabelle DESPORTES-LIVAGE, Paris
Tom FENCHEL, Helsingor
Wilhelm FOISSNER, Salsburg
Vassil GOLEMANSKY, Sofia
Andrzej GRĘBECKI, Warszawa, Vice-Chairman
Lucyna GRĘBECKA, Warszawa
Donat-Peter HÄDER, Erlangen
Janina KACZANOWSKA, Warszawa
Stanisław L. KAZUBSKI, Warszawa
Leszek KUŹNICKI, Warszawa, Chairman
J. I. Ronny LARSSON, Lund
John J. LEE, New York
Jiří LOM, Česke Budějovice
Pierangelo LUPORINI, Camerino
Hans MACHEMER, Bochum
Jean-Pierre MIGNOT, Aubière
Yutaka NAITOH, Tsukuba
Jytte R. NILSSON, Copenhagen
Eduardo ORIAS, Santa Barbara
Dimitrii V. OSSIPOV, St. Petersburg
Igor B. RAIOKOV, St. Petersburg
Leif RASMUSSEN, Odense
Michael SLEIGH, Southampton
Ksenia M. SUKHANOVA, St. Petersburg
Jiří VÁVRA, Praha
Patricia L. WALNE, Knoxville

ACTA PROTOZOOLOGICA appears quarterly.

The price (including Air Mail postage) of subscription to ACTA PROTOZOOLOGICA at 1999 is: US $ 180.- by institutions and US $ 120.- by individual subscribers. Limited number of back volumes at reduced rate are available. TERMS OF PAYMENT: Cheque, money order or payment to be made to the Nencki Institute of Experimental Biology. Account Number: 11101053-3522-2700-1-34 at Państwowy Bank Kredytowy XIII Oddz. Warszawa, Poland. WITH NOTE: ACTA PROTOZOOLOGICA! For matters regarding ACTA PROTOZOOLOGICA, contact Managing Editor, Nencki Institute of Experimental Biology, ul. Pasteura 3, 02-093 Warszawa, Poland; Fax: (4822) 8225342; E-mail: jurek@ameba.nencki.gov.pl (for more information see web page http://www.nencki.gov.pl/public.htm).

Front cover: Polychaos dubium. In: A. A. Schaeffer (1916) Notes on the specific and other characters of Amoeba proteus Pallas (Leidy), A. discoides spec. nov. and A. dubia spec. nov. Arch. Protistenk. 37: 204 - 228

©Nencki Institute of Experimental Biology, Polish Academy of Sciences
This publication is supported by the State Committee for Scientific Research

Desktop processing: Justyna Osmulska, Data Processing Laboratory of the Nencki Institute
Printed at the MARBIS, ul. Kombatantów 60, 05-070 Sulejów, Poland

http://rcin.org.pl
Participation of Myosin I, Spectrin Analogue and Tyrosine-Phosphorylated Proteins at Early Stages of Phagocytosis in *Acanthamoeba castellani*ii

Katarzyna KWIATKOWSKA and Andrzej SOBOTA

Department of Cell Biology, Nencki Institute of Experimental Biology, Warszawa, Poland

Summary. Uptake of particles during phagocytosis is driven by the actin-based cytoskeleton. We analyzed the localization of actin filaments, myosin I and II, spectrin analogue and phosphotyrosine-bearing proteins at various stages of yeast phagocytosis in *Acanthamoeba* in order to examine an involvement of these proteins in alterations of the cytoskeleton. Concentration of microfilaments at forming phagosomes was accompanied by accumulation of the spectrin-like protein and myosin I, but not myosin II. During phagosome maturation, these proteins were no longer detectable in the periphagosomal area. The onset of the phagocytosis was correlated with an intense and transient tyrosine-phosphorylation of 130, 120 and 60 kDa polypeptides which were also enriched at the sites of phagosome formation and disappeared at later stages of particle digestion. Inhibition of protein tyrosine kinase activity by genistein blocked particle uptake indicating the regulatory function played by the phosphorylated proteins in the process.

Key words: myosin I, phagocytosis, spectrin, tyrosine phosphorylation.

INTRODUCTION

Phagocytosis is an actin-dependent process of internalization of large particles, >0.5 μm in diameter, by cells. It is a common phenomenon in Eukaryota, although in higher organisms the ability of efficient particle uptake is attributed to specialized cells, so-called “professional” phagocytes, to which monocytes, neutrophils and macrophages belong (Rabinovitch 1995). These cells remove microorganisms, pollution debris and senescent cells of the host, as a key element of the immune defense system.

It has been established that the phagocytic abilities of the “professional” phagocytes are determined by the expression of specific plasma membrane receptors, which bind various ligands localized on the surface of the particles to be internalized. Among the receptors that promote phagocytosis are: mannose receptor, complement receptor C3 and Fcγ receptors (for review see: Brown 1994, Kwiatkowska and Sobota 1999). Clustering of the receptors is thought to occur upon ligand binding which triggers signal transduction events leading eventually to a local polymerization of actin (Griffin et al. 1975, Sheterline et al. 1984, Detmers et al. 1987, Greenberg et al. 1991). Microscopic studies revealed that the actin-based cytoskeleton provides scaffolding for pseudopods which embrace particles, firstly in phagocytic cups and, after closure, in nascent phagosomes (Axline and Reaven 1974,
Acanthamoeba castellanii, two actin-binding proteins, analysis and inhibitory studies. For the immunofluorescence observa-
tions or in suspended culture (immunoblotting Acanthamoeba
castellanii (Krawczyriska and Sobota 1996). In this report we examined the localization of myosin I and II, the
spectrin proteins in various stages of particle uptake. On the
other hand, our preliminary studies indicated that tyrosine
phosphorylation which controls phagocytosis mediated by
Fey receptors and bacterial invasions of epithelial cells
representing “nonprofessional” phagocytes (Dehio et al.
1995, Strzcelecka et al. 1997a, Hauck et al. 1998). In
contrast, data on the mechanisms which govern phago-
cytosis in protozoa are random, despite the fact that phago-
cytosis being a way of feeding for these organisms. In
Acanthamoeba castellanii, two actin-binding proteins,
myosin I and a-spectrin immunanalogue, were localized at sites of uptake of distinct particles (Baines et al.
1992, Kwiatkowska and Sobota 1997). Accordingly, mi-
croinjection of an anti-spectrin antibody inhibited phago-
cytosis in Amoeba proteus (Choi and Jeon 1992). On the
other hand, our preliminary studies indicated that tyrosine
phosphorylation of proteins may be important in phago-
cytosis of zymosan and latex beads in Acanthamoeba
castellanii (Krawczyńska and Sobota 1996). In this
report we examined the localization of myosin I and II, the
spectrin immunanalogue and tyrosine phosphorylated proteins during phagocytosis of yeast in Acanthamoeba
castellanii in order to test the involvement of these proteins in various stages of particle uptake.

MATERIALS AND METHODS

Cells

Acanthamoeba castellanii, Neff strain, was grown axenically in the dark, without aeration (Sobota et al. 1984). The phagocytic activity of Acanthamoeba was tested either in cells attached to cover slips (immunofluorescence studies) or in suspended culture (immunoblotting analysis and inhibitory studies). For the immunofluorescence observations, 4-day-old cultures were plated onto pre-cleaned coverslips at a
4 x 10^9/ml density and grown overnight as described earlier (Kwiatkowska and Sobota 1997). After rinsing with 100 mM NaCl, 2 mM MgCl_2, 20 mM Hepes, pH 7.0 (NaCl/MgCl_2/Hepes medium) the cells were chilled on ice and exposed to lipid-extracted baker yeast applied at a ratio of about 20 yeast per amoeba in the ice-cold buffer. To promote the binding of the yeast particles to the cells, the incubation proceeded for 10 min at 0°C after which the excess of particles was washed out. Subsequently, the cells were warmed to 28°C for 3 min to induce the uptake of the bound yeast. The process was terminated by fixation of the cells with 3% formaldehyde for 30 min.

In experiments using suspended cells, 5-day-old cultures were
shifted to NaCl/MgCl_2/Hepes medium (3 x 10^9 cells in 0.5 ml per sample) and supplemented with yeast-derived zymosan A particles (5 mg in 0.1 ml of medium per sample). Phagocytosis was carried out at room temperature. At various time points of the incubation the samples were mixed with 0.6 ml of ice-cold solution containing 6 mM piperazine and 200 μM phenylarsine oxide, pelleted and processed for immunoblotting analysis. To examine the effect of genistein (GIBCO, Gaithersburg, MD) on phagocytic activity, the suspended cells were preincubated in NaCl/MgCl_2/Hepes medium containing various concentrations of the drug (10 min, room temperature). Subsequently, yeast particles were added to the suspension at a ratio of 20 yeast particles per amoeba. Phagocytosis was conducted for 10 min at room temperature in the constant presence of genistein. The cells were next washed twice with the NaCl/MgCl_2/Hepes medium and fixed with 3% formaldehyde in PBS for 10 min. The uptake of yeast was estimated by counting the number of amoeba cells with and without yeast particles under a Nikon microscope in the phase contrast mode.

Immunofluorescence microscopy

Microscopic observations were performed on cells attached to
cover slips and undergoing phagocytosis of yeast for 3 min. The cells were fixed for 30 min with 3% formaldehyde in PHEM buffer (60 mM Pipes, 25 mM HEPES, 10 mM EGTA, 4 mM MgCl_2, pH 6.9; protease inhibitors: 2 mM PMSE, 10 μg/ml leupeptin, 10 μg/m pl Pepstatin A, 2 μg/ml aprotinin [Sigma, St. Louis, MO]) and processed as described previously (Kwiatkowska and Sobota 1997). Briefly, the cells were quenched with 50 mM NH_4Cl, permeabilized by acetone extraction on ice and incubated with 3% goat serum in PBS to block the unspecific binding of antibodies. To visualize the examined proteins, the cells were incubated sequentially for 1 h at room temperature with the primary antibody and anti-mouse or anti-rabbit antibody conjugated with Texas
Red (Jackson ImmunoResearch, West Grove, PA). The procedure was modified in the case of phosphoryrosine staining: the cells were permeabilized for 5 min on ice with 0.1% Triton X-100 prepared in a buffer containing 75 mM NaCl and 25 mM Tris, pH 7.4. This buffer was also applied for the dilution of anti-phosphotyrosine antibody to facilitate antibody-antigen interactions. The samples were mounted in Mowiol containing 2.5% DABCO and examined under a Nikon microscope using fluorescence and phase contrast modes. Observations of the samples under the phase contrast allowed us the distinction of surface-
attached particles from ingested ones. Photographs were taken using Kodak T-MAX 400 ASA film.

Mouse anti-myosin I M1.I 8 and anti-myosin II M2.37 antibodies were kindly provided by Dr. D. A. Kaiser (Johns Hopkins School of Medicine, Baltimore, MD) and applied at a 50 μg/ml concentration according to Yonemura and Pollard (1992). Mouse and rabbit anti-phosphotyrosine antibody (Transduction Laboratories, Lexington, KY) were diluted
a-spectrin was identified with the use of rabbit anti-a-spectrin antibody which was obtained and purified as described elsewhere (Kwiatkowska and Sobota 1990, 1992). Texas Red-labeled secondary antibodies were diluted 1:100 in the presence of 0.02% NaN₃ and preadsorbed with formaldehyde-fixed and Triton X-100 permeabilized cells during a 1h incubation at room temperature. Control experiments in which the incubation with primary antibodies was omitted confirmed the lack of an unspecific reactivity for these purified antibodies with cells.

Immunoblotting analysis

For the analysis, pelleted samples were solubilized for 30 min on ice in 150 µl solution containing 1% Triton X-100, 0.5% Nonidet P-40, 100 mM NaCl, 2 mM EDTA, 0.5 mM NaVO₄, 5 mM DTT, 30 mM Hepes, pH 7.2, and protease inhibitors. Then, the mixture was centrifuged (10 000 g, 10 min, 4°C), the obtained supernatants were supplemented with equal volume of SDS-sample buffer (4 x concentrated) (Laemmli 1970) and boiled for 5 min. The proteins were separated on 8% SDSPolyacrylamide gels, transferred onto nitrocellulose (Towbin et al. 1979) and probed with mouse anti-phosphotyrosine antibody (Transduction Laboratories) as described earlier (Strzelecka et al. 1997b).

RESULTS

Myosin I and spectrin accompany actin filaments at forming phagosomes

An exposure of *Acanthamoeba castellanii* to lipid-extracted yeast at 28°C induced a robust uptake of the particles (Figs. 1, 2, 4). Preincubation of the cells with yeast for 10 min at 0°C greatly enhanced amoeba-yeast encounters, promoting binding of the particles to the cell surface. Thus, a subsequent 3 min of the incubation at 28°C allowed us to find cells containing several yeast particles; fully ingested particles, displaced deeper into the cell interior inside maturing phagosomes, frequently coexisted with particles undergoing internalization and enclosed into phagocytic cups and nascent phagosomes (Figs. 1A, B, asterisks and arrows, respectively). The two population of phagosomes could be distinguished by phalloidin-FITC staining: forming phagosomes displayed a prominent fluorescence indicating an accumulation of actin filaments around their membrane whereas maturing phagosomes were devoid of the label (Figs. 1A, B). Actin filaments were also enriched in a broad cortical band which often delineated the whole cell periphery and reflected an unpolarized, non-motile profile of avidly phagocytizing cells (Fig. 1A).

Localizations of two motor proteins, myosin I and II, and spectrin-like protein, which cross-links actin filaments, were next examined due to their possible involvement in actin reorganization during particle uptake. Myosin I was found to be concentrated in a distinct line closely apposing the membrane of forming phagosomes (Figs. 1D, F, arrows). This prominent labeling of myosin I at phagocytic cups corresponded with actin filament staining, indicating co-localization of the two proteins (Figs. 1E,F, arrows). As with actin, myosin I was no longer observed around maturing phagosomes (Fig. 1D, asterisks). In cell regions which were uninvolved in particle uptake, the distribution of myosin I was more diffuse and partially correlated with actin filament localization, whereas a moderate labeling of the nucleus by the anti-myosin antibody resulted from its cross-reactivity with nuclear actin binding protein (Hagen et al. 1986) (Figs. 1E, F). In contrast to myosin I, no clear accumulation of myosin II was detected at sites of the yeast engulfment (Fig. 1C, arrowheads). The protein remained rather uniformly distributed throughout the cytoplasm in both phagocytizing and resting cells (Fig. 1C). These observations also indicate that the local enrichment of myosin I, seen in Figs. 1D, F (arrows), was not evoked by the enlarged optical thickness of the periphagosomal area.

Distribution of the α-spectrin immunanalogue during yeast phagocytosis showed a heterogeneity resembling that of actin filaments and myosin I (Fig. 2). The protein was accumulated around phagocytic cups where it co-localized with actin (Figs. 2C, D, arrows), although, in contrast to myosin I labeling, the adjoining cytoplasm also revealed spectrin enrichment (Figs. 2A, C, arrows). Decoration of the membrane vicinity of maturing phagosomes by the anti-α-spectrin antibody was weaker and varied, ranging from a distinct ring of fluorescence to a lack of staining (Figs. 2A, B, double arrow and asterisk, respectively). Only a fraction of the cellular α-spectrin immunanalogue was translocated toward sites of the yeast phagocytosis manifesting the local character of cytoskeletal rearrangements during this process.

Protein tyrosine phosphorylation controls the onset of phagocytosis

Cytoskeletal reorganization during phagocytosis in "professional" phagocytes of vertebrates requires an activation of protein tyrosine kinases (Greenberg et al. 1996). To examine if a similar phenomenon takes place in protozoan cells, we studied tyrosine phosphorylation of proteins in *Acanthamoeba*. The onset of phagocytosis of yeast-derived zymosan particles in *Acanthamoeba* was correlated with an intense tyrosine phosphorylation of three major proteins, as revealed by immunoblotting analysis of whole cell lysates (Fig. 3A, arrowheads).
Fig. 1. Actin filaments and myosin I, but not myosin II, accumulate at forming phagosomes. The cells were fixed after 3 min of yeast uptake and were processed for immunofluorescence microscopy to visualize: A, E - actin filaments, C - myosin II, D, F - myosin I. B, G - phase contrast images corresponding to A and E-F, respectively. Note the accumulation of actin filaments and myosin I at phagocytic cups and nascent phagosomes (arrows) and their lack at maturing phagosomes (asterisks). Both forming and maturing phagosomes are devoid of myosin II label (arrowheads). Scale bar - 10 μm
Phagocytosis in *Acanthamoeba* 195

Fig. 2. The immunoanalogue of α-spectrin is present at early stages of yeast phagocytosis. A - spectrin localization, B - phase contrast image of A. The spectrin analogue is concentrated at phagocytic cups and some phagosomes (arrow and double arrows, respectively) while vanished at others (asterisks). C, D - cells double labeled to visualize spectrin (C) and actin filaments (D) revealed the coexistence of these proteins at phagocytic cups (arrows). Scale bar - 10 μm

Based on the electrophoretic mobilities of these polypeptides their molecular masses were estimated at 130, 120 and 60 kDa. The rise in tyrosine phosphorylation was already significant 1 min after phagocytosis had begun and was especially well pronounced for the 130 kDa polypeptide, the phosphorylation of which was undetectable in unstimulated cells (Fig. 3A, compare lanes 1 and 2). The enhanced tyrosine phosphorylation of proteins was transient and declined after 15 min, simultaneously with particle uptake (Fig. 3A, lane 5).

The phosphotyrosine-bearing proteins were gathered in *Acanthamoeba* at sites of particle engulfment (Fig. 4).

The proteins were abundant at the membrane of forming phagosomes and in the neighboring cytoplasm (Figs. 4A, B, arrows); they vanished at later stages of phagosome maturation (Figs. 4A, B, asterisks). Similar images were obtained when either polyclonal or monoclonal anti-phosphotyrosine antibodies were applied, although the latter produced more punctuate pattern of the phosphotyrosine staining (not shown).

Genistein, a broad-spectrum inhibitor of protein tyrosine kinases (Akiyama et al. 1987), blocked the yeast phagocytosis by *Acanthamoeba* in a dose dependent manner (Fig. 3B). The 50 μM concentration of genistein...
Fig. 3. Tyrosine phosphorylation of proteins controls phagocytosis in *Acanthamoeba*. A - time course of protein tyrosine hyperphosphorylation during phagocytosis of zymosan particles analyzed by immunoblotting of whole cell lysates with monoclonal anti-phosphotyrosine antibody. Lane 1: control cells, unexposed to the particles; lanes 2-5: cells after 1 min (lane 2), 3 min (lane 3), 5 min (lane 4) and 15 min (lane 5) after the uptake of particles. Arrowheads point to polypeptides undergoing tyrosine phosphorylation during phagocytosis. On the left, molecular mass standards are shown in kDa. B - a dose dependent inhibition of yeast phagocytosis by genistein. After 10 min of the particle uptake, a percent of cell containing internalized yeast was calculated and expressed assuming that the percent of phagocytizing cells which were unexposed to the drug equals 100. Data from one representative experiment are shown.

Fig. 4. Accumulation of tyrosine-phosphorylated proteins during yeast uptake (A). B - phase contrast image of A. Cells treated with polyclonal anti-phosphotyrosine antibody display the presence of the phosphotyrosine-containing proteins at sites of the particle uptake (arrows) and lack of their concentration around fully ingested particles (asterisks). Scale bar - 10 μm.
diminished particle uptake by nearly 50%, i.e., with an efficiency comparable to that in "professional" phagocytes (Greenberg et al. 1993). These data showed that tyrosine phosphorylation of proteins is required for phagocytosis to occur in Acanthamoeba.

DISCUSSION

In the present report we demonstrate that actin filaments, myosin I, spectrin-like protein and tyrosine-phosphorylated proteins are accumulated simultaneously at forming phagosomes during uptake of yeast in Acanthamoeba castellanii, indicating that possible cooperation of these proteins is required for the process to proceed. Phagocytosis of the particles was likely to be promoted by an amoeba plasma membrane receptor which recognizes and binds mannose-rich residues of the yeast cell wall (Allen and Dawidowicz 1990). Sequential ligand-receptor interactions could force the plasma membrane to spread to a limited extent around bound particles, as suggested recently by Lowry et al. (1998). However, it has been well established that extension of the pseudopods which embrace bound particles and eventually close up into nascent phagosomes requires an actin filament engagement. The onset of phagocytosis is correlated with actin polymerization whereas cytochalasin B, an actin depolymerizing agent, inhibits particle uptake (Zigmond and Hirsch 1972, Axelina and Reaven 1974, Sheterline et al. 1984, Greenberg et al. 1991). The newly polymerized actin filaments are concentrated at sites of the particle engulfment, as also seen in Acanthamoeba (Figs. 1A, B).

Actin-dependent mechanisms, which govern the protrusion of pseudopods during phagocytosis, are likely to reflect those operating at the leading edge of crawling cells. It has been proposed, for example, that actomyosin contraction participates in moving cell margins forward (Heath and Holifield 1991). Accordingly, myosin II was localized at the sites of particle uptake in macrophages by early immunofluorescence observations (Painter and Dool 1979, Stendhal et al. 1980), although, opposite results were obtained in Dictyostelium (Yumura et al. 1984). Most importantly, Dictyostelium mutants devoid of native myosin II displayed impaired phagocytic abilities while being defective in other actin-dependent events like cytokinesis and capping of cell surface receptors (De Lozanne and Spudich 1987, Fukui et al. 1990).

The obtained indication on the lack of myosin II involvement in phagocytosis was further underscored by a finding that no phosphorylation of myosin II light chain took place during phagocytosis in macrophages (De Lanerolle et al. 1993). Our observations which revealed no detectable accumulation of myosin II at forming or maturing phagosomes in Acanthamoeba are in line with these data (Fig. 1C). Possible limitations of the immunofluorescence sensitivity should be kept in mind when estimating this lack of myosin II staining. Nevertheless, in contrast to myosin II, the concentration of myosin I around forming phagosomes was easily detected (Figs. 1D, F).

Three isoforms of myosin I: IA, IB and IC have been identified in Acanthamoeba. They all share a similar structure comprising a N-terminal conserved motor domain and C-terminal tail homology domains which mediate the binding of membrane/acid phospholipids and contain the second, ATP-insensitive actin binding site (for review see Hasson and Mooseker 1995). Despite this similarity, myosins IA-C display different subcellular localizations in Acanthamoeba (Baines and Korn 1990, Baines et al. 1992). Myosin IA, IB, and possibly IC, are recognized by the MI.8 antibody used in this study (Yonemura and Pollard 1992). We assume, however, that myosin IB mainly accounted for the prominent staining of submembranous layer of phagocytic cups since antibody M1.7, which does not bind to myosin IB, produced only moderate and less distinct labeling of this cell region (not shown). This supposition is in agreement with report of Baines et al. (1992) about the myosin IB concentration at early stages of phagocytosis in Acanthamoeba. Myosin I, visualized by MI.8 antibody, co-localized with abundant actin filaments at forming phagosomes and disappeared concomitantly with actin during phagosome maturation (Fig. 1). Given the structure of Acanthamoeba myosin I and its co-localization with microfilaments, it seems possible that myosin I can participate in the extension of the pseudopods during particle engulfment, enabling either movement of the pseudopod membrane relative to actin filaments and/or sliding of actin filaments relative to each other, as considered earlier (Stossel 1993).

The actin-actin interactions mediated by myosin I can be especially important in phagocytosis since out of five Dictyostelium myosin I isoforms, myosin IB and IC having this property were required for efficient particle uptake and myosin IB was found to concentrate at sites of the particle ingestion in these cells (Fukui et al. 1989, Jung et al. 1996).

An ability to generate tension within the actin gel by myosin I can be regulated in at least two ways, as proposed by Baines et al. (1995). The first mechanism operates at the level of serine/threonine phosphorylation of myosin I which is required for maximal Mg²⁺-ATPase activity of the

http://rcin.org.pl
enzyme (Albanesi et al. 1983). The second one concerns actin filaments: three-dimensional organization of the microfilaments, maintained by actin-binding proteins, can control the susceptibility of filaments to the contraction. Confirming the first supposition, myosin IB, concentrated at forming phagosomes in Acanthamoeba, was found to be phosphorylated (Baines et al. 1995). On the other hand, we found that actin and myosin I accumulated at phagosomes are accompanied by the spectrin-like protein (Fig. 2 in this paper, Kwiatkowska and Sobota 1997). Proteins of the spectrin family are heterotetramers which cross-link actin filaments (for review see Bennett 1990).

The structure of the Acanthamoeba spectrin-like protein is not completely elucidated. Nevertheless, biochemical studies and co-localization with actin filaments points to its actin-binding abilities (Pollard 1984, Kwiatkowska and Sobota 1990, 1997). Therefore, it seems possible that an interplay between spectrin, actin and myosin I can participate in the regulation of microfilament alterations that are required for pseudopod extensions during uptake of particles.

The onset of yeast phagocytosis in Acanthamoeba is controlled by tyrosine phosphorylation of proteins, as indicated by the inhibitory effect of a tyrosine kinase activity blocker and accumulation of hyperphosphorylated proteins at the sites of particle ingestion (Figs. 3, 4). This is one of a few phenomena known to be correlated with changes in the phosphorysosine content of proteins in lower Eukaryota (Schweiger et al. 1992, Gauthier et al. 1997, Venkataraman et al. 1997). On the other hand, being dependent on tyrosine kinase activity, phagocytosis in Acanthamoeba surprisingly resembles that mediated by Fcy receptors in "professional" phagocytes of mammals (Greenberg et al. 1993, Strzelecka et al. 1997b). Among proteins known to undergo tyrosine hyperphosphorylation during Fcy receptor-mediated phagocytosis are the Fcy receptors, tyrosine kinases of Src and Syk families, several signaling molecules, like Vav and Shc, phospholipase C\(\gamma\) as well as paxillin, a component of the actin-based cytoskeleton (Kiener et al. 1993, Darby et al. 1994, Greenberg et al. 1998, Crowley et al. 1997). Phosphorylation of tyrosine residues up-regulates the activity of the enzymes mentioned above. Simultaneously, it converts the phosphorylated molecules into docking sites for Src homology 2 (SH2) domain-containing proteins. Therefore, phosphotyrosine residues are involved in assembling the proteins in an active complex at the sites of particle binding. Further studies will reveal the identity of proteins which are phosphorylated at tyrosine residues during phagocytosis in Acanthamoeba and elucidate their role in the process.

Acknowledgments. We thank Dr. D. A. Kaiser for providing anti-myosin I and anti-myosin II antibodies. We also thank Kazimiera Mrózfibka for excellent technical assistance. This work was supported by a grant from the State Committee for Scientific Research KBN 0082/P2/94/07 and by a grant from the State Committee for Scientific Research to the Nencki Institute of Experimental Biology.

REFERENCES

Dehio C., Prevost M.-C., Sansonetti P. J. (1995) Invasion of epithelial cells by Shigella flexneri induces tyrosine phosphorylation of cortxin by a pp60^{src}-mediated signalling pathway. EMBO J. 14: 2471-2482

Kiefer P. A., Rankin B. M., Burhardt A. L., Schievent G. L., Gilliland L. K., Rowley R. B., Bolen J. B., Ledbetter J. A. (1993) Crosslinking of Fc receptor (Fc RI) and receptor II (Fc RII) on monocytc cells activates a signal transduction pathway common to both Fc receptors that involves the stimulation of p72 syk protein tyrosine kinase. J. Biol. Chem. 268: 24442-24448

Received on 31st July, 1998. accepted on 14th October, 1998
Effect of Ceramide-Analogues on the Actin Cytoskeleton of *Tetrahymena pyriformis* GL. A Confocal Microscopic Analysis

Péter KOVÁCS and György CSABA

Department of Genetics, Cell and Immunobiology, Semmelweis University of Medicine, Budapest, Hungary

Summary. Using monoclonal antibody to actin (MAB) and phalloidin, F- and G-actin were demonstrated separately in the unicellular *Tetrahymena*. MAB labeled mucocysts, basal body cage complexes, the surface of food vacuoles and the surface of the nucleus. A bright fluorescent globular structure was seen attached to the nucleus. Some labels were present along the oral field. Phalloidin labeled these structures similarly, except the bright nucleus-associated globular structure. However, phalloidin labeled contractile vacuoles in some cases. C2-ceramide treatment weakened MAB labeling in general and abolished the fluorescence of the bright nucleus-associated area. Nevertheless basal body cage complexes remained unchanged. Under the effect of this cell permeable ceramide analogue, extremely large vacuoles appeared at the bottom of the cells, and the bright phalloidin labeling of the epiplasmic area (basal body cage complexes, mucocysts) disappeared. Non-hydroxy fatty-acid ceramide influenced the cytoskeleton similarly. There was no detectable alteration after treatment with hydroxy fatty-acid ceramide and sphingosine-1-phosphate. The experiments call attention to the ceramide regulation of cytoskeleton in *Tetrahymena* and to the possibility of differences in this regulation depending on the cellular localization and forms (G and F) of actin.

Key words: actin, apoptosis, C2-ceramide, cytoskeleton, *Tetrahymena*.

INTRODUCTION

The presence of actin was demonstrated in all types of eukaryote cells from protists to mammals. The rapid conversion of actin between monomeric (G) and filamentous (F) forms plays a crucial role in cell motility, intracellular movements, cell division and the maintenance of cell shape (Cooper 1991). Stimulus-mediated alterations in the actin assembly and disassembly accompany cell surface changes in peripheral cytoplasm. Some experimental results suggest that depolymerization of F-actin may also be a necessary component of the process of apoptosis including overall cyto-architectural changes (Laster and McKenzie 1996). Actin assembly and disassembly, crosslinking of actin filaments are affected by intracellular agents such as actin-binding proteins and second messengers (Stossel 1989). These agents are synthesized and (or) activated frequently after the activation of membrane receptors. Phosphoinositides have been reported to be important in the regulation of actin polymerization (Cooper 1991), by binding to actin-binding proteins such as gelsolin resulting in an increase of the

http://rcin.org.pl
nucleation sites and a stimulation of actin polymerization (Cunningham et al. 1991).

The membrane skeleton in ciliated Protozoa, called the "epiplasm," is well developed and serves to anchor basal bodies and cell surface structures (Pitelka 1969). Actin filaments were found close to the inner alveolar membrane or the epiplasmic filamentous meshwork, and may be involved in the positioning of some organelles, such as mucocytes, kinetosomes and mitochondria, at the cell surface (Méténier 1984). In Paramecium ciliary basal bodies become clearly visible by labeling of cells with F-actin specific phalloidin, and also the surface of food vacuoles and the borders of the buccal cavity were labeled by phalloidin; while no labeling was observed in association with the osmoregulatory system (Kersken et al. 1986). Whereas Hirono et al. (1990) have shown that actin of Tetrahymena pyriformis does not interact with phalloidin; Tetrahymena actin has both properties similar (muscle myosin binds to it) and dissimilar (muscle tropomyosin does not, while muscle α-actinin hardly bind to it) to that of skeletal muscle actin. In Amoeba proteus actin is distributed around the nucleus, in cortical layer delineating the granuloplasm from the peripheral hyaloplasm, and - in contrast with Paramecium - around the contractile vacuole (Stocker et al. 1983). In Tetrahymena ciliary 14S (inner-arm) dynein fraction is in association with actin revealed by polyclonal antibody against Tetrahymena actin (Muto et al. 1994). Actin has been identified in the Tetrahymena paravorax typically decorated with heavy meromyosin (Méténier 1984). During cytokinesis beneath the division furrow the actin filaments are in coexistence with profilin in Tetrahymena, implying the possible involvement of profilin in assembly and disassembly of contractile ring microfilaments in the process of cytokinesis (Edamatsu et al. 1992).

The basal body-cage complex is a fibrillar chamber which surrounds each basal body in the ciliate cytoskeleton. In Tetrahymena the cage contains actin filaments as well as myosin and the formation of actin filament bundles in the cage complex requires one or more actin-binding proteins (Garcés et al. 1995). Pinching off food vacuoles at the cytostome, fusion of vesicles at the food vacuole surface and transport of food vacuoles within the cell appear to involve actin filaments (Méténier 1984). These processes are inhibited by cytochalasin. Treatments that inhibit the activity of actin interfere with expulsion of excess water by the contractile vacuole, leading to over-filling of this organelle and cell lysis (Cohen et al. 1984).

Tetrahymena has receptor - hormone - second messenger systems, which work similar to vertebrate ones (Csaba 1980, 1985, 1994; Kovács 1986). Receptor activated cyclic-AMP (Csaba et al. 1976, Kuno et al. 1979), cyclic-GMP (Köhidai et al. 1992), calmodulin-dependent guanylate cyclase (Kovács et al. 1989), inositol phosphates (Kovács and Csaba 1990) have a very important role in the regulation of protozoan cell functions. The sphingomyelin metabolite ceramide has been shown to play an important role in such fundamental biological processes as cell proliferation, oncogenesis and apoptosis (for reviews see Hannun and Bell 1989). We previously found that the cell permeable ceramide analog N-acetyl-sphingosine (C$_{1}$-ceramide) has a spectacular effect on the synthesis and breakdown of inositol phospholipids; on the growth rate, chromatin condensation, DNA fragmentation and morphological features of unicellular Tetrahymena pyriformis (Kovács et al. 1997). It may be supposed that some of these phenomena are connected with the array and function of the actin cytoskeleton, considering that in fibroblasts ongoing sphingolipid synthesis is required for the assembly of both new membrane and of the underlying cytoskeleton (Meivar-Levy et al. 1997). In an effort to examine the similar relationship between ceramide and actin cytoskeleton, we tested the effects of C$_{2}$-ceramide and other ceramide analogues (sphingosine-1-phosphate; hydroxy- and non-hydroxy fatty-acid ceramides) on the arrangement of the actin cytoskeleton of Tetrahymena.

MATERIALS AND METHODS

Mouse monoclonal antibody to actin was obtained from Boehringer (Munheim, Germany). FITC-phalloidin; N-acetyl-sphingosine (C$_{1}$-ceramide); sphingosine-1-phosphate; hydroxy fatty-acid ceramide; non-hydroxy fatty-acid ceramide; goat antimouse IgG FITC conjugate were purchased from Sigma (St Louis, MO, USA). Yeast extract and tryptone were obtained from Difco (Michigan, USA). All other chemicals used were of analytical grade available from commercial sources.

Tetrahymena cultures

In the experiments Tetrahymena pyriformis GL strain was tested in the logarithmic phase of growth. The cells were cultured axenically at 28°C in 0.1 % yeast extract containing 1 % tryptone medium. Before the experiments the cells were washed with fresh culture medium, and were resuspended at a concentration of 105 cells/ml.

Treatments with the ceramide analogues

Tetrahymena cultures were treated with: C$_{2}$-ceramide (10 and 50 µM); sphingosine-1-phosphate (0.5 and 1.0 µM); hydroxy fatty-acid ceramide (100 and 250 µM); non-hydroxy fatty-acid ceramide (100 and 250 µM). Non-treated cells served as controls.

Samples were taken after 10 and 60 min. The cells were fixed with 4 % paraformaldehyde, in phosphate buffered saline (PBS, pH 7.2) for 5 min, and they were washed twice in wash buffer 0.1 % BSA (bovine

http://rcin.org.pl
serum albumin); 20 mM Tris-HCl; 0.9 % NaCl; 0.05 % Tween 20, pH 8.2).

Immunocytochemical labeling of cells by anti-actin antibody

After washing with wash buffer to block nonspecific binding of antibodies the cells were treated with blocking buffer (1 % BSA in PBS) for 30 min at room temperature. Aliquots from cell suspensions (50 μl) were transferred into Eppendorf microfuge tubes, and 50 μl primary antibody were added [mouse anti-actin antibody, 10 μg/ml; diluted in antibody buffer (1 % BSA in wash buffer)] for 45 min at room temperature.

Negative controls were carried out with 50 μl PBS containing 10 mg/ml BSA in place of the primary antibody.

After four times washing with wash buffer the cells were incubated in secondary antibody (goat anti-mouse IgG dilution 1 : 200) conjugated with FITC (fluorescein isothyocyanate), for 30 min at room temperature. After four times washing in wash buffer the cells were mounted onto microscopic slides.

Labeling of cells with FITC-phalloidin

To localize F-actin, treated, fixed and washed cells (see above) were incubated with 0.1 μM FITC-phalloidin diluted in antibody buffer for 45 min at room temperature. After incubation the four times washed cells (with wash buffer) were mounted onto microscopic slides.

Fluorescence microscopy

The labeled and mounted cells were analyzed in a Bio-Rad MRC 1024 laser scanning confocal microscope equipped a krypton/argon mixed gas laser as a light source. Excitation carried out with the 480 nm line from the laser.

RESULTS

The mouse monoclonal antibody against actin binds to the cortical epiplasm of Tetrahymena. This labeling can be considered as specific binding, as in immunoblot analysis the MAB showed an immunocomplex with the crude extract of Tetrahymena at a migration position corresponding to ~ 45 kDa (data not shown). The elements surrounding mucocysts as well as the cilary basal bodies (basal body cage complex) show bright fluorescence. The surface of food vacuoles also show strong labeling, similarly to the surface of nucleus. In most cells, to the intensively fluorescent nuclear surface a large globular area of bright fluorescence is associated. Some labeling occurs on the cytostome and along the buccal cavity (Fig. 1).

Treatments with C₆-ceramide (both 10 and 50 μM) for 60 min resulted in spectacular alterations in the pattern of fluorescence. The fluorescence of the nuclear surface became discontinuous: some parts of surface show no fluorescence, and the nuclear envelope-associated area-brightly fluorescent in the controls - was missing. A large area in the central part of the cytoplasm was unlabeled, whereas the cortical structures showed similar labeling pattern as the controls (Fig. 2). This unlabeled area is free from cytoplasmic organelles revealed by transmission images of same cells. The shorter (10 min) treatments seemed to be ineffective.

Fig. 1. Control (untreated) Tetrahymena cells labeled with mouse monoclonal anti-actin antibody and goat anti-mouse IgG - FITC conjugate. A - elements surrounding mucocysts and ciliary basal bodies show bright fluorescence (arrowheads); B, C - strong fluorescent area associated to the nucleus (arrows). CLMS pictures in a median focal plane (A, C) and plane on the surface of nucleus (B) thickness of optical sections: 1 μm. x 1400
Fig. 2. C₂-ceramide treated (50 μM, 60 min) *Tetrahymena* cells. CLSM pictures in a median focal plane, 1 μm thick optical sections. Discontinuous nuclear surface labeling with anti-actin antibody (arrows). x 1200

The F-actin specific phalloidin binds to the cortical epiplasm of *Tetrahymena* similar to that of the antibody against actin. The mucocysts show a very strong fluorescence, and the microtubular rootlets associated with basal bodies are intensively labeled. In some cases also the surface of contractile vacuoles show intense fluorescence (Fig. 3).

Treatment with 50 μM C₂-ceramide resulted in the appearance of large vacuoles in the posterior cytoplasm already after 10 min. The effect of lower concentration (10 μM) C₂-ceramide appeared later (60 min). After the C₂-ceramide treatments (10 μM - 60 min; 50 μM - 10 and 60 min) the bright labeling of epiplasmic area disappeared. Many cells were completely rounded (Fig. 4).

Hydroxy fatty-acid ceramide caused no detectable alterations in the phalloidin labeling, whereas non-hydroxy fatty-acid ceramide provoked similar changes in the labeling pattern as the C₂-ceramide (Fig. 5).

Sphingosine-1-phosphate treatment did not cause visible changes in the fluorescence.

DISCUSSION

The involvement of sphingomyelin-metabolite ceramide as a mediator (effector) of some cellular functions in *Tetrahymena* emerged in our earlier experiments (Kovács et al. 1997). In these experiments treatments with cell-permeable ceramide analogue C₂-ceramide (N-acetyl-sphingosine) caused alterations in the synthetic activity of inositol phospholipids, condensation of chromatin, nucleosomal fragmentation and provoked morphological changes (e.g., rounding-off). In the rounding-off of the cells the alteration (disassembly, reassembly) of cytoskeletal system has a very important role.

In the epiplasmic layer of ciliata (e.g., *Tetrahymena, Paramecium*) contains actin in association with alveolar membrane, mucocysts, mitochondria, kinetosomes (Métenier 1984); with the basal body cage complex (Garcés et al. 1995) and at the division furrow (Edamatsu et al. 1992).

The assembly (nucleating, severing, filament-end blocking) and disassembly of actin filaments are closely connected with the turnover of plasma membrane phospholipids, mainly with inositol phospholipids (Stossel 1989). In *Tetrahymena* C₂-ceramide treatment caused a significant alteration in the uptake of 32P into the phospholipids and also an inhibition in the turnover of inositol phospholipids (Kovács et al. 1997). It can be supposed that - at least in part - this effect helped to provoke the rounding-off of the cells, which is a consequence of the destruction of the microfilamentary system. The other characteristic effect of C₂-ceramide treatments: the disappearance of cortical phalloidin labeling, refers likewise to the effect of the disturbed actin-assembly. Further effect of C₂-ceramide on actin function is demonstrated by the enlargement of contractile vacuoles revealed by large organelle-free area at the posterior part of cytoplasm. The overfilling (enlargement) of contractile vacuoles may be responsible - besides the fact that this drug acts on the skeleton of cells - for rounding-off of the cells. This latter
Ceramide-analogue effect on *Tetrahymena* cytoskeleton

Fig. 3. Control (untreated) *Tetrahymena* cells labeled with FITC-phalloidin. A - median focal plane (1 μm thick optical section); asterisk - cytopharyngeal area, fluorescent area associated with mucocysts (arrowheads); B - same cell as in (A) focused at the surface of cell; C, D - median focal plane of the cells. Strong fluorescent labeling of the contractile vacuoles (arrows). x 1300

The phenomenon also indicates that in the *Tetrahymena* the function of osmoregulatory system depends on the normal function of actin filaments which are sometimes well visible on the surface of these extended contractile vacuoles.

Phalloidin exclusively demonstrates F-actin. The monoclonal antibody (MAB) used by us was a pan-anti-actin. This means that it was produced against an epitope in a highly conserved region of actin. It reacts to all six isoforms of vertebrate actins and also to invertebrate actins. Having this property, it can demonstrate G- and F-actin alike and many other isoforms which could be present in *Tetrahymena*. This is why the pictures produced by the MAB and phalloidin are disparate.

A characteristic feature shown by MAB is the strong labeling of the nuclear envelope and the globular structure attached to it. Considering that fluorescent phalloidin did not stain these structures, they must be other than F-actin. Contractile vacuoles were not labeled by anti-actin antibody; however they were well visible by phalloidin, which means that they are covered with F-actin. Cortical structures were labeled by both fluorescent material, containing mixed actin (F- and G-actin) skeletal elements.

The actin-disturbing effect of C2-ceramide is also indicated by the disappearance of continuous nuclear envelope-labelling, and the disappearance of bright fluorescent area associated to the nuclear envelope. Though it would be difficult to declare exactly, this bright area can be a centrosome like microtubule-organizing center (MTOC). In *Tetrahymena* microtubule associated proteins (for example dynein) are in association with actin (Muto *et al.* 1994), and this region in *Tetrahymena* is associated also with myosin (Garces et al. 1995). An actin homologue associated with the centrosome, centractin, was shown to be located at the focal point of MTOC playing a crucial role in the cell division process (Clark and Meier 1992). Perinuclear actin connected with the cortical layer in *Amoeba proteus* was also observed suggesting its important role in the nuclear movements (Pomorski and Grebecka 1995). In the dinoflagellates *Cryptophydominium*...
Fig. 4. CLSM pictures of C2-ceramide treated *Tetrahymena* cells labeled with FITC-phalloidin. A - 50 μM C2-ceramide for 10 min; B,D - 10 μM C2-ceramide for 60 min; C,E - same cells as in (B,D) transmissions pictures; asterisk - large, organelle-free area; F - 50 μM C2-ceramide for 60 min - no labeled cortical structures; G - 50 μM C2-ceramide for 60 min - rounded cell. × 1200
Ceramide-analogues effect on *Tetrahymena* cytoskeleton

The non-hydroxy fatty-acid ceramide caused similar alterations as C,,-ceramide, indicating that this molecule can penetrate the plasma membrane of the *Tetrahymena*, while the more hydrophylic hydroxy fatty-acid ceramide cannot penetrate. It was found that free ceramides of erythrocytes contained mainly non-hydroxy fatty acids, and the hydroxy fatty acids not exceeding 1 % (Bouhours and Bouhours 1984). Interestingly, the treatments with C,,-ceramide and non-hydroxy fatty-acid ceramide resulted in a very strong induction of the extrusion of mucocyst material, while hydroxy fatty-acid ceramide and sphingosine-1-phosphate produced no such alterations (Kovács *et al.* 1998). These effects could be in keeping with the influence on the actin skeleton.

Summarizing the results: the experiments demonstrate that F-actin as well as other actins are present in *Tetrahymena*. Ceramide influences the actin cytoskeleton. F-actin and other actins react to ceramide differently. This
means that ceramide can regulate actin assembly and disassembly at a low level of phylogeny influencing many cellular functions connected to the changes of cytoskeleton. The results broadened our knowledge on the spectrum of signaling mechanisms in Protozoa.

Acknowledgment. This work was supported by the National Research Fund (OTKA) T-024064, Hungary.

REFERENCES

Received on 15th June, 1998; accepted on 29th July, 1998
Identification of Protein Homologous to Inositol Trisphosphate Receptor in Ciliate *Blepharisma*

Hanna FABCZAK, Miroslawa WALERCZYK and Stanislaw FABCZAK

Department of Cell Biology, Nencki Institute of Experimental Biology, Warszawa, Poland

Summary. The protozoan ciliate *Blepharisma japonicum* is thought to utilize an enzymatic cascade in light signal transduction and inositol trisphosphate seems to be one of the messengers that cause the cells' electrical and behavioral responses. We have examined the presence and localization of putative inositol trisphosphate receptor (InsP₃R) in the cell by means of confocal microscopy and immunoblotting to further elucidate the possible involvement of the phosphoinositide signaling pathway in phototransduction of ciliate cells. The immunohistochemical examination indicated that the InsP₃-binding sites are expressed in abundance exclusively in the cortex layer of the cell and are spread over the entire cell body. The localization of InsP₃R, primarily in the cortex of *Blepharisma*, was also revealed by immunoblot analysis which clearly showed the existence of InsP₃R-like proteins of molecular mass above 200 kDa in the cell cortex fraction. This is the first demonstration of the existence of InsP₃R in ciliated protozoa and its morphological localization within the cell. The results presented, along with our earlier data, support further the possibility of participation of the phosphoinositide second messenger system in light signal transduction in *Blepharisma* cells.

Key words: *Blepharisma japonicum*, ciliate, inositol trisphosphate, inositol trisphosphate receptor, light signal transduction, photophobic response.

INTRODUCTION

The protozoan ciliate *Blepharisma japonicum* exhibits distinct light avoiding motile behaviour (Kraml and Marwan 1983, Matsuoka 1983, Fabczak et al. 1993). Its sensitivity to light is ascribed to an endogenous pigment, blepharismin (Gioffre et al. 1993, Matsuoka et al. 1997), which is enclosed in small granules (photoreceptive units) and distributed within the cell cortex layer over the entire cell body (Kraml and Marwan 1983, Matsuoka 1983). The observed light-dependent behaviour, known as the step-up photophobic response, consists of a transient ciliary reversal followed by renewed forward movement in a changed direction. The photophobic response (ciliary reversal) is preceded by a gradual, depolarizing receptor potential. This generates, in turn, an action potential (Fabczak et al. 1993). In dark-adapted cells, light also induces a rapid and significant increase in the basal level of inositol trisphosphate (Fabczak et al. 1998). Both the photophobic responses and light-induced alterations of internal inositol trisphosphate levels in these ciliates are suppressed by externally applied neomycin, heparin and Li⁺ (Fabczak et al. 1996, 1998), agents known to modify phosphoinositide turnover in various cell receptor systems (Prentki et al. 1986, Berridge 1987, Joseph and Samanta...
1993, Ehrlich et al. 1994). These results suggest that inositol trisphosphate may be involved as a second messenger in the mechanism of light transduction in Blepharisma cell and thus in the activity of their ciliary locomotor system.

We demonstrate in the present study the existence of an InsP,R-like protein and InsP,R sites localized within the cell cortex layer. These data support the hypothesis that inositol trisphosphate plays a crucial role in light signal transduction in Blepharisma cells.

MATERIALS AND METHODS

Cells

Stock cultures of the heterotrichous ciliate Blepharisma japonicum were maintained as previously described (Fabczak et al. 1996). The cell samples chosen were washed in an excess of fresh culture medium without nutritional components, incubated in this medium in the darkness for about 12 h (control conditions) and subsequently used for the described experiments.

Detection of InsP,R-like protein

Cell cortex fractions for the detection of protein homologous to InsP,R were obtained according to the method reported elsewhere (Stelly et al. 1991). A total cell lysate prepared from macrophage-like cells, line J774A.1 (ATTC) was used as a positive control for the detection of InsP,R protein. Samples were resolved on 8% SDS-polyacrylamide gels (Laemmli 1970) using a Mini-Protean II Electrophoresis System (Bio-Rad). The proteins were transferred from the gel to nitrocellulose by electroblotting for 1 h at 100 V in a transfer buffer containing 192 mM glycine, 20% methanol and 25 mM Tris, pH 8.3 with a Trans-Blot System (Towbin et al. 1979). After transfer, the blot was blocked with a solution of 5% dry skim milk in TBS (150 mM NaCl, 10 mM Tris, pH 8.0). Overnight incubation with a polyclonal antibody raised against InsP,R (Calbiochem) (1:1000 dilution in TBS with 0.2% BSA) at pH 8.3 with a Trans-Blot System (Towbin et al. 1979). After transfer, the blot was blocked with a solution of 5% dry skim milk in TBS (150 mM NaCl, 10 mM Tris, pH 8.0). Overnight incubation with a polyclonal antibody raised against Ins(1,4,5)P,R (Calbiochem) (1:1000 dilution in TBS with 1% BSA) at 4°C was followed by three 10 min washings with TBS containing 0.05% Tween 20 (TBS/Tween). The blot was then incubated for 1 h with horseradish peroxidase conjugated goat anti-rabbit IgG (Calbiochem) (1:10000 dilution in TBS with 0.2% BSA) at room temperature. The blot was washed several times for 5 min each in TBS/Tween followed by one 5 min wash in TBS alone.

The immunocomplexes were developed using an enhanced horseradish peroxidase/luminol chemiluminescence reaction according to the manufacturer's instructions. After incubation with luminol reagents, the blot was exposed to X-ray film (Roemgen XS-1, Foton).

Immunolocalization of InsP,R sites

Cells suspended in PHEM buffer (60 mM Pipes, 25 mM Heps, 10 mM EGTA, 2mM MgCl2, pH 6.9, and protease inhibitors: 1 mM PMSF, 10 µg/ml leupeptin, 2 µg/ml aprotinin) were fixed in 70% (final concentration) ethanol at -70°C for 30 min. After fixation, the cells were permeabilized with 0.05% Triton X-100 in PHEM buffer and were then incubated for 1 h with 2% BSA in TBS to block nonspecific binding antibodies. Next, the samples were incubated with anti-InsP,R antibody for 1 h (1:30 dilution in TBS containing 1% BSA). Then, the incubated cell samples were extensively washed with TBS and exposed to goat anti-rabbit IgG conjugated with FITC (1:300 dilution in TBS with 1% BSA). The cells were again washed several times in TBS and mounted in Mowiol containing 2.5% DABCO. Nonspecific fluorescence determined by incubation without primary antiserum was negligible. The samples were analyzed using a laser scanning confocal microscope (Nikon).

RESULTS AND DISCUSSION

In the present study, immunohistochemistry and immunoblotting were employed to identify and determine the localization of InsP,R in the ciliate Blepharisma. Immunohistochemical examination revealed prominent cell cortex fluorescence indicating that InsP,R sites are distributed exclusively within the cortex layer (Fig. 1). InsP,R is spread almost uniformly over the cell body, excluding any regionalization of its expression. Significant InsP,R immunoreactivity did not extend beneath the cortex layer into the underlying region of the cell (Figs. 1 B, C). Cells only containing secondary antibody (control) show no immunolabeling (Fig. 1 A). Immunoblot analysis of Blepharisma cells with rabbit polyclonal antibody raised against InsP,R revealed a major protein band of molecular weight above 200 kDa (Fig. 2, lanes 4, 6), similar to the protein labeled from mouse macrophage-like cell lysate (Fig. 2, lane 8), evidencing that the antibody acts selectively against InsP,R in the ciliate cells. The InsP,R-like protein was found either in the homogenate of whole cells, (Fig. 2, lane 6) or only the cell cortex fraction (Fig. 2, lane 4). The second, less pronounced, band of about 100 kDa might reflect proteolytic degradation as shown in rats by others (Restrepo et al. 1992). It is established that InsP,R proteins in various tissues of different species all have a molecular weight above 200 kDa on SDS-PAGE (Fadool and Ache 1992, Parys et al. 1992, Yoshikawa et al. 1992, Cunningham et al. 1993, Yoshida and Imai 1997). In control blots (Fig. 2, lanes 5, 7, 9) with identical protein loads and incubated with the secondary antibody only, no immunolabeling is found confirming a specificity of labeling. Coomassie blue R-250 stained gels (Fig. 2, lanes 1, 2, 3) also show that there is a rather low density of proteins in the region labeled by anti-InsP,R, excluding the possibility that the staining is due to non-specific labeling.

Our findings provide the first evidence that the InsP,R is present in ciliated protozoa, in particular in Blepharisma...
Inositol trisphosphate receptor in *Blepharisma*

Fig. 1. Localization of InsP₃R in *Blepharisma* viewed on a confocal laser scanning microscope. A - control cell with TBS containing 1% BSA in place of the primary antibody. B and C - cells labelled with rabbit polyclonal anti-InsP₃R and goat anti-rabbit IgG-FITC conjugate. An optical section of the anterior part of the cell confirms that the distribution of InsP₃R is restricted to the cell cortex layer (arrowheads in C). Scale bars - A and B - 20 μm; C - 60 μm

Fig. 2. Immunoblot of rabbit polyclonal anti-InsP₃R reactivity with proteins from *Blepharisma* cells. Lanes 1-3: part of the electrophoresed proteins stained with coomassie blue R-250; lanes 4-9: proteins electrophoretically transferred to nitrocellulose filter paper; lanes 1, 4, 5: cortex fractions of *Blepharisma* cells (40 μg proteins/lane); lanes 2, 6, 7: homogenate of *Blepharisma* cells (120 μg proteins/lane); lanes 3, 8, 9: mouse macrophage-like cell lysate, line J774A.1 (15 μg proteins/lane); lanes 5, 7, 9: control immunolabeling carried out with secondary antibody only. Peptide antibodies recognize bands above 200 kDa only in samples incubated with primary and secondary antibodies (lanes 4, 6, and 8).

(Giese 1973), numerous small, high electron-dense vesicles which constitute Ca²⁺ and phosphorus compartments (Ishida et al. 1991, Gobbi et al. 1994). The cell membrane of most ciliates is underlain by a vast network of membrane vesicles known as cortical alveoli (Allen 1971; Tsuchiya and Takahashi 1976; Satir and Wassig 1982; Stelly et al. 1991, 1995). The presence of such vesicles is not limited to ciliates; they are observed in many other organisms as well, such as *Amoeba* (Stockem and Klein 1979) and squid giant axons (Oschman et al. 1974). The detailed physiological role of these vesicular structures in ciliates is unknown. However, their close location to the plasma membrane suggests some resemblance to the sarcoplasmic reticulum and they may correspond to intracellular Ca²⁺ storage sites (Stelly et al. 1991, 1995; Erxleben and Plattner 1994).

For signal transduction involving phosphoinositide systems, an initial release of intracellular Ca²⁺ coupled with an increase in the internal inositol trisphosphate level is usually followed by a phase of Ca²⁺ entry from extracellular space (Berridge 1987, 1989). The mechanism by which inositol trisphosphate elicits an electrophysiological responses in these systems is not precisely elucidated. It has been suggested that inositol trisphosphate is responsible for Ca²⁺ movement across plasma membranes or it...
may act directly at the plasma membrane (Irvine 1990, Khan et al. 1992). The localization of InsP₃R in the cortical region of Blepharisma, together with the recently established light-dependent alteration of internal inositol trisphosphate levels (Fabczak et al. 1998) and existence of phosphatidylinositol 4, 5-bisphosphate within the cell cortex (not shown), clearly imply that InsP₃R may participate in the light signal transduction chain of these ciliates. The reported changes in inositol trisphosphate level in this cell may activate receptor-associated ion channels in the alveolar membrane and cause an initial Ca²⁺ release from the vesicular stores. The resultant increase in the cytoplasmic Ca²⁺ level may influence then the ciliary membrane conductance, causing an action potential generation, followed by the observed ciliary reversal during the photospheric response in this ciliate (Fabczak et al. 1993). It is likely moreover, that elevated inositol trisphosphate levels can directly act on the receptor channels in the ciliary and/or plasma membrane, permitting Ca²⁺ entry from the external environment and depolarization of the cell membrane in a concentration-dependent manner, similar to other cells (Faddal and Ache 1992, Khan et al. 1992, Feng and Kraus-Friedmann 1993, Kraus-Friedmann 1994). The precise function of InsP₃R in the light signal transduction in Blepharisma cells however, needs to be clarified.

Acknowledgement. This work was supported in part by grant KBN-6-P203-046-04 and statutory grant to the Nencki Institute of Experimental Biology from the Committee for Scientific Research.

REFERENCES

Inositol trisphosphate receptor in *Blepharisma* 213

Received on 12th July, 1998; accepted on 12th October, 1998
PCR Amplification of *Paramecium* DNA Using the β-Adrenergic-Specific Primers

Jolanta WIEJAK, Anna PLATEK, Liliana SURMACZ and Elżbieta WYROBA

Department of Cell Biology, Nencki Institute of Experimental Biology, Warszawa, Poland

Summary. In continuation to our previous cytophysiological studies on the effect of β-adrenergic ligands on *Paramecium* we present here a new evidence based on molecular investigation of isolated DNA. Specific oligonucleotides designed to hydrophobic transmembrane regions TM 3 and TM 6 of the β, adrenergic receptor have been applied for hybridization analysis and PCR. In PCR analysis the DNA species of ~530 bp were generated which subsequently hybridized to another β-adrenergic-specific molecular probe located within the amplified region suggesting that the amplified region comprises one of the essential sequence motifs of the β, adrenergic receptor.

Key words: β-adrenergic receptor, digoxigenin-labeled oligonucleotides, DNA, nucleic acid hybridization, *Paramecium aurelia*, PCR.

INTRODUCTION

Since our previous experiments indicated a regulative role of β-adrenergic ligands on *Paramecium* membrane properties (Wyroba 1986, 1987, 1989, 1991), the PCR and DNA hybridization analysis was undertaken in order to look for this G-protein-coupled receptor (Wyroba and Surmacz 1996, 1997; Surmacz et al. 1997).

The set of the β-adrenergic-specific degenerated oligonucleotides has been used as: the molecular probes for Southern hybridization, and the primers in PCR amplification of DNA isolated from a ciliate *Paramecium*. Another oligonucleotide probe - located within the amplified region - has been next constructed to analyze the PCR products.

The primers were designed to the conservative sequences of the β,-receptor (Dixon et al. 1986, Lefkowitz et al. 1986, Dohlman et al. 1987, Kobilka et al. 1987 a, b) within the transmembrane region TM 3 (forward primer - No 4) including Asp 113 involved in binding of agonists and antagonists (Strader et al. 1987, 1989) and TM 6 (backward primer - No 9) corresponding to the "gene-specific universal mammalian primers" (Venta et al. 1996).

MATERIALS AND METHODS

Cells

Paramecium aurelia cells (299s strain) were cultivated in axenic medium at 27°C (Soldo and Wagtendonk 1967). 5-day-old cultures were
collected by centrifugation at 600 x g and washed twice in sterile buffer composed of: 5 mM Tris-HCl, 10 mM MgCl₂, 1 mM KCl, pH 7.0.

Molecular probes and Southern hybridization analysis

The isolation of DNA, digestion with restriction enzymes and hybridization analysis were carried out as described previously (Subramanian et al. 1994, Wyroba et al. 1995, Surmacz et al. 1997). Non-radioactive detection system using 3'-Digoxigenin-labeled oligonucleotides (Wyrob et al. 1995) with chemiluminescent substrate CDP-Star (Boehringer Mannheim) was applied (Surmacz et al. 1997). The molecular probes for hybridization of restriction enzyme digest of Paramecium DNA were constructed to the characteristic regions of the β₂-adrenergic receptor:

1) probe No 4: 29 mer - 3rd hydrophobic region (TM 3) including Asp₁₁³ involved in binding of agonists and antagonists (Strader et al. 1987, 1989) of the sequence given in Surmacz et al. 1997;

2) probe No 9: 24 mer - 6th hydrophobic region (TM 6): 5'-TAACCAACATAAT(A)GTGAAT(A)GTTCC - corresponds (within 18 nucleotides stretch) to the probe No 7 (Wyroba et al. 1998) which is the one of “gene specific mammalian tagged sites” (Venta et al. 1996);

3) the third internal β-adrenergic-specific oligonucleotide (Probe No 1), 45 mer: 5'-AGAAGATCA(T)TCA(T)AAATTCTGTTT(G)AAAGACATAAGCT(A)TTA(G)AAA - designed to the sequence from the 3rd cytoplasmic loop was located in the region involved in G-protein interaction, including Ser 262 - the phosphorylation site by protein kinase A in the process of receptor desensitization (Clark et al. 1989, Okamoto et al. 1991). This oligonucleotide was used as a specific probe for Southern blot analysis of PCR amplified products.

The molecular probes were synthesized according to the protozoan codon usage (Caron and Meyer 1985, Martindale 1989).

PCR

PCR was performed using Paramecium DNA as a template, purity of which was checked by horizontal electrophoresis (at 50 V for 2 h) on 0.8 % agarose gel.

The chemicals used were: Taq polymerase (Perkin-Elmer, Gibco BRL, Fisher Biotech), deoxynucleotides (Promega, Gibco BRL) and MgCl₂ (Promega, Gibco BRL). PCR setting was as follows: denaturation at 95°C for 30 s, annealing at 55°C for 30 s and extension at 72°C for 1 min - x 34 cycles with additional extension at 72°C for 10 min before cooling down to 4°C (PTC-150HB MiniCycler, MJ Research, Inc.).

Forward primer was the probe No 4 and the backward primer was the probe No 9 described above. The PCR products have been analyzed by horizontal electrophoresis on 1.8 % agarose after staining with

![Diagram](http://rcin.org.pl)

Fig. 1. Location of β-adrenergic specific molecular probes No 1, No 4 and No 9 described as described in Materials and Methods. Membrane topography of β₂-adrenergic receptor is shown (the scheme modified from Lefkowitz et al. 1986, Dohlman et al. 1987, Kobila et al. 1987a).
PCR of *Paramecium* DNA with β-adrenergic primers

Fig. 2. Comparison of the Southern hybridization pattern of *Paramecium* DNA obtained with the two β-adrenergic-specific oligonucleotides: No 4 (A) and No 9 (B). The restriction enzymes were the following: lane 1 Eco RI; lane 2 Hind III; lane 3 Pst I. The DNA species of ~6.5 kb detected with both probes in Eco RI digests (lane 1) and of ~8.5 kb (lane 3) in Pst I digests are shown with arrowheads.

RESULTS

In this paper we present the results obtained with the two oligonucleotide probes: No 4 - directed to the region of ligand binding to the beta-adrenergic receptor, and No 9, being one of the universal PCR primer for β₂-adrenergic receptor (Venta et al. 1996). Location of these molecular probes in TM 3 and TM 6 of the β₂-receptor, respectively, is shown in the Fig. 1.

First, we compared the hybridization pattern of *Paramecium* DNA cut with the restriction enzymes and next tested the same oligonucleotides as the primers for PCR amplification. Fig. 2 illustrates a comparison of the Southern hybridization pattern when these molecular probes were applied: the DNA species of ~6.5 kb (detected by Surmacz et al. 1997) have been found hybridizing to both the molecular probes in Eco RI restriction digest of *Paramecium* DNA (lane 1 in Figs. 2 A and 2 B). On the other hand, in Pst I digests the species of ~8.5 kb were detected with the probe No 4 and probe No 9 (lane 3 in Figs. 2 A and 2 B, respectively).

On the basis of the obtained result we decided to perform PCR amplification using the same set of the oligonucleotides (i.e. No 4 and No 9) as the primers and the isolated DNA as a template. The purity of the template was confirmed by agarose-gel electrophoresis as shown in Fig. 3 - the high molecular DNA from different preparations was used. The products of PCR amplification are shown in Fig. 4 A, of which two prominent ones are the DNA species of ~530 bp and of ~460 bp.

To characterize the PCR-amplified DNA species a next hybridization analysis was performed with the probe constructed to the internal β-adrenergic region (Probe No 1, Wyroba and Surmacz 1997) involved in G-protein interaction. The molecular probe constructed to this aim (No 1) is located within the region which was PCR amplified (see Fig. 1). Fig. 4B indicates that the DNA species observed in hybridization analysis were those of ~530 bp, which corresponds to the predicted molecular size of the PCR product. The DNA species of the lower molecular size did not hybridize to the probe No 1 and may be considered as the aborted PCR products.

DISCUSSION

The β-adrenergic-specific molecular probes designed to TM 3 (No 4) and TM 6 (No 9) regions of the β₂-receptor reveal at least two DNA species of the same molecular size in hybridization analysis of *Paramecium*
When the molecular probes mentioned above (i.e., No 4 and No 9) were applied as the PCR primers, the DNA species of the ~530 bp were generated which is the predicted molecular size. The PCR products were further analyzed by Southern hybridization using another oligonucleotide located within the amplified region - probe No 1 - which was designed to the third cytoplasmic loop of the receptor including the region of its interaction with G-proteins (Zhao et al., 1998). This region of the molecule may be of great importance since G-proteins by themselves may be involved in phagocytosis process (Didenko et al., 1996, Ogier-Denis et al., 1996). The fact that the probe No 1 hybridized to the PCR generated DNA species of ~530 bp may suggest that the amplified region comprises one of the essential sequence motifs of the β-adrenergic receptor.

Acknowledgments. This work was supported by the State Committee for Scientific Research (KBN) grant No 6P04 A 059/10 and the statutable funds to the Nencki Institute of Experimental Biology.

REFERENCES

Dupon P. (1992) The β-tubulin genes of Paramecium are interrupted by two 27 bp introns. EMBO J. 11: 3713-3719

Our next approach was to apply PCR analysis to amplify β-adrenergic homologous sequences from Paramecium DNA. The PCR analysis seems to be an useful tool in this case since β-adrenergic receptor is intronless (Kobylka et al., 1987b), whereas the Paramecium genes sequenced so far do not posses introns (Kink et al., 1990) or they are very short (Dupuis 1992, Russel et al., 1994).

Fig. 3. Isolated Paramecium DNA after purification. Two samples from different experiments are shown: lane 1 - sample 1 (2.5 μg), lane 2 - sample 2 (2.5 μg) after agarose electrophoresis and ethidium bromide staining. These DNA preparations were used as templates for PCR amplification

DNA: 6.5 kb in Eco RI digest and 8.5 kb in Pst I. It should be pointed out that these DNA species have been previously described by us when the hybridization analysis was performed with the oligonucleotide probes located in other regions of the β-adrenergic receptor, i.e. in the adjacent transmembrane regions TM 3 and TM 4 (Surmacz et al., 1997).

Fig. 4. Polymerase chain reaction (PCR) amplification of Paramecium DNA using β-adrenergic-specific primers No 4 and No 9. Location of the primers is shown in Fig. 1. A. Electrophoresis of PCR products - ethidium stained 1.8% agarose gel lane 1 - molecular marker pBR 322 DNA - MspI Digest; lane 2 - PCR amplified products; B. Southern blot analysis of PCR products (shown in A) using the oligonucleotide molecular probe No 1. This probe is constructed to the β-adrenergic receptor sequence located within the amplified region. Arrowhead indicates the DNA species of ~530 bp, which is the predicted molecular size of the amplified product.

Acknowledgments. This work was supported by the State Committee for Scientific Research (KBN) grant No 6P04 A 059/10 and the statutable funds to the Nencki Institute of Experimental Biology.

REFERENCES

Dupon P. (1992) The β-tubulin genes of Paramecium are interrupted by two 27 bp introns. EMBO J. 11: 3713-3719
PCR of *Paramecium* DNA with β-adrenergic primers

Received on 12th August, 1998; accepted on 12th October, 1998

http://rcin.org.pl
Toxic Effect of Chemical Disinfection of Wastewater on Freshwater Ciliates

Paolo MADONI, Gessica GORBI and Elena TAJÉ

Department of Environmental Sciences, University of Parma, Parma, Italy

Summary. The toxic effect of chemical disinfection of sewage treatment plants was tested on freshwater ciliates inhabiting the receiving water bodies. For this purpose, the effluent from an activated-sludge plant was treated with sodium hypochlorite (NaClO), chlorine dioxide (ClO₂) and peracetic acid (PAA) for 15 min and the treated effluent was inoculated for 24 h with the ciliates Dexiostoma campylum, Euplotes patella and Spirostomum teres. The effluent treated with ClO₂ was highly toxic to S. teres but resulted only slightly toxic to the other two ciliate species. The effluent treated with NaClO produced a moderate toxic effect only on E. patella. The effluent treated with peracetic acid caused mortality only to E. patella. Since the poly-isosaprobic ciliate D. campylum - the smallest of the ciliate species tested - showed the lowest sensitivity, this can lead to the hypothesis that toxicity of the treated effluents may be related to both saprobity and size of the ciliates.

Key words: activated sludge, ciliates, disinfectants, toxicology, wastewater treatment.

INTRODUCTION

Municipal sewage usually contains a high amount of germs originated from i.e. human excreta. Although conventional treatment plants remove up to 3 log units of enteric bacteria, effluents from sewage treatment processes often contain high numbers of faecal coliforms and enterococci which makes it necessary to disinfect the final discharge.

Chlorination was the preferred method of disinfection for water and wastewater until the recognition that some natural organic substances, such as phenols, humic and fulvic acids, may act as precursors for formation of trihalomethanes (THMs) and other disinfection by-products (DBP), later suspected of being potentially toxic. As a result, the Cl-disinfection has fallen under close scrutiny and alternative methods based either on chemical or physical effects (e.g. peracetic acid, H₂O₂, UV etc.) are actively searched for (Lykins et al. 1986, Morris 1993, Carmineo et al. 1994). In particular, studies concerning the effects of DBP upon the localised flora and fauna of the receiving water are still scarce.

In this work we analysed the influence of three chemical disinfectants such as, sodium hypochlorite (NaClO), chlorine dioxide (ClO₂) and peracetic acid (PAA) - and their DBP - upon the microbiota that usually inhabit the receiving watercourse. Among freshwater protista we selected three species of Ciliophora...
(Dexiostoma campylum, Spirostomum teres and Euplotes patella) as representative of filter-feeding organisms belonging to the detritus food-chain.

In spite of the important role played by the ciliated protozoa in the ecology of aquatic ecosystems, little is known about the lethal effects of toxicants upon these microorganisms. Only a few papers describe the lethal effects of toxic chemicals on marine (Dini 1981, Stebbinga et al. 1990) and freshwater ciliates (Cairns et al. 1980, Le Du et al. 1990, Fernandez-Leborans and Novillo 1996). Moreover, some investigations were concerned with tests on ciliates from activated-sludge plants (Madoni et al. 1992, 1994, 1996; Gracia et al. 1994).

MATERIALS AND METHODS

Experimental procedure

All toxicological experiments were performed using samples of final effluent from the activated-sludge plant in Roncocesi, Reggio Emilia (Italy), treating urban and industrial waste. The tests with the three disinfectants were performed on 4 different days during a period of 1 year from May 1996 to May 1997. In each test, samples of the final effluent were collected for both physico-chemical and bacteriological analyses. Then, samples were divided into 11 aliquots and treated with the relevant dose of disinfectant (NaClO, ClO₂, peracetic acid (PAA)) for 15 min under room temperature and moderate shaking. To stop any possible residual oxidizing activity sodium thiosulphate was added. A preliminary test was performed to determine the concentrations of haloforms produced during chlorination; this enabled us to choose the doses of NaClO and ClO₂ capable of reducing the number of coliforms with a low quantity of THM. The following doses of disinfectant were used on the basis of the preliminary tests: 20 mg/l NaClO, 20 mg/l ClO₂, 3 mg/l PAA. The corresponding doses of sodium thiosulphate able to stop any possible residual oxidizing activity were 42.5 mg/l, 47 mg/l and 12.3 mg/l in the tests with NaClO, ClO₂ and PAA, respectively. In each sampling event, bacteriological and physico-chemical parameters were determined following the Standard Methods (APHA 1992).

In order to study the effect of the final effluent on the microbial community inhabiting the receiving water body, the toxicological tests were performed using three common ciliate species such as Dexiostoma campylum, Euplotes patella and Spirostomum teres. In each test, it was registered the response of each species when treated with the same disinfectant (T) and then compared with results obtained treating protista with both untreated effluent + sodium thiosulphate (UT) and untreated effluent (U).

Tests with ciliates

Toxicity tests were performed using three species (Dexiostoma campylum, Euplotes patella and Spirostomum teres) that are both common in freshwater environments and suitable to be cultured in laboratory. The morphometry of the three ciliate species are showed in Table 1. For each species, individual organisms were picked from stream water samples with a micropipette, washed repeatedly in drops of sterile natural water and then put into a 60 mm diameter Petri dish for culturing. The culture medium consisted of one boiled rice grain and one boiled wheat grain in 10 ml of filtered natural water. The selected species were grown at 20 ± 1 °C, oxygen saturation >45% and a photoperiod of 16:8 light:dark. Only individuals from populations reaching log-phase growth were used in the experiments.

For each disinfectant and species, four tests were performed and for each of them three replicates were run. Costar® tissue culture plates with 24 wells were employed. For each replicate 12 ciliates were tested. The ciliates were picked from the culture with a micropipette, washed in natural water, and individually inoculated into each well (16 mm diameter containing 1 ml of treated effluent) (T). The same procedure was used inoculating ciliates in two sets of wells containing 1 ml of untreated effluent with (UT) and without (U) sodium thiosulphate. As a control, single ciliates were inoculated into 12 wells containing 1 ml of untreated natural water (C). Ciliates were not fed during the tests. The mortality, or survival, was checked 24 h after inoculation under a stereomicroscope at low magnification. Cells unable to swim or creep on the bottom of the well, together with disappeared cells, were regarded as dead.

RESULTS AND DISCUSSION

Physical and chemical parameters in both treated and untreated effluent samples are shown in Table 2. Production of THM - as expected - was high in the samples treated with NaClO, with a peak during test T4 in which the concentration of THM changed from 4.49 µg/l in the untreated effluent to 162 µg/l in the treated effluent. Conversely, the treatment with ClO₂ caused a slight increase of THM concentration only in two cases. In general, the reduction of both coliforms and streptococci was higher than 90% for each test with the three disinfectants.

Table 1. Morphometry of the three ciliate species used in the toxicity tests. All measurements are based on more than 20 cells

<table>
<thead>
<tr>
<th>Ciliate</th>
<th>Order</th>
<th>Length (µm)</th>
<th>Width (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexiostoma campylum</td>
<td>Hymenostomatida</td>
<td>38.6 ± 1.3</td>
<td>15.7 ± 0.9</td>
</tr>
<tr>
<td>Euplotes patella</td>
<td>Hypotrichida</td>
<td>121.6 ± 10.7</td>
<td>80.8 ± 6.2</td>
</tr>
<tr>
<td>Spirostomum teres</td>
<td>Heterotrichida</td>
<td>302.8 ± 12.0</td>
<td>35.0 ± 3.1</td>
</tr>
</tbody>
</table>
Toxic effect of disinfection on ciliates

Table 2. Mean values of physical, chemical, and microbiological parameters measured in the activated sludge final effluent treated with the selected disinfectants. Four different tests (T1-T4) compared to untreated effluent (UT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NaClO</th>
<th>ClO₂</th>
<th>Peracetic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UT</td>
<td>T1</td>
<td>T2</td>
</tr>
<tr>
<td>pH</td>
<td>7.9</td>
<td>8.2</td>
<td>8.1</td>
</tr>
<tr>
<td>Conductivity (μS/cm)</td>
<td>1847</td>
<td>1613</td>
<td>1978</td>
</tr>
<tr>
<td>Water temperature (°C)</td>
<td>18.5</td>
<td>18.2</td>
<td>18.5</td>
</tr>
<tr>
<td>D.O. (mg/l)</td>
<td>5.3</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>N-NH₃ (mg/l)</td>
<td>0.9</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>N-NO₂ (mg/l)</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>N-NO₃ (mg/l)</td>
<td>7.2</td>
<td>7.2</td>
<td>7.2</td>
</tr>
<tr>
<td>P (mg/l)</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>BOD₅ (mg/l)</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Residual disinfectant (mg/l)</td>
<td>-</td>
<td>0.4</td>
<td>5.0</td>
</tr>
<tr>
<td>THM (μg/l)</td>
<td>0.2</td>
<td>50.3</td>
<td>90.7</td>
</tr>
<tr>
<td>Total coliforms (UF/100nl)</td>
<td>210,000</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Fecal streptococci abat. (%)</td>
<td>3,000</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Fecal streptococci abat. (%)</td>
<td>>99</td>
<td>98</td>
<td>100</td>
</tr>
</tbody>
</table>

The toxicity tests with ciliates produced different results depending on species and disinfectant used (Fig. 1). In all experiments, no mortality was observed after 24 h in the control tests (C), and this allows us to exclude possible stress conditions in ciliate cultures. In no cases did addition of sodium thiosulphate to both treated and untreated effluent cause toxic effects. For this reason, we chose to compare the response of each species when treated with the same disinfectant (T) with results obtained treating protista with untreated effluent + sodium thiosulphate (TU).

In the samples of sewage treated with NaClO the percentage of surviving Spirostomum teres individuals observed after 24 h was high (> 80%). Also the small Dexiostoma campylum, in presence of sewage treated with NaClO, showed high rates of survival. Only in the test T3 the percentage of survival of this species was slightly lower than 80%. The ciliate Euplotes patella showed moderate sensitivity to the treated effluent. In fact, during test T1 and T2 mortality of these protists was 30% and 35%, respectively; however, the rate of survival was always lower than 100%.

The treatment with ClO₂ showed in all tests a remarkable toxic effect on S. teres with rates of mortality ranging from 55% to 100%. In one case (T2) the effect appears delayed as mortality was observed only after 48 h; probably this relates to the different characteristics of the sewage during the four tests. D. campylum showed in all tests a little sensitivity to the effluent treated with ClO₂. E. patella in three out of four tests showed a little sensitivity to this disinfectant, but in T4 test the mortality of this species was 100%.

The samples of sewage treated with PAA was no toxic for the ciliate S. teres. Also D. campylum in three out of four tests resulted to be indifferent to this disinfectant. Only in T1 test D. campylum showed an high mortality (72%) probably due in part to the toxicity of the sewage than of the disinfectant. The response of E. patella to the PAA treatment was different during the four tests. In T2 this hypotrich appeared insensible to the disinfectant while in T1 and T4 it showed an high toxic effect with mortality of 80% and 100%, respectively.

In general, the disinfected effluents produced a moderate toxic effect on ciliated protozoa populations. Nevertheless, it should be stressed that the results from each treatment differed according to the tested ciliate species. Taking into account the saprobity of each species, D. campylum is a poly-isosaprobic species (saprobic index SI = 3.9), S. teres a polysaprobic organism (SI = 3.6), and E. patella a b-mesosaprobic species.
Fig. 1. The rate of survival of *Dexiostoma campylum*, *Euplotes patella* and *Spirostomum teres* in disinfected effluent from sewage treatment plant. Empty and dashed bars represent tests with untreated and treated effluent, respectively. Sample size - 36 ciliates

(ISI = 2.3) as reported by Foissner et al. (1995). Poly-
isosaprobic ciliates can resist better than mesosaprobic or oligosaprobic ciliates to polluted waters, and this may be the reason of both the lowest sensitivity showed by *D. campylum* and the highest sensitivity showed by *E. patella*. Since *D. campylum* is the smallest among the tested ciliate species, this can lead to the hypothesis that the toxicity of the disinfected effluents may be also related to the size of cells and thus to the extent of their surface in contact with the toxicant. Moreover, the remarkable variability in the rates of survival (from 42% to 100%) observed in the tests with untreated sewage (UT), point out both the high variability in the physico-chemical characteristics of the sewage coming out from Roncocesi plant and the possibility that untreated sewage may in some cases be toxic in itself. It should be emphasized that in such a case, addition of the disinfectant buffered the toxic effect of the sewage, by producing rates of cell survival higher than in the untreated sewage.

The toxicological tests performed with the three chemi-
cals used to disinfect the effluents from sewage treatment plants, enable us to draw the following conclusions: (i) the effluent treated with NaClO produced moderate toxic effects only on the ciliate *E. patella*; (ii) the effluent treated with ClO₂ caused toxic effects in all tested organ-
isms but higher rates of mortality were observed only for *S. teres*; (iii) in the test with peracetic acid only *E. patella* showed a high sensitivity to this disinfectant; (iv) in
general, *E. patella* resulted to be the most sensitive ciliate in this study, whilst *D. campylum* was the less sensitive ciliate.

Acknowledgments. This research received financial support from the Italian Ministry for University and Scientific and Technologic Research (MURST 60%, P. Madoni). We thank Dr. Nadia Fontani (AGAC, Reggio Emilia) for providing advice and help with aspects of the chemistry.

REFERENCES

Received on 29th May, 1998; accepted on 27th July, 1998
Systematic Position and Phylogenetic Relationships of the Genera *Bursaridium*, *Paracondylostoma*, *Thylakidium*, *Bryometopus*, and *Bursaria* (Ciliophora: Colpodea)

Wilhelm FOISSNER¹ and Martin KREUTZ²

¹ Universität Salzburg, Institut für Zoologie, Salzburg, Austria; ² Private Laboratory, Constance, Germany

Summary. The morphology and infraciliature of *Paracondylostoma cavistoma oligostriatum* ssp. n. (differs from *P. cavistoma cavistoma* by non-overlapping morphometric characteristics), *P. setigerum chlorelligerum* ssp. n. (differs from *P. setigerum setigerum* by having symbiotic green algae), and *Bursaridium pseudobursaria* were studied in live and silver-impregnated specimens. *Paracondylostoma* and *Bursaridium* are sister groups due to a unique synapomorphy, namely, a circumoral ciliary ribbon produced by narrowly spaced somatic kinetids at the anterior end of the somatic kineties. *Bursaridium* differs from *Paracondylostoma* by the euplanktonic mode of life and the paroral membrane, the middle portion of which has very loosely spaced kinetids. Based on the morphological details discovered, a Hennigian phylogeny of the genera *Bursaridium*, *Paracondylostoma*, *Thylakidium*, *Bryometopus*, and *Bursaria* is proposed. These genera are linked by four synapomorphies, namely: (1) an apical oral opening secondarily lost in *Bryometopus*, which ventralized the oral apparatus; (2) a ventral vestibular cleft occupied by the ventralized oral structures in *Bryometopus*; (3) a conspicuous adoral zone of adoral organelles; and (4) a simple paroral membrane composed of a row of dikinetids secondarily amplified to a conspicuous field of short, dikinetidal kineties in *Bursaria*, which is thus derived.

Key words: Colpodida, Hennigian phylogeny, infraciliature, *Paracondylostoma cavistoma oligostriatum* ssp. n., *Paracondylostoma setigerum chlorelligerum* ssp. n.

INTRODUCTION

Colpodid ciliates have a fascinating morphological and ecological diversity, reviewed by Foissner (1993a). For instance, *Bursaria truncatella*, one of the largest (up to 1300 μm) ciliates known, is an omnivore living in astatic and permanent freshwater habitats, while *Nivaliella plana*, one of the smallest (10 - 25 μm) ciliates known, is a strict mycophage living exclusively in terrestrial biotopes. The phylogenetic relationships of the 60 genera and about 180 species presently assigned to the class (Foissner 1993a-e, 1994a, b, 1995) have been investigated with both classical morphological and modern molecular methods (Foissner 1993a, Lynn et al. 1998, Stechmann et al. 1998).

Lynn et al. (1998) used the small subunit rRNA gene sequences to test the Hennigian phylogeny of the colpodids suggested by Foissner (1993a), which makes three important predictions, namely: (1) that the kreyellid silverline...
system separates bryometopids, such as *Bryometopus*, from all other colpodeans; (2) that the macro-micronuclear complex of cyrtolophsids, such as *Platyophrya*, is the next major synapomorphy; and (3) that the merotolokinetal stomatogenesis of colpodids *x. str.*, such as *Colpoda*, *Bresslaua*, and *Pseudooplasyphrya* is highly derived. The molecular tree topologies confirmed the two last mentioned synapomorphies, while the silverline system failed.

In the present paper, we analyze the morphology and evolution of a small group of colpodids having an apical vestibular opening with a more or less distinct ventral cleft. The investigation was stimulated by the rediscovery of *Paracondylostoma*, a rare genus, not found again since the original description by Foissner (1980).

MATERIALS, METHODS AND TERMINOLOGY

Paracondylostoma cavistoma oligostriatum was discovered in the bottom material of a dry rock-pool near Puerto Ayacucho, Venezuela. *Paracondylostoma setigerum chioriglerum* was found in the mud of a moorland pond near Constance, Germany. For site details, see ecology and occurrence section in species descriptions. *Bursaridium pseudobursaria* occurred in the plankton of a small lake (Högelwörther See, N47°49'/E 12°50') in southern Bavaria.

Specimens were studied *in vivo* using a high-power oil immersion objective and differential interference contrast. The ciliary pattern (infraciliature) and other cytological details were revealed by scanning electron microscopy and various silver impregnation techniques, preferably silver carbonate. All described in Foissner (1991); protargol does not work well with this group of ciliates.

Counts and measurements on silvered specimens were performed at a magnification of x 1,000. Although these provide only rough estimates, it is worth giving such data as specimens usually shrink in preparations and contract during fixation. Illustrations of live specimens were based on free-hand sketches and micrographs, those of impregnated specimens have been deposited in the Oberösterreichische Landesmuseum in Linz (LI), Austria, accession numbers: 1998/45, 46. The slides contain several specimens, with relevant cells marked by a black ink circle on the cover glass. *Paracondylostoma cavistoma oligostriatum* is difficult to impregnate with protargol and thus the type slides are of mediocre quality. Accordingly, we declare Figures 12-17 in the present paper as additional holotype material.

Etymology: composite of the Greek adjective *oligos* (few) and the Latin noun *strieus* (striae), meaning a *Paracondylostoma* with few ciliary rows.

Description: very fragile and thus difficult to observe *in vivo*, usually disintegrates when taken up with fine pipettes and/or observed under slight coverglass pressure. Size *in vivo* 25-40 x 18-25 µm, usually about 35 x 20 µm. Broadly ellipsoidal (1.5:1, Fig. 1), ellipsoidal (2:1, Fig. 3) or slightly conical (Fig. 2); anterior end slightly to distinctly broader than evenly rounded posterior, transverse truncate with dorsal side slightly longer than ventral, thus oblique when viewed laterally (Figs. 4, 10). Macronucleus usually in posterior body half, broadly ellipsoidal, contains many minute (about 0.3 µm) nucleoli. Two to three globular microunuclei (1.2 - 2 µm, x 1.7, n 13, protargol impregnation) attached to macronucleus, impregnate only faintly with protargol (Figs. 1, 8, 10, 15, 17). Contractile vacuole subterminal on ventral side. Cortex flexible and very fragile (see above), rather distinctly furrowed by ciliary rows, contains a stripe of minute (about 0.2 µm), colourless granules (mucocysts ?) between each two ciliary rows (Figs. 5, 6). Cytoplasm colourless, contains some bright fat globules and food vacuoles 4 - 8µm across with bacteria and granular material, very likely bacterial remnants. Swims rather fast by rotation about main body axis.

Somatic cilia about 8 µm long and rather evenly spaced, except for anterior end, where each row commences with three narrowly spaced cilia, forming rather distinct ribbon in five specimens. Ciliary rows distinctly separate from paroral membrane, equidistant and very slightly spiral, composed of dikinetids having only the posterior basal body ciliated (Figs. 1, 7-9, 12-17).

Oral (vestibular) opening on anterior end of cell, margin opaque and slightly indented in midline of ventral side by minute vestibular cleft. Vestibulum fragile, occupies circa 35% of body length, oblique conical, that is, straight ventrally and obliquely extending dorsally. Adoral zone of organelles (left polykinetid) on left wall of vestibulum, inconspicuous because short, narrow and oriented with the smaller side to the observer when the cell is viewed ventrally or dorsally (Figs. 1, 8, 13). Individual organelles
Figs. 1-11. Paracodylostoma cavistoma oligostriatum (1-10) and P. cavistoma cavistoma (11, from Gielei 1954) from life (1-6, 11) and after protargol impregnation (7-10). 1 - ventral view of a representative specimen containing sporulating bacteria; 2, 3 - funnel-shaped and obovate shape variants; 4 - ventrolateral view; 5, 6 - optical section and surface view of cortex, which contains stripes of minute granules; 7 - infraciliature of anterior ventral side; 8, 9 - infraciliature of ventral and dorsal side. Arrow marks zone of adoral organelles; 10 - lateral view showing location of main cell organelles. 11 - P. cavistoma cavistoma. Ventro-lateral view of a mercuric chloride fixed specimen, length 60 μm. AO - adoral organelles, MA - macronucleus, PM - paroral membrane, R - ribbon of three narrowly spaced dikinetids, V - vestibulum, VO - vestibular opening. Scale bars - 15 μm (Figs. 1, 8-10) and 10 μm (Fig. 7).
Figs. 12-17. Paracondylostoma cavistoma oligostriatum, oral and somatic infraciliature and nuclear apparatus after silver carbonate impregnation. To reveal details, specimens were strongly flattened by the cover glass. 12, 13 - ventral and dorsal view of same specimen, where the adoral zone of organelles is directed toward the observer with the smaller side and thus appears as narrow band (cp. Fig. 15, 17). Arrows mark ends of paroral membrane. Note the distinct ciliary ribbon formed by three narrowly spaced dikinetids each at the anterior end of the somatic kineties; 14, 17 - oblique ventral anterior polar views. Twelve adoral organelles, which form a reticulate structure, are recognizable in Fig. 17; 15, 16 - dorsolateral view of same specimen, where the adoral zone of organelles is directed toward the observer with the wider side and thus appears as broad band. AO - adoral zone of organelles, MA - macronucleus, MI - micronucleus, PM - paroral membrane, R - ribbon of three narrowly spaced dikinetids slightly cuneate, touch each other proximally, connected by fine line distally, forming reticulate pattern (Figs. 10, 15, 17). Paroral membrane encircles anterior body end, except for ventral cleft, where about 10 dikinetids are lacking; consists of dikinetids, whose cilia form, together with the ciliary ribbon produced by the narrowly spaced cilia at the anterior end of the somatic kineties, a conspicuous corona (Figs. 1, 7, 12 - 17).

Ecology and occurrence: as yet found only at type location, that is, a large granitic rock (Laja) with many dry pools containing up to 5 cm thick layers of greybrown, sandy soil and sediment with many roots from plants of

http://rcin.org.pl
Table 1. Morphometric data from *Paracondylostoma cavistoma oligostriatum* (PC) and *P. setigerum chlorelligerum* (PS)

<table>
<thead>
<tr>
<th>Character</th>
<th>Species</th>
<th>Method**</th>
<th>(\overline{x})</th>
<th>M</th>
<th>SD</th>
<th>SE</th>
<th>CV</th>
<th>Min</th>
<th>Max</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body, length</td>
<td>PC</td>
<td>P</td>
<td>29.0</td>
<td>28</td>
<td>4.2</td>
<td>1.2</td>
<td>14.5</td>
<td>20</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>Body, maximum width</td>
<td>PS</td>
<td>V</td>
<td>74.2</td>
<td>73</td>
<td>6.2</td>
<td>1.4</td>
<td>8.4</td>
<td>65</td>
<td>88</td>
<td>21</td>
</tr>
<tr>
<td>Anterior end to proximal end of adoral zone, distance</td>
<td>PC</td>
<td>P</td>
<td>10.0</td>
<td>10</td>
<td>1.9</td>
<td>0.5</td>
<td>18.7</td>
<td>6</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Anterior end to macronucleus, distance</td>
<td>PC</td>
<td>P</td>
<td>16.2</td>
<td>16</td>
<td>3.1</td>
<td>0.9</td>
<td>19.1</td>
<td>10</td>
<td>22</td>
<td>13</td>
</tr>
<tr>
<td>Macronucleus, length</td>
<td>PS</td>
<td>V</td>
<td>35.8</td>
<td>36</td>
<td>3.8</td>
<td>0.8</td>
<td>10.6</td>
<td>28</td>
<td>42</td>
<td>21</td>
</tr>
<tr>
<td>Macronucleus, width</td>
<td>PC</td>
<td>P</td>
<td>7.5</td>
<td>8</td>
<td>1.5</td>
<td>0.4</td>
<td>19.3</td>
<td>5</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Anterior end to contractile vacuole, distance</td>
<td>PS</td>
<td>V</td>
<td>51.6</td>
<td>52</td>
<td>7.7</td>
<td>1.7</td>
<td>14.9</td>
<td>35</td>
<td>73</td>
<td>21</td>
</tr>
<tr>
<td>Normal somatic cilia, length</td>
<td>PS</td>
<td>V</td>
<td>19.9</td>
<td>20</td>
<td>2.7</td>
<td>0.6</td>
<td>13.6</td>
<td>13</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Symbiotic algae, length</td>
<td>PS</td>
<td>V</td>
<td>5.1</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>Somatic kineties, number</td>
<td>PS</td>
<td>V</td>
<td>31.3</td>
<td>29</td>
<td>12.6</td>
<td>2.7</td>
<td>40.3</td>
<td>18</td>
<td>64</td>
<td>21</td>
</tr>
<tr>
<td>Micronuclei, number</td>
<td>PS</td>
<td>V</td>
<td>1.0</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Dikinetids in a somatic</td>
<td>PS</td>
<td>SC</td>
<td>12.8</td>
<td>12</td>
<td>1.5</td>
<td>0.4</td>
<td>11.6</td>
<td>11</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>Adoral organelles, number</td>
<td>PC</td>
<td>P</td>
<td>34.7</td>
<td>35</td>
<td>2.6</td>
<td>1.0</td>
<td>7.9</td>
<td>33</td>
<td>38</td>
<td>7</td>
</tr>
</tbody>
</table>

* CV - coefficient of variation in %, M - median, Max - maximum, Min - minimum, n - number of individuals investigated, SD - standard deviation, SE - standard error of mean, \(\overline{x} \) - arithmetic mean

** P - protargol impregnation (Foissner's protocol), mounted specimens; SC - silver carbonate impregnation; V - in vivo

The endemic Velloziaceae family. The rock-pools were dry and the bottom partially covered by minute mosses when the sample was taken. In the Petri dish, most specimens of *P. cavistoma oligostriatum* were found in a mossy patch, indicating that it prefers this habitat.

Comparison with related species: *Paracondylostoma cavistoma oligostriatum* is very likely closely related to *Cyrtolophosis cavistoma*, discovered by Gelei (1954) in a temporary pool in Hungary (Fig. 11). Gelei (1954) mentioned that he did not study the species, especially its oral structures, in detail. Our investigations confirm Foissner (1993a), who transferred Gelei's species to *Paracondylostoma*.

Gelei's species (Fig. 11) and the Venezuelan population (Figs. 1, 8, 9) differ mainly in some morphometric characteristics: size about 60x30 μm vs. about 35x20 μm, 30-34 distinctly spiral ciliary rows vs. 18-21 almost straight rows. Thus, we separate the Venezuelan population only at subspecies level. A more distinct character would be the dwelling tube *P. cavistoma cavistoma* inhabits. However, we cannot exclude that *P. cavistoma oligostriatum* also produces a dwelling tube, although we did not find any, because it was rare and fragile and thus could not be studied in great detail.

Paracondylostoma setigerum setigerum and *P. setigerum chlorelligerum* have a length of 65-90 μm, 45-50 ciliary rows, and 30-40 adoral organelles, whereas *P. cavistoma oligostriatum* is 25-40 μm long and has 18-21 ciliary rows and 10-13 adoral organelles. These differences are large enough to classify both types as distinct species.

Paracondylostoma setigerum chlorelligerum ssp. n. (Figs. 18-30; Table 1)

Diagnosis: as *P. setigerum setigerum* Foissner, 1980, but with symbiotic green algae.

http://rcin.org.pl
Figs. 18 - 21. *Paracondylostoma setigerum chlorelligerum* from life (18 - 20) and after silver carbonate impregnation (21). 18, 20 - ventral and lateral view of representative specimens with slightly contracted vestibular opening; 19 - specimen with fully extended anterior portion and very hyaline dwelling tube (cp. Fig. 24); 21 - infraciliature of ventral anterior portion (redrawn from squashed specimen). AO - adoral zone of organelles, CV - contractile vacuole, FV - food vacuole, MA - macronucleus, PM - paroral membrane, R - ribbon of narrowly spaced dikinetids, SA - symbiotic algae, TC - tactile cilia, V - vestibulum. Scale bar - 30 μm
Relationships of bryometopid colpodids 233

Figs. 22 - 26. Paracondylostoma setigerum chlorelligerum, electronic flash micrographs of live specimens. 22, 23 - ventral and lateral view of specimens with slightly contracted anterior end; 24 - fully extended specimen within very hyaline, mucous dwelling tube; 25 - specimen packed with food items and distinct paroral membrane (kindly supplied by P. Mayer, Germany); 26 - dorsal anterior end showing tactile cilia (arrow) originating at the posterior border of the ciliary ribbon surrounding the oral opening. AO - adoral zone of organelles, CV - contractile vacuole, D - diatom, FV - food vacuoles, MA - macronucleus, R + PM - cilia of somatic ribbon and paroral membrane, SA - symbiotic algae, TC - tactile cilia, V - vestibulum. Scale bars - 30 μm

http://rcin.org.pl
Type location: pond mud near Hegne, a suburb of
Constance, Germany (E9°10’/N47°40’).

Type slides: no permanent slides were made. Thus, the
figures in this paper must serve as type material.

Etymology: chlorelligerum (bearing chlorellae) refers
to the main subspecies character, that is, the symbiotic
green algae.

Description: size in vivo 65 - 88 x 28 - 43 μm, on
average 73 x 30 μm (Table 1). On slides usually elongate
ellipsoidal to slightly conical (Figs. 18, 20, 22, 23, 25),
natural shape, however, like that shown in Figs. 19 and 24,
that is, cylindroidal with distinctly broadened anterior
region, which can be contracted, providing cells with
obconical appearance; anterior end obliquely truncate to
right and ventral side, posterior rounded. Macronucleus
slightly underneath mid-body on average, globular to
slightly ellipsoidal, contains many minute (<1 μm) nucleoli;
1 - 3, usually 3, micronuclei attached to macronucleus
(Figs. 18, 25, 29, 30; Table 1). Contractile vacuole in
forth fourth of body, with single excretory pore in midline
of ventral side (Figs. 18, 22, 25). Cortex flexible, rather
distinctly furrowed by ciliary rows, contains many tightly
spaced, minute (<0.5 μm), colourless granules (mucocysts?
Fig. 26). Cytoplasm colourless, cells, however, appear
greenish due to 18 - 64, on average 29 (Table 1), symbiotic
algae (Fig. 24); symbionts irregularly distributed, about
5 x 4 μm, with cup-shaped chloroplast and without eye-
spot (Figs. 18, 22, 23, 27, 30). Feeds on bacteria and algae
(globular green algae, Scenedesmus, diatoms; Figs. 18, 22, 23, 25).

Paracondylostoma setigerum chlorelligerum lives in a
mucous dwelling tube, which is very hyaline and thus
difficult to recognize when not covered by organic
particles (Fig. 24). The dwelling tube is left when the cell
is transferred from the natural sample to the slide, and rebuilt
within 12 h. When the cell is slightly disturbed
and/or the elongated (tactile) cilia (see below) touch
certain objects, it draws back into the tube, soon extending
and assuming the obconical shape typical of the sessile,
swirling organism (Fig. 24).

Normal somatic cilia in vivo ca 5 μm long and rather
evenly spaced, except of anterior end, where each row
commences with 4-8 narrowly spaced cilia, forming
distinct ribbon. About 20-30 distinctly elongated
(20 μm, Table 1) tactile cilia around anterior end, very
likely originate from first and/or second dikinetid under-
neath circumoral ribbon (Figs. 18 - 20, 22 - 24, 26). Ciliary
rows distinctly separate from paroral membrane, equidist-
tant and rather distinctly spiralling, composed of dikinetids
with, probably, only the posterior basal body ciliated
(Figs. 18, 21, 22, 27-30).

Oral apparatus more conspicuous, but of same fine
structure, than in P. cavistoma oligostriatum because
occupying almost 50% of body length. Adoral zone
composed of about 30-35 organelles. Paroral widely open
ventrally, that is, surrounds vestibular opening by about
300° (Figs. 18, 20-23, 27-30).

Ecology and occurrence: as yet found only at type
location, that is, a small (about 5 x 3 m, max. depth 1 m),
aacidic (pH 5.5 - 6.0) brownwater pond at the grassy margin
of a 100 m broad Sphagnum stripe with dwarfed pines
(Pinus sp.). The pond surface was covered with water
ilies (Nymphaea sp.), while on the bottom was a thick
layer of mud, the upper zone of which contained a rich and
diverse community of bacteria, algae, and protozoans,
cluding P. setigerum chlorelligerum.

Comparison with related species: P. setigerum
chlorelligerum is very similar, if not identical, to
P. setigerum setigerum Foissner, 1980, except for the
symbiotic algae, whose taxonomical value is controversial
for detailed discussion, see Foissner & Wölfl 1994). We
find it appropriate to separate such populations at subspe-
cies level, considering the distinctiveness of the character
and the physiological and ecological differences they
show.

Bursaridium pseudobursaria (Fauré-Fremiet, 1924)
Kahl, 1927 (Figs. 31-37)

This species has been reinvestigated by Foissner (1993a)
and is well-known, except for the paroral membrane,
whose identity remained doubtful. Our investigations
show that its location (close above the circumoral ribbon
formed by the anterior end of the somatic kineties) and
structure (single row of dikinetids) are very similar to that
Figs. 31-34. *Bursaridium pseudobursaria* from life (31, from Faure-Fremiet 1924), after silver carbonate impregnation (32, from Foissner 1993a), and in the scanning electron microscope (33, 34). 31 - ventral view of representative specimen, with arrowhead marking area shown in Fig. 32 after silver impregnation: 32 - infraciliature of outer surface of right vestibular wall, marked by arrowhead in Fig. 31; 33, 34 - ventrolateral and oblique frontal view showing general organization and huge vestibulum, which has a distinct ventral cleft. Arrow marks loosely ciliated paroral, shown at higher magnification in Fig. 37. PM - paroral membrane. R - circumoral ciliary ribbon formed by the anterior end of the somatic kineties, SK - somatic kineties, V - vestibulum, VC - vestibular cleft. Scale bars - 50 µm.
Fig. 35-37. *Bursaridium pseudobursaria*, somatic and oral infraciliature after silver carbonate impregnation (35, 36) and in the scanning electron microscope (37). The silver carbonate impregnated specimens were strongly squashed to reveal as many details as possible in the same focal plane. 35, 37 - anterior dorsal portion showing fibres lining the vestibular wall and the paroral membrane (arrowheads), which is composed of very loosely spaced kinetids, close above the conspicuous circumoral ciliary ribbon, which is distinctly separate from the somatic kineties; 36 - left end of paroral membrane (arrowheads) and circumoral ciliary ribbon. F - fibres, R - ciliary ribbon at anterior end of somatic kineties, SK - somatic kineties. Scale bar - 10 μm
Table 2. State for the characters shown in Figure 38. See Foissner (1993a) for detailed explanation of characters.

<table>
<thead>
<tr>
<th>No.</th>
<th>Apomorhic</th>
<th>Plesiomorphic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>micronucleus in perinuclear space of macronucleus</td>
<td>macronucleus and micronucleus separate</td>
</tr>
<tr>
<td>2</td>
<td>conspicuous zone of adoral organelles</td>
<td>small, brick-shaped adoral organelles</td>
</tr>
<tr>
<td>3</td>
<td>ventral cleft</td>
<td>without ventral cleft</td>
</tr>
<tr>
<td>4</td>
<td>apical oral opening</td>
<td>ventral oral opening</td>
</tr>
<tr>
<td>5</td>
<td>paroral composed of many dikinetidal rows</td>
<td>paroral a single row of dikinetids</td>
</tr>
<tr>
<td>6</td>
<td>with conjugation (sex)</td>
<td>without sex</td>
</tr>
<tr>
<td>7</td>
<td>resting cyst with emergence pore</td>
<td>resting cyst without emergence pore</td>
</tr>
<tr>
<td>8</td>
<td>vestibulum obconical or cornute and curved to right. Adoral organelles each composed of two long rows and one short row of basal bodies in zigzag pattern*</td>
<td>vestibulum cornute and curved to left. Adoral organelles each composed of three rows of same length with basal bodies not in zigzag pattern*</td>
</tr>
<tr>
<td>9</td>
<td>LKM fibre reduced (V-shaped pattern)</td>
<td>LKM fibre typical</td>
</tr>
<tr>
<td>10</td>
<td>supraepiplasmic microtubules</td>
<td>no supraepiplasmic microtubules</td>
</tr>
<tr>
<td>11</td>
<td>circumoral somatic ciliary ribbon</td>
<td>without ciliary ribbon</td>
</tr>
<tr>
<td>12</td>
<td>loss of ventral cleft and ventralization of oral apparatus</td>
<td>with ventral cleft and apical oral opening</td>
</tr>
<tr>
<td>13</td>
<td>paroral within vestibulum</td>
<td>paroral at margin of oral opening</td>
</tr>
<tr>
<td>14</td>
<td>vestibulum obconical</td>
<td>vestibulum cornute</td>
</tr>
<tr>
<td>15</td>
<td>paroral kinetids loosen</td>
<td>paroral kinetids evenly spaced</td>
</tr>
<tr>
<td>16</td>
<td>euplanktonic</td>
<td>benthic, semi-sessile</td>
</tr>
</tbody>
</table>

* For details, see Foissner (1993a), Perez-Paniagua et al. (1980), and Wirnsberger et al. (1985). Generally, the adoral ciliature of bursariomorphid and bryometopid ciliates is insufficiently known.

of Paracondylostoma. The sole difference is that the paroral dikinetids, which have only one basal body ciliated (Fig. 37), are more loosely spaced laterally and dorsally than ventrally (Figs. 32, 35, 36).

DISCUSSION

Recent molecular data showed that Bursaria and Bryometopus are rather closely related (Lynn et al. 1998), that is, did not confirm Foissner (1993a), who assigned Bursaria/Bursaridium/Paracondylostoma and Bryometopus/Thylakidium to different subclasses, viz. the Colpodia and Bryometopia. Foissner (1993a) over-interpreted details of the silverline system and somatic cortical microtubular pattern; furthermore, the detailed structure of the oral apparatus was not known in Bursaridium and Paracondylostoma.

The present investigation shows some new aspects, which will be discussed in the following paragraphs using a Hennigian scheme of argumentation (Fig. 38; Table 2). We shall demonstrate that the relationships of the genera in question are now fairly clear. The scheme is based on the new molecular data mentioned above, which show a rather close relationship of Bursaria and Bryometopus and indicate that cyrtolophosids are the sister taxon. These data agree with the morphological and morphogenetic evidences available (Foissner 1993a). Accordingly, a pleurotelenketal stomatogenesis and a "simple" paroral composed of a single row of dikinetids, are the apomorphies for the whole group.

1. Bursaridium, Paracondylostoma, Thylakidium, Bryometopus, and Bursaria have a unique character constellation not found in any other colpodid, viz. an apical oral opening, a ventral cleft, and a conspicuous "heterotrich" zone of adoral organelles. Thus, they are very likely monophyletic.

2. Bursaria is separated from the other genera by the paroral ciliature (many short rows), the structure of the resting cyst (with emergence pore; lacking in all other colpodids), and the occurrence of sex (conjugation; unknown in other colpodids). This suggests not only a rather separate (derived) position of Bursaria within the group, but also maintenance of the ordinal rank (Foissner 1993a, Lynn and Small 1997).

3. We were unsuccessful in finding a strong synapomorphy uniting the genera Bursaridium, Paracondylostoma, Thylakidium, and Bryometopus, indicating underinvestigation and/or misclassification. The details of the oral apparatus mentioned in Table 2 are
weak. However, the general appearance of these genera is more similar to each other than to Bursaria. Furthermore, several ultrastructural details argue against considering any of these genera to be very closely related to Bursaria: Bursaridium (and very likely also Paracondylostoma) has supraepiplasmic microtubules (Foissner 1993a), which are lacking in Bursaria (Lynn 1980, Perez-Paniagua et al. 1980) and Bryometopus (Wirnsberger et al. 1985; re-checked in the original material); and Bryometopus (very likely also Thylakidium) has short, non-overlapping transverse microtubule ribbons (Wirnsberger et al. 1985), while those of Bursaria are very long and overlapping (Lynn 1980, Perez-Paniagua et al. 1980).

(4) Paracondylostoma and Bursaridium have two strong synapomorphies, namely, the supraepiplasmic microtubules (as yet, definitely shown only in Bursaridium; Foissner 1993a) and the circumoral ciliary ribbon, which is composed of narrowly spaced somatic kinetids having a particular fine structure (Foissner 1993a), at the anterior end of the somatic kineties (Figs. 7, 13, 21, 29, 32, 35). No other colpodid has such a pattern. Thus, even the generic separation could be questioned. However, the slightly different structure of the paroral membrane (kinetids loosen in mid-portion of Bursaridium; Figs. 27, 32, 35-37), the large, cornute vestibulum (Figs. 31, 33, 34), and the euplanktonic mode of life of Bursaridium are rather different from the simple, obconical vestibulum (Figs. 1, 12, 18, 20, 23) and the semi-sessile life strategy of Paracondylostoma. Thus, generic separation still seems appropriate.

(5) Bryometopus and Thylakidium are linked by the short transverse microtubule ribbons forming a V-shaped pattern (Wirnsberger et al. 1985, Foissner 1993a). Bryometopus differs from the other genera in the argumentation scheme by the ventralization of the oral appa-
ratus. Possibly, the vestibulum has flattened and driven the oral structures into the ventral cleft during the evolution of the genus.

Acknowledgements. Supported by the Austrian Science Foundation (FWF Project P-12367-BIO). The technical assistance of Brigitte Moser, Dr. Eva Herzog, and Mag. Eric Strobl is greatly acknowledged.

REFERENCES

Received on 2nd July, 1998; accepted on 12th August, 1998
Myxobolus macroplasmodialis sp. n. (Myxozoa: Myxosporea), a Parasite of the Abdominal Cavity of the Characid Teleost, Salminus maxillosus, in Brazil

Kálmán MOLNÁR1, Maria Jose RANZANI-PAIVA2, Jorge Costa EIRAS3 and Edson Lara RODRIGUES4

1Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, Hungary; 2Instituto de Pesca de Sao Paulo, Sao Paulo, Brazil; 3Departamento de Zoologia e Antropologia, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal; 4Laboratorio de Impacte Ambiental e Histopatologia, Instituto Adventista de Ensino, Sao Paulo, Brazil

Summary. A new myxosporean species, Myxobolus macroplasmodialis sp. n., infecting the Brazilian freshwater fish Salminus maxillosus, is described. The species forms large plasmodia in the abdominal cavity, which are filled with spores differing from all known Myxobolus species by their anteriorly diverging and anteriolaterally opening polar capsules. In this respect the species resembles members of the genus Triangula but in all other features it shows the characteristics of the genus Myxobolus.

Key words: Brazil, Myxobolus, Myxosporea, new species, pisces, Salminus.

INTRODUCTION

Few myxosporean parasites have been reported from South America. Of these, members of the genus Henneguya Thélohan are most studied (Pinto 1928; Guimaraes and Bergamin 1933, 1934; Cordeiro et al. 1984; Azevedo and Matos 1989, 1995; Azevedo et al. 1990; Rocha et al. 1992). Compared to the number of Myxobolus species known from other parts of the world (Donets and Shulman 1984, Landsberg and Lom 1991) the number of Myxobolus species recorded from South American fishes is relatively low. The results of myxosporean research in South America were summarised by Walliker (1969), who reported eleven known species and described a new species, M. serrassalmi. The occurrence of some other Myxobolus spp. has been mentioned by Thatcher (1981) and Molnár and Békési (1993).

The present paper reports on the occurrence of a Myxobolus species which forms unusually large plasmodia in the abdominal cavity of dourado (Salminus maxillosus), a common economically important fish in Southern Brazil. The species is described as M. macroplasmodialis.

MATERIALS AND METHODS

Salminus maxillosus (Pisces, Characidae) was collected from the River Mogi-Guaçu, near Cachoeira de Itas (Pirassununga). A total of
247 fish (36–87 cm long) were examined for the presence of myxosporean plasmodia between August 1996 and June 1997. Some plasmodia located free in the abdominal cavity were fixed in 70% ethyl alcohol, while others were preserved in 10% formalin. Dimensions of the plasmodia (cysts) were measured during necropsy of freshly killed fish. Spores obtained from the plasmodia (cysts) were measured after fixation. Measurements were taken from 25 alcohol fixed and 25 formalin fixed spores. Drawings were made of both formalin- and alcohol-fixed material. For photomicrography, spores were freed from alcohol-fixed cysts, laid on top of a thin agar layer, and covered with a coverslip according to the method of Lom (1969). Permanent preparations were made by placing a portion of spores into glycerol-gelatine and mounting them under a coverslip. The spores were checked for the presence of an iodinophilous vacuole after adding a drop of Lugol’s solution. The measurements of spores were determined by comparing images of spores projected from an Olympus microscope to the screen of a video recorder with a computer-calibrated scale of measurements.

For histology, cysts, a part of the intestine and the inner organs, were fixed in 10% buffered formalin, embedded in paraffin wax and cut into 4 μm thick sections, which were stained with histological Giemsa stain and with haematoxylin and eosin (H & E). Plasmodial structure was studied on a well-developed plasmodium filled with fully developed spores. Photographs of alcohol-fixed spores and of the histological sections were taken with a camera attached to a Jenaval microscope.

RESULTS

Twenty-four of 247 fish had plasmodia (cysts) located free in the abdominal cavity. The majority of the fish had one plasmodium. One fish, however, harboured 28 specimens. Plasmodia were elliptical in shape, 7–24 mm long and 3–13 mm in wide. All plasmodia found contained thousands of spores. The plasmodial wall was composed of a thin (30–42 μm) layer of host origin, which contained cytoplasm-deficient cells with large nuclei. The layer of host origin was connected to the ectoplasm of the plasmodium with a structureless layer staining blue in Giemsa-stained histological sections (Fig. 1). This structureless part of the cyst wall continued in the thin layer of the ectoplasm containing vegetative stages and developing sporoblasts of the parasite. The endoplasm contained mature spores (Fig. 2).

Description of the species:

Type host: dourado Salminus maxillosus Valenciennes, 1840.

Locality: river Mogi-Guacu, near Cachoeira de Emas (Pirassununga, Sao Paulo State).

Site of infection: abdominal cavity.

Type material: spores have been deposited in the protozoological collection of the Hungarian Natural History Museum.

Fig. 1. Histological section of a plasmodium of *Myxobolus macroplasmodialis*, located close to the periphery of the "cyst". Layer of host origin with cytoplasm-deficient cells (arrows). Vegetative stages in the ectoplasm (ve). Young sporogonic stages (sp) consisting of sporoblasts and immature spores. Giemsa stain. Scale bar - 30 μm

Description of spores: spores (Figs. 3, 4) variable in shape, being ovoid or trapezoid in character, narrower at the posterior end in frontal view, and lemon-shaped in lateral view. Anterior end impressed in most spores, particularly in those fixed in formalin. Other spores (most notifiably specimens preserved in glycerol-gelatine) the end is rounded. Some spores with impressed end show a triangular shape (Figs. 4a-d). Spore valves relatively thin, symmetrical and smooth. Sutural line indistinct, sutural edge less protruding. Spores 11 (10.5–12) μm in length, 8.5 (8–9) μm in width, and 5.2 (5–5.5) μm in thickness. Two polar capsules pyriform in shape, equal in size, 4.5 (4–5) μm long and 2.8 (2–3) μm wide. Polar capsules diverge toward the anterior end and open anteriolaterally in a small thickening in the sutural line. The divergence of polar openings is more distinct in spores with an impressed anterior end (Figs. 4c, d). Polar filaments closely coiled, with 6 turns in the polar capsule, aligned perpendicularly
Fig. 2. Cross-sectioned spores in the endoplasm of *Myxobolus macroplasmodialis*. See the impressed anterior part and the diverging polar capsules of the spores (arrowhead). H & E. Scale bar - 15 μm

Fig. 3. *M. macroplasmodialis* spores from an alcohol-fixed plasmodium. H & E. Scale bar - 10 μm

to the longitudinal axis of the capsule. A large, triangular intercapsular appendix is located anteriorly. Due to the impression of the spore wall only a loose contact is observable between the wall and the appendix. Iodinophilous vacuole absent. Two nuclei of the sporoplasm are well discernible also in unstained preparations.

DISCUSSION

The taxonomic position of this species is uncertain. It bears the characteristics of both the genus *Myxobolus* Buetschli and the genus *Triangula* Chen & Hsieh. In its large plasmodia, in the oval shape of polar capsules in spores preserved in glycerol-gelatine, and in the well-developed intercapsular appendix, *M. macroplasmodialis* resembles other species of the genus *Myxobolus* and differs from the two known histozoic *Triangula* spp. (*T. yangkiangensis* and *T. percae*), which develop with small plasmodia in the epithelium and in the brain, respectively (Chen and Hsieh 1984, Langdon 1989). As regards the position of the openings of polar capsules, however, this species fits well into the genus *Triangula*. The polar capsule openings of the majority of *Myxobolus* species lie very close to each other at the anterior pole of the spores; therefore, polar capsules usually converge towards the anterior pole. Nevertheless, at present this is the only major difference between our species and other *Myxobolus* species and we do not have enough arguments to relate *M. macroplasmodialis* to the already known species of the genus *Triangula*. Of species of the latter genus, *T. percae* resembles *M. macroplasmodialis* in its structure, but *T. yangkiangensis* seems to have characters rather distinct from those of the latter species.

Myxobolus spp. are common parasites of freshwater fishes. Most of the fish species whose parasite fauna has
been studied has one or more *Myxobolus* species. Little is known about the host specificity of *Myxobolus* spp. but new data indicate that the number of species with a wide host range is low and most species appear to be strictly host specific or capable of developing only in closely related fishes. From characid fishes only a single *Myxobolus* species, *M. colossomatis* has been described (Molnár and Békési 1993) and the occurrence of two other *Myxobolus* spp. mentioned (Walliker 1969). *M. macroplasmodialis* is distinct in that it develops in unique, large cysts. The plasmodia of the majority of *Myxobolus* species measure 0.5–3 mm, whereas those in *M. macroplasmodialis* exceed 1 cm. Furthermore, the plasmodium of *M. macroplasmodialis* is composed of a single unit, in
contrast with some other species with large amalgamated plasmodia such as *M. nodulointestinalis* (Massoumian et al. 1996). In addition to its cyst size, *M. macroplasmodialis* differs from other species in spore morphology. For lack of fresh material it cannot be determined whether the impression on the anterior end is only a consequence of fixation or a genetic characteristic of the species. As in glycerol-gelatine preparations the majority of spores regain their oval shape, this species differs from other *Myxobolus* spp. only in its diverging polar capsules. No information is available on the tissue specificity of this species, but the location of mature cysts suggests that this species starts its development in the serous membranes of the abdominal wall or abdominal organs, and becomes detached from those sites only at an advanced stage of development.

Acknowledgements. The authors are indebted to FAPESP (Fundo de Amparo à Pesquisa do Estado de Sao Paulo), to the staff of the “Laboratorio de Peixes Fluviais Dr. Pedro Azevedo”, from the Instituto de Pesca at Pirassununga, and to Mr. José Plaza and Mr. Hélio S. Mariscal. This paper was partially supported by CIMAR (Centro de Investigacao Marinha e Ambiental).

REFERENCES

Received on 18th May, 1998; accepted on 30th July, 1998
Life History and Description of *Leidyana subramanii* sp. n. (Apicomplexa: Eugregarinida). A New Cephaline Gregarine Parasite of a Grasshopper (Insecta: Orthoptera) in Tamil Nadu, India

Kasinathan PUSHKALA* and Madabushi C. MURALIRANGAN

G S. Gill Research Institute, Guru Nanak College, Chennai, India

Summary: The morphology and life history of a new species of septate gregarine (Apicomplexa: Eugregarinida) from the digestive tract of *Eyprepocnemis alacris alacris* (Serville) (Insecta: Orthoptera) is described. The gregarine belong to the genus *Leidyana*. The characteristic features of the gregarine are: globular epimerite; 657 μm (maximum) long solitary sporadin; gametocyst spherical with anisogamous gametes; sporulation through 1-13 sporoducts; barrel-shaped sporocyst or oocysts of 6.6 x 3.5 μm in dimension; LP:TL = 1:3-11 and WP:WD = 1:1.3 -2.1. The gregarine is compared with other species in the genus *Leidyana* reported from different hosts to establish its distinctiveness.

Key words: Cephaline gregarine, *Leidyana*, *Leidyana subramanii* sp. n.

INTRODUCTION

The genus *Leidyana* was established by Watson (1915) to contain those gregarine species possessing a simple epimerite, solitary sporont, gametocyst dehiscing through sporoducts and dolioform oocyst or sporocyst (Keilin 1918, Bhatia and Sethu 1924, Lipa and Martignoni 1984, Roy 1989, Clopton 1995). Reproductive associations are formed only by mature gamonts just before syzygy and gametocyst formation begins (Clopton 1995).

Address for correspondence: M.C. Muralirangan, G S. Gill Research Institute, Guru Nanak College, Chennai, India; E-mail: grignc@gias.md01.vsnl.net.in

* Present address: S.D.N.B. Vashnav College for Women, Chromepet, Chennai-600 044, India

Complete life histories for 19 of the 27 recorded species belonging to the genus *Leidyana* have been traced (Clopton 1995). Nine species reported from different grillid (Gryllidae: Orthoptera) hosts (Sarkar 1988) and one from a Madagascar hissing cockroach (Blattidae: Orthoptera) (Clopton 1995) were also found to infect other orthopterans (Dufour 1837; Watson 1915; Geus 1966; Corbel 1967a; Issi and Lipa 1968; Hoshiode 1973a, b, 1978; Haldar and Sarkar 1979; Hooger and Amoji 1986; Sarkar 1988; Clopton 1995). The species described in the present study represents the first record of *Leidyana* from a grasshopper (Orthoptera: Acrididae).

A small population of *Eyprepocnemis alacris alacris* (Insecta: Orthoptera: Acrididae) was observed to be
infected with gregarine parasites. A study of the life cycle of the parasite revealed characters diagnostic of the genus *Leidyana*. The species under investigation is morphologically and morphometrically distinct from all known species of *Leidyana* and thus is described as a new species.

MATERIALS AND METHODS

Fifty grasshoppers were collected on 15th June, 1991 from a grass field in and around Chennai (Chengleput district, Tamil Nadu, India) and their digestive tracts dissected in 0.5% saline solution. One hundred percent infection was observed in the field population. A small slit was made in the midgut to release the gut contents which contained the free gregarines. Permanent smears of the gut contents and 5-6 μm thick sections of the midgut were prepared. Smears were fixed in Bouin’s fluid and were subsequently stained in Hiedenhain’s iron haematoxylin. Gametocysts, collected from the hindgut of the infected hosts, were washed in distilled water and kept in a moist chamber in order to observe sporulation.

Additional gregarines were placed in 4% (v/v) glutaraldehyde in 1% phosphate buffer, rinsed in buffer and post-fixed in 1% phosphate buffered osmium tetroxide. For scanning electron microscopy (SEM), free gregarines were dehydrated through an alcohol series, dried overnight in a critical point drier on a coverslip, coated with gold for 5-10 min, and scanned using a Leica Stereoscan electron microscope. Similarly, cysts from the moist chamber, after different hours of incubation, were mechanically ruptured directly onto a slide and prepared as before for SEM studies.

Repeated observations indicated that placing faecal pellets from infected hosts in parasite-free cultures was sufficient to infect fresh, healthy insects. Faecal pellets of infected *Eyprepocnemis alacris* were collected and stored at 18-20°C and used as a stock for infection. Because the sporocyst concentrations could not be calculated, 10 ml aliquots of faecal pellets from the stock culture were used and introduced into cages containing 30 third instar nymphal stages and these insects were used for further studies. In laboratory cultures, the mortality rate was negligible after the 3rd instar. One hundred percent infection was confirmed in the laboratory populations by sacrificing all the individuals (30 third instars) maintained simultaneously with same infected faecal pellets (stock).

In order to study the life history, observations were made every 24 h following the initial infection. Parameters such as the number of days required to complete intracellular development, detachment of sporonts, formation of syzygy and gametocysts were recorded.

Morphometric measurement of 20 free gregarines and 20 conjugants (syzygy) were taken.

OBSERVATION

Taxonomic account

Order: Eugregarinida Leger 1892 *sensu stricto* Levine *et al.* 1980

Family: Leidyanaidea Kudo 1954
Genus: *Leidyana* Watson 1915
Diagnosis: associations late; epimerite simple, globular, sessile; gametocysts dehiscing through sporoducts; oo-cysts dolioform, released in long chains.

Leidyana subramanii sp. n.

Life history

The parasite life cycle begins in the grasshopper with the penetration of sporozoites into the epithelial cells of the midgut. The earliest stage observed in a newly infected host is a spherical body measuring 9 μm in diameter, enclosed in a vacuole (Fig. 1). This spherical body develops a knob-like epimerite or holdfast from which a post epimerite is formed. Following growth of the parasite, the post epimerite enlarges and differentiates into an anterior protomerite and a posterior deutomerite (Fig. 2). A constriction exists between the two segments and is now recognised as the neck region (Figs. 19, 20). Eventually the nucleus is pushed into the deutomerite. At this stage, the protomerite and the deutomerite are thrust out of the epithelial cells and the parasite remains attached to the host cell by the epimerite. Due to this attachment an indentation in the host cell is noticed (Fig. 3). Even in a heavily infected host, none of the free gregarines have an epimerite, confirming the inability of the sporozoite to develop in the gut lumen. Detachment of the trophozoite from the gut epithelium is a random process and is in no way related to the final stage of development. The gut lumen has free sporadins of different ages, even 4 days after the initiation of a fresh infection. During detachment the epimerite is left behind in the host cell and it leaves a scar on the protomerite of the sporadin. Gregarines found free in the gut lumen are termed sporonts (Canning 1956).

During conjugation, two matured sporonts (conjugants) come closer and the protomerite of the satellite, (termed the collar) becomes flattened, before attachment. Mature conjugants (gamonts) normally are seen in the gut 6 days after infection and conjugation takes place 8-10 days after infection. During conjugation, the protomerite of the satellite is attached to the deutomerite of the primite (Fig. 7). There was no specificity among the conjugants with regard to their size. Both conjugants normally have opaque cytoplasm, or one may have a hyaline cytoplasm, indicating that accumulation of food materials is not an essential criteria for the gregarine to undergo conjugation.

The primite and satellite bend into a "v"- shaped body and then fuse to form a round, ball-shaped gametocysts.
Leidyana subramanii sp. n.

249
cysts), 196-468 \mu m in diameter. A protective ectocyst of mucus is secreted which swells, on absorption of water. This aids lodging the cyst either onto the wall of the epithelium or to the faecal pellet (Fig. 11). Before formation of the polar tube, the ectocyst has a slightly opaque periphery with residual cytoplasm in the centre. Normally, the cysts from the adult host grasshoppers are smaller but more in numerous than those collected from nymphal
The cysts are voided with the faeces. The conjugants take 7-8 days to form the cysts. Cysts were collected only 16-18 days after infection. The cyst has round anisogamous gametes (Fig. 16). The resulting zygote produces sporozoites that are accommodated in barrel-shaped spores (Figs. 15, 17, 18). Gametogenesis and spore formation take place simultaneously in the cyst (Fig. 17). Spores have been noticed in cysts 8 h after incubation. After 48-52 h of incubation, the cyst less opaque areas appear which eventually form a ring around the centre (Figs. 9, 10). This area turns yellow or orangish-yellow indicating the beginning of development of the polar tube. The polar tube is formed either on the exposed area of the cyst or on all sides. Spores come out only through the polar tube of the exposed region. The number of polar tubes (2-13) depends on the cyst size. A maximum of 13 polar tubes were observed in the largest cyst that measured 415 μm in diameter. The polar tube is very short and does not project outside the cyst (Fig. 10).

Spores are released through the polar tube. Long threads or chains are formed by the end to end attachment of the individual spores (Fig. 18). Cysts incubated in the
Table 1. *Leidyana subramanii* sp.n. Morphometrical measurements of sporadins from midgut of the 2nd instar *E.alacris alacris*, 20 days after infection

<table>
<thead>
<tr>
<th>No</th>
<th>LP (μm)</th>
<th>WP (μm)</th>
<th>LD (μm)</th>
<th>WD (μm)</th>
<th>TL (μm)</th>
<th>Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>27</td>
<td>36</td>
<td>36</td>
<td>54</td>
<td>1:2</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>27</td>
<td>45</td>
<td>36</td>
<td>63</td>
<td>1:2.5</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>27</td>
<td>34</td>
<td>36</td>
<td>72</td>
<td>1:3</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>81</td>
<td>207</td>
<td>150</td>
<td>270</td>
<td>1:3.3</td>
</tr>
<tr>
<td>5</td>
<td>63</td>
<td>81</td>
<td>225</td>
<td>117</td>
<td>288</td>
<td>1:3.6</td>
</tr>
<tr>
<td>6</td>
<td>72</td>
<td>90</td>
<td>225</td>
<td>162</td>
<td>297</td>
<td>1:3.3</td>
</tr>
<tr>
<td>7</td>
<td>54</td>
<td>108</td>
<td>306</td>
<td>189</td>
<td>360</td>
<td>1:4.6</td>
</tr>
<tr>
<td>8</td>
<td>72</td>
<td>108</td>
<td>333</td>
<td>216</td>
<td>405</td>
<td>1:4.1</td>
</tr>
<tr>
<td>9</td>
<td>72</td>
<td>117</td>
<td>342</td>
<td>216</td>
<td>414</td>
<td>1:4.1</td>
</tr>
<tr>
<td>10</td>
<td>81</td>
<td>126</td>
<td>333</td>
<td>207</td>
<td>414</td>
<td>1:4.1</td>
</tr>
<tr>
<td>11</td>
<td>90</td>
<td>135</td>
<td>360</td>
<td>234</td>
<td>450</td>
<td>1:4.3</td>
</tr>
<tr>
<td>12</td>
<td>90</td>
<td>135</td>
<td>360</td>
<td>243</td>
<td>450</td>
<td>1:4.3</td>
</tr>
<tr>
<td>13</td>
<td>90</td>
<td>126</td>
<td>387</td>
<td>234</td>
<td>477</td>
<td>1:4.3</td>
</tr>
<tr>
<td>14</td>
<td>108</td>
<td>135</td>
<td>405</td>
<td>243</td>
<td>513</td>
<td>1:4.3</td>
</tr>
<tr>
<td>15</td>
<td>117</td>
<td>153</td>
<td>405</td>
<td>216</td>
<td>522</td>
<td>1:4.3</td>
</tr>
<tr>
<td>16</td>
<td>90</td>
<td>144</td>
<td>432</td>
<td>270</td>
<td>522</td>
<td>1:4.3</td>
</tr>
<tr>
<td>17</td>
<td>108</td>
<td>162</td>
<td>432</td>
<td>306</td>
<td>540</td>
<td>1:4.3</td>
</tr>
<tr>
<td>18</td>
<td>135</td>
<td>135</td>
<td>450</td>
<td>252</td>
<td>585</td>
<td>1:4.3</td>
</tr>
<tr>
<td>19</td>
<td>54</td>
<td>153</td>
<td>540</td>
<td>324</td>
<td>594</td>
<td>1:10</td>
</tr>
<tr>
<td>20</td>
<td>54</td>
<td>153</td>
<td>540</td>
<td>324</td>
<td>594</td>
<td>1:10</td>
</tr>
</tbody>
</table>

D-deutomerite, P-protomerite, TL-total length, L-length, W-width, N-20, SB-389.85±17

Laboratory in a moist chamber show silvery-white coils of spore chains, formed after 5 h from the time a clear area appears on the surface of the cyst. The spore chain is very delicate and breaks very easily by loosing the contact with each other.

Description

Trophozoite

Trophozoites not free in lumen of host digestive system. Spherical bodies (Fig. 1) in newly infected host 9 μm in diameter, and is encircled by vacuole. Each free trophozoite consisted of three segments: a spherical epimerite, a hemispherical protomerite (Fig. 13), and a cylindrical deutomerite with rounded end. Nucleus in deutomerite spherical in shape (Fig. 2).

Sporadin

Fully mature sporonts macroscopic, free, elongated, yellowish and opaque (Figs. 5, 6, 12). Protomerite stout, wider at the neck, 27-153 μm in diameter, tapering anteriorly. Anterior end with funnel-shaped depression representing the location of epimerite. Ratio of length of protomerite to total body length ranges from 1:3 to 11 (Table 1). In fresh smear (unstained) preparations (Figs. 5, 6) both protomerites and deutomerites have hyaline homogenous ectoplasm and granular opaque endoplasm. Young gregarines typically not opaque, unlike fully mature ones. Deutomerite widest in middle, length 36-540 μm (Table 1). Average ratio of longer individuals ranged from 3:4.8. Ratio of length of the protomerite to total body length varied between 3.0 to 11 (Table 2), though most were between 4.0 to 5.8. Ratio of width of protomerite to width of deutomerite ranged between 1.3 to 2.1.

Nucleus of deutomerite (Figs. 6, 8) located either centrally or placed in posterior half of body. Karyosomes arranged in threads (Figs. 4, 11). Single liquid filled vacuole present at apex of protomerite in younger sporonts where epimerite had detached.

Deutomerite of young sporonts with many membrane bound vesicles attributed to dehydration process (Fig. 8). Epicyte folds, as observed in electron micrographs (Figs. 19, 20) numerous, arranged like rose petals at tip of protomerite, extend longitudinally from neck to end.
of deuteromerite (Fig. 14). Folds with cross connections to adjacent folds, appear fork-like and wavy (Fig. 14). Constriction between protomerite and deuteromerite is deep (Figs. 19, 20) and clearly distinct. Free gregarines collected from gut move very slowly with no change in general body shape.

Table 2. Leidyana subramanii sp.n. Morphometric measurement of syzygy or conjugants from midgut of the 2nd instar E. alacris alacris 20 dyas after infection

<table>
<thead>
<tr>
<th>No</th>
<th>Primite (µm)</th>
<th>Satellite (µm)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>423 F</td>
<td>441 F</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>459</td>
<td>504 F</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>369</td>
<td>468</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>459</td>
<td>540</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>468</td>
<td>360</td>
<td>108</td>
</tr>
<tr>
<td>6</td>
<td>504</td>
<td>405</td>
<td>99</td>
</tr>
<tr>
<td>7</td>
<td>477</td>
<td>576</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>450</td>
<td>405</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>450</td>
<td>487</td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>396 F</td>
<td>324 P</td>
<td>72</td>
</tr>
<tr>
<td>11</td>
<td>387 F</td>
<td>378 F</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>378 F</td>
<td>324 P</td>
<td>54</td>
</tr>
<tr>
<td>13</td>
<td>396 F</td>
<td>405 F</td>
<td>09</td>
</tr>
<tr>
<td>14</td>
<td>378 F</td>
<td>306 P</td>
<td>72</td>
</tr>
<tr>
<td>15</td>
<td>387 F</td>
<td>378 F</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>360 F</td>
<td>405 F</td>
<td>45</td>
</tr>
<tr>
<td>17</td>
<td>378 P</td>
<td>319 P</td>
<td>59</td>
</tr>
<tr>
<td>18</td>
<td>387 F</td>
<td>468 F</td>
<td>81</td>
</tr>
<tr>
<td>19</td>
<td>396 F</td>
<td>306 P</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>387 F</td>
<td>504 F</td>
<td>117</td>
</tr>
<tr>
<td>21</td>
<td>540 H</td>
<td>441 F</td>
<td>99</td>
</tr>
<tr>
<td>22</td>
<td>441 P</td>
<td>423 H</td>
<td>18</td>
</tr>
<tr>
<td>23</td>
<td>477 H</td>
<td>387 F</td>
<td>90</td>
</tr>
<tr>
<td>24</td>
<td>441 P</td>
<td>333 P</td>
<td>108</td>
</tr>
<tr>
<td>25</td>
<td>450 F</td>
<td>396 F</td>
<td>54</td>
</tr>
<tr>
<td>26</td>
<td>450 F</td>
<td>504 F</td>
<td>54</td>
</tr>
<tr>
<td>27</td>
<td>468 F</td>
<td>573 F</td>
<td>45</td>
</tr>
<tr>
<td>28</td>
<td>477 H</td>
<td>387 F</td>
<td>90</td>
</tr>
<tr>
<td>29</td>
<td>387 F</td>
<td>468 F</td>
<td>81</td>
</tr>
<tr>
<td>30</td>
<td>378 F</td>
<td>324 F</td>
<td>54</td>
</tr>
</tbody>
</table>

F-fully opaque, H-hyaline, P-partially opaque

Conjugants

Two matured sporonts (conjugants) come closer and form a syzygy (Fig. 7). An analysis of the conjugants (Table 2) showed that the difference in the total length between the primite and satellite varied between 9-117 µm.

Gametocysts

Ball shaped, 196-468 µm in diameter with a protective ectocyst of mucus, measuring 26-52 µm in thickness. The cyst with anisogamous gametes (Fig. 16), with 2-13 polar tubes to release spores.

Sporocyst

Barrel-shaped, measuring 6.6x3.5 µm in diameter.

TAXONOMIC SUMMARY

Host: *Eyprepocnemis alacris alacris* (Serville 1839) (Insects: Orthoptera).

Types: syntypes- Gregarines on three slides, numbers GRI/Leidyana-I, GRI/Leidyana-II and GRI/Leidyana-III are deposited at Zoological Survey of India, Southern Regional Station, 100, Santhome High Road, Chennai, India-600 028.

Type locality: Chennai, Chengleput district, Tamil Nadu, India.

Etymology: the species has been erected in rememberance of the husband of the first author Professor (Late) Mr. V. Subramanian who has been a great source of inspiration.

DISCUSSION

The species described above possess: (1) a simple globular epimerite; (2) solitary sporont; (3) dehiscing of the gametocyst through sporoducts; and (4) barrel-shaped spores (sporocysts) that are characteristics of the genus *Leidyana*. The digestive tract, especially the midgut and midgut caeca of insects, proves to be a viable environment for *Leidyana* species to meet its nutritional requirement. The comparative study of different species of *Leidyana* (Table 3) gives a clear indication that in spite of possessing common generic diagnostic features, morphometrically the different stages of the gregarine differ in more than one distinctive feature for taxonomic consideration.

The *Leidyana* species with similar morphological characters namely *L. erratica* (Crawley 1903), *L. gryllorum* (Cuénot 1897), *L. oblongata* (Dufour 1837), *L. suzumushi* (Hoshide 1973a), *L. oviformis* (Hoshide 1978), *L. gnyanagangai* (Patil and Amoji 1979) have spherical gametocyst and barrel shaped sporocyst similar to *L. subramanii* but differ in: (1) the morphometry of the sporadins; (2) size of the gametocyst; (3) size of the spores; and (4) number of sporoducts. The shape and size of proteomerite, constriction between proteomerite and
Table 3. The comparison of the different *Leidyana* spp.

<table>
<thead>
<tr>
<th>Leidyana Species</th>
<th>Host</th>
<th>Epimerite</th>
<th>Sporadin shape (Max. TL) (LP: TL)</th>
<th>Gametocyst shape diameter</th>
<th>Sporocyst</th>
<th>Type locality</th>
<th>Additional characters compared to other representative spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leidyana berkeleyi Martignoni 1984</td>
<td>Phryganidia californica (Oak worm) (Lepidoptera)</td>
<td>globular 8 μm (dia)</td>
<td>422 μm 1:4.6-11.2 1:0.9-2.1</td>
<td>111-142 μm</td>
<td>spindle shape gamete no spore</td>
<td>USA California</td>
<td>one karyosome</td>
</tr>
<tr>
<td>Leidyana gnyanagangai (Fatil & Amoji 1979)</td>
<td>Rhytinota impolita (Coleoptera)</td>
<td>sessile knob like 5 x 5 μm</td>
<td>350 μm 1:3-10 1:1-2-5</td>
<td>350 μm ectocyst 10 μm</td>
<td>dolioform 6.25 x 3.75 μm 19-21 sporeduct holes 20 μm (dia)</td>
<td>India</td>
<td>no intracellular stage; max size before detachment is 50 μm; pro. of sporont is 40 x 60 μm</td>
</tr>
<tr>
<td>Leidyana latifolia (Braune & Geus 1969)</td>
<td>Niptus hololeucus (Lepidoptera)</td>
<td>button like 200 μm</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>sporont ovidial; deu. tapering; end septum between pro. & deu. indistinct</td>
</tr>
<tr>
<td>Leidyana oryzeaphilus mercator (Roy 1989)</td>
<td>Oryzeaphilus mercator (Coleopteria)</td>
<td>not button like 4-13 x 22-26 μm</td>
<td>116 μm 1:2.4-12 1:1-5.8</td>
<td>spherical 55-75 μm</td>
<td>barrel shape 6 x 4 μm</td>
<td>India</td>
<td>sporont ovoidal shape; deu. triangular; rounded or oval nucleus; indistinct constriction between pro. & deu.</td>
</tr>
</tbody>
</table>

http://rcin.org.pl
| **Leidyana peregrinata**
(Ormieres 1967) | **Aglosa pinguinalis**
Asopiafarinatis
(Lepidoptera) | 10.5-16.1 x 11.5-18.1 | | | | | | the sporont passes through the epithelial cells & form coelomic cyst | *** no such** coelomic cyst |
| **Leidyana phryganidae**
(Li & Martignoni 1984) | **Phryganidia californica**
(Lepidoptera) | globular | 633 μm
1.66-9.06 | 1.13-2.2 | 118-149 μm (dia)
6 sporeduct | USA | | |
| **Leidyana subramanii sp.n.** | **Exprepocnemis globular**
alacris alacris
(Orthoptera) | globular | 657 μm
1.3-11 | 1.32-1.8 | spherical | 195-468 μm
ectocyst- 26-52 μm width | barrel shape | 6.6 x 3.5 μm
1-13 sporeduct | India | | |
| **Leidyana tinei**
(Keilin 1918) | **Endrosis fenestrella**
(Lepidoptera) | – | 300 μm | spherical | 90-110 μm (dia) | barrel shape | 7 μm
2-5 sporeduct | England Cambridge Tonbridge | no boundary between pro. & deu. of young cephalont; max size before detachment is 30-200 μm pro. of the sporont 40 μm long; epicyst 8-10 μm thick sporulation takes place between 12-20 days | cephalant always seen with pro. & deu. of young cephalont; max size before detachment 45 μm; pro. 9-90 μm; epicyst wall 26 μm; sporulation takes place between 48-52 h. |
| **Leidyana xylocopae**
(Bhatia & Setna 1924) | **Xylocopa sessileglob**
like knob 13 μm (dia) | 174 μm
1.46-7 | 1.13-1.8 | no cyst | no spore | India | sporont 23-174 μm long | * sporont 45-657 μm long |
| **Unident. spp.**
(Rabindra & Ayaraj 1980) | **Nephantis serinopa**
(Lepidoptera) | – | – | no gametocyst | no spore | India | the sporont passes through the epithelial cells & form coelomic cyst | * no such coelomic cyst |

deu - deuteromerite, pro - protomerite, LP - length of the protomerite, TL - total length, WD - width of the deuteromerite, WP - width of the protomerite, *Leidyana subramanii
Table 4. Comparison of *Leidyana* spp. reported from orthopteran hosts

<table>
<thead>
<tr>
<th>Leidyana Species</th>
<th>Host</th>
<th>Epimerite</th>
<th>Sporadin (Max. TL) (LP: TL)</th>
<th>Gametocyst</th>
<th>Sporocyst</th>
<th>Locality</th>
<th>Additional characters compared to other representative spp.</th>
<th>Additional characters compared to L. subramanii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leidyana bimaculata<sup>1</sup> (Hooger & Anoja 1986)</td>
<td>Gryllus bimaculatus</td>
<td>spherical to papilla-like 3-7±2.5 μm</td>
<td>315 μm 1:3-7 1:3-2</td>
<td>oval 330-350 μm</td>
<td>dolioform shaped 3.5x5 μm; 10 sporeduct</td>
<td>India</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Leidyana erratica (Crawley 1903)</td>
<td>Gryllus obreviatus Gryllus pensilvanicus (Gryllidae)</td>
<td>spherical knob</td>
<td>500 μm 1:5.7 1:1.3-1.7</td>
<td>Spherical 260-350 μm (dia); ectocyst 30 μm thick</td>
<td>barrel shape 6x3 μm 1-12 sporeduct</td>
<td>North America</td>
<td>conical pro. never rounded; 80 μm long; constriction between pro. & deu. not deep</td>
<td>* hemispherical pro. 9-90 μm long; constriction deep</td>
</tr>
<tr>
<td>Leidyana gryllorum (Cuenot 1897)</td>
<td>Gryllus assimilis Gryllus campestris Acheta domesticus (Gryllidae)</td>
<td>–</td>
<td>420 μm 1:5 1:1.1</td>
<td>spherical or oval 190-240 μm (dia)</td>
<td>barrel shape 7 μm 3-8 sporeduct</td>
<td>France</td>
<td>subspherical or round pro. 84 μm long; deu. cylindrical & rounded end</td>
<td>* hemispherical pro. 9-90 μm long; deu. cylindrical & rounded end</td>
</tr>
<tr>
<td>Leidyana guttiventrisa (Sarkar 1988)</td>
<td>Plebeigryllus guttiventris (Gryllidae)</td>
<td>conical to lance shape 8.7x7.5 μm</td>
<td>206.5 μm 1:4.2-5 1:0.69-1.12</td>
<td>ovoidal to egg shaped 23x196 μm</td>
<td>barrel shape 8.8x6.4 μm</td>
<td>India</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Leidyana linguata (Haldar & Sarkar 1979)</td>
<td>Pteronemobius concolor (Gryllidae)</td>
<td>tongue-like 15.7x7 μm</td>
<td>415.8 μm 1:5.5 1:1.3</td>
<td>spherical 75-15 μm</td>
<td>cylindrical 9.8x4.1 μm</td>
<td>India</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Leidyana migrator (Clopton 1995)</td>
<td>Gromphadorhina portentosa (Blattiodea)</td>
<td>globular obovoid to broadly obovoid 37x45 μm</td>
<td>352 μm 1:0.12-0.22 1:0.66</td>
<td>elliptoidal 1.066 μm (dia)</td>
<td>dolioform 8x4 μm 4-8 sporeduct</td>
<td>USA</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

¹URL: http://rcin.org.pl
<table>
<thead>
<tr>
<th>Table 4. (con.)</th>
</tr>
</thead>
</table>
| **Leidyana oblongata**
(Dufour 1837) | *Gryllus compestris*
Nemobius silvestris
(Gryllidae) | spherical knob
18-24 μm (dia) | 210 μm
1:4.8-8.6 | –
– | France |

| **Leidyana oviformis**
(Hoshide 1978) | *Pteronemobius fascipes* &
Pteronemobius taprobanensis
(Gryllidae) | spatulate shape
3x18 μm (dia) | 350 μm
1.5
1.6 | spherical
155 μm (dia) | barrel-shaped
6x3 μm | Japan
– |

| **Leidyana saigonensis**
(Corbel 1967) | *Gryllus bimaculatus*
Gryllodes sigillatus
(Gryllidae) | – | 350 μm | – | dolioform
7.5x3.5 μm | Vietnam
– |

| **Leidyana subramanii** sp.n. | *Eyprepocnemis globularia*
Eyprepocnemis alaeris
(Eyprepocnemidae) | 13 μm (dia) | 657 μm
1:3-11 | spherical
195-468 μm (dia);
ectocyst-
26-52 μm width | barrel shape
6.6 x 3.5 μm;
1-13 sporeduct | India
– |

| **Leidyana susumushi**
(Hoshide 1973a) | *Homoeogryllus sessile knob*
japonicus | 348 μm
1:6.1 | spherical
200 μm (dia) | barrel
3x5.5 μm | Japan
– |

Leidyana subramanii
deutomerite of *L. erratica* and deutomerite shape of *L. gryllorum*, spatula-shaped epimerite of *L. oviformis* are additional dissimilar characters observed in *L. subramanii*.

The Indian species recorded from orthopteran hosts namely *L. lingouta* (Haldar and Sarkar 1979), *L. bimaculata* (Hooger and Amoji 1986) and *L. guttiventris* (Sarkar 1988) differ from *L. subramanii* in the following characters: (1) host; (2) shape and size range of epimerite; (3) morphometry of sporadins; (4) size range of gametocyst; (5) size of sporocyst (Table 4).

Similarly *L. erratica*, *L. gryllorum*, *L. oblongata*, *L. suzumushi*, *L. oviformis* from orthopteran host also have spherical gametocyst and barrel shaped spores similar to *L. subramanii*, but differ in: (1) morphometry of the sporadins; (2) size of gametocysts; (3) of the sporadins; and (4) number of spore ducts as well as few additional characters compared with the representative species (Table 3).

Ten *Leidyana* species are specifically recorded from orthopteran hosts namely *L. erratica*, *L. gryllorum*, *L. saigonensis* (Corbel 1967 a, b), *L. oblongata*, *L. suzumushi*, *L. oviformis*, *L. lingouta*, *L. bimaculata*, *L. guttiventris*, *L. migrator* (Clotin 1995), and *L. gutyanagangi*. All the species of *Leidyana* examined (Table 4) have hosts other than grasshoppers except for this putative cephaline gregarine *L. subramanii* under consideration in addition to dissimilarities discussed earlier. While revising the genus *Leidyana* Corbel (1967b) stressed the host specificity of gregarines, as all attempts to infect tettigonids and acridids by *L. gryllorum* had failed. *L. subramanii* is the 20th species of the genus *Leidyana* whose complete life cycle has been studied so far.

Acknowledgements. We thank Dr. K.P. Sanjayan, Associate Director, G.S. Gill Research Institute, Guru Nanak College, Chennai, India, for his helpful suggestions and critical reading of the manuscript and also to Dr. V. Mahalingam, of the same Institution for helping with microscopy. Thanks are due to Dr. A. Sundaram, Department of Pathology, Madras Medical College, India, and Dr. Tami Niel, Crystal Growth Center, Anna University, Chennai, India, for their assistance with scanning electron microscopy.

References

Cuénot L. (1897) *C. R. Acad. Sci. Paris*, **125**: 52-54

Received on 20th March, 1998; accepted on 20th August, 1998
Acknowledgement

The editors wish to acknowledge the help of the following colleagues who have served as reviewers for one or more manuscripts submitted for publication in our journal in 1998.

Alex D.W. Acholonu
Richard J. Arthur
Kurt Augsten
Christian F. Bardele
Linda Basson
Louis Bayens
Elizabeth U. Canning-Wilson
John Clamp
Guliano Colombetti
D. Cone
John O. Corliss
Isabelle Desportes-Livage
Iva Dyková
Genoveva Esteban
Ronald Fayer
Wilhelm Foissner
Michael A. Gates
Francesco Ghetti
Maria P. Gracia Royo
Jean Grain
Lucyna Grębecka
Norman Grim
Manfred Hauser
Klaus Hausmann
Ronald P. Hedrick
Fred G. Hochberg
Eggehard Holler
Norbert Hülsmann
Shosuke Ito
Jake Jacobson
Kwang W. Jeon
Stanisław Kazubski
Włodzimierz Korohoda
W. Korting
Katarzyna Kwiatkowska
John J. Lee
Vagn Leiek
Jiří Lom
Piero Luporini
Miles Markus
William C. Marquard
Geoffrey McFadden
Ralf Meisterfeld
Jean-Pierre Mignot
W.H. Moolenaar
Kálmán Molnár
Helga Müller
Jytte Nilsson
Klaus Odening
David. J. Patterson
Przemysław M. Plonka
James Pratt
Terry Preston
Pierre de Puymoric
S. Scherer
Michael Schweikert
Inacio D. da Silva Neto
Ariadna Sitja-Bobadilla
Michael Sleigh
H. G. Smith
Judith E. Smith
Eugene B. Small
Andrzej Sobota
Steve J. Upton
Alessandro Valbonesi
Jerzy Warehol
Krzysztof Wiackowski
R.J.M. Wilson
Author Index: Acta Protozoologica 37 (1-4) 1998

Aescht E. and W. Foissner: Divisional morphogenesis in *Blepharisma americanum*, *B. undulans*, and *B. hydrium* (Ciliophora: Heterotrichida) 71

Ali M. A.: Light and scanning electron microscopy of *Chloromyxum vanasi* sp. n. (Myxozoa: Myxosporea) infecting gallbladder of the Nile catfish *Bagrus bayad* (Forskal, 1775) (Teleostei: Bagridae) 57

Al-Shawa Y. R. see M.S. Alyousif 53

Alyousif M.S. and Y. R. Al-Shawa: *Eimeria gnu* sp. n. (Apicomplexa: Eimeriidae) from white-tailed gnu, *Mystus gulio* (Hamilton) 173

Anderson O. R. see P. J. Bischoff 17

Asmat G. S. M. and D. P. Haldar: *Trichodina mystusi*, a new species of trichodinid ciliophoran from Indian estuarine fish, *Mystus gulio* (Hamilton) 173

Banerjee M., R. P. Sinha and D-P. Hader: Biochemical and spectroscopic changes in phycobiliproteins of the cyanobacterium, *Aulosira fertilissima*, induced by UV-B radiation 145

Basson L. see L. L. Van As et al. 101

Bengis R. G. see K. Odening et al. 149

Bischoff P. J. and O. R. Anderson: Abundance and diversity of Gymnamoebae at varying soil sites in Northeastern U. S. A. 17

Bockhardt I. see K. Odening et al. 149

Borchering J. see M. Mulisch et al. 29

Bylén E. see I. Desportes-Livage 63

Csaba G. see P. Kovács 201

Coupe S. J. see S. A. Karpov 23

Desportes-Livage I. and E. Bylén: Microsporidia infection in HIV-negative subjects 63

Ebert D. see J. I R. Larsson et al. 41

Eiras J. C. see K. Molnár et al. 241

Fabczak H., M. Walerczyk and S. Fabczak: Identification of protein homologous to inositol trisphosphate receptor in ciliate *Blepharisma* 209

Fabczak S. see H. Fabczak et al. 209

Foissner W. see E. Aescht 71

Foissner W. and M. Kreutz: Systematic position and phylogenetic relationships of the genera *Bursariidium*, *Paracondylostoma*, *Thylakidium*, *Bryometopus*, and *Bursaria* (Ciliophora: Colpodea) 227

Gaino E. and M. Rebora: Contribution to the study of *Enterocystis racovitzai*, a gregarine parasite of *Baetis rhodani* (Ephemeroptera: Baetidae) 125

Gilchrist F. M. C. see W. van Hoven et al. 113

Golemansky V.: Interstitial testate amoebae (Rhizopoda: Arcellinida and Gromida) from the Finnish Coast of the Baltic Sea and summary check list of the interstitial testate amoebae in the Baltic Sea 133

Golemansky V.: Interstitial testate amoebae (Rhizopoda: Testacea) from the Italian Coast of the Mediterranean Sea 139

Gorbi G. see P. Madoni et al. 221

Grębecki A. and W. Korohoda: Karl-Ernst Wohlfarth-Bottermann - obituary notice 1

Haldar D. P. see G. S. M. Asmat 173

Häder D-P. see M. Banerjee et al. 145

Heep T. see M. Mulisch et al. 29

Karpov S. A. and S. J. Coupe: A revision of Choanoflagellate genera *Kentrosiga* Schiller, 1953 and *Desmarestia* Kent, 1880 23

Korohoda W. see A. Grębecki 1

Kovács P. and G. Csaba: Effect of ceramide-analogues on the actin cytoskeleton of *Tetrahymena pyriformis* GL. A confocal microscopic analysis 201

Kreutz M. see W. Foissner 227

Kwiatkowska K. and A. Sobota: Participation of myosin I, spectrin analogue and tyrosine-phosphorylated proteins at early stages of phagocytosis in *Acanthamoeba castellanii* 191

Larsson J. I. R., D. Ebert, K. L. Mangin and J. Vávra: Ultrastructural study and description of *Flabelliforma magnivora* sp. n. (Microspora: Dubosciidae), a microsporidian parasite of *Daphnia magna* (Crustacea: Cladocera: Daphniidae) 41
Madoni P., G. Gorbi and E. Tajé: Toxic effect of chemical disinfection of wastewater on freshwater ciliates 221

Mangin K. L. see J. I. R. Larsson et al. 41

Mikrjukov K. A. and A. P. Mylnikov: A study of the structure and the life cycle of Gymnophrys cometa Cienkowski, 1876 (Gymnophrea cl. n.) with remarks on the taxonomy of the amoeba-flagellated genera Gymnophrys and Borkovia 179

Molnár K., M. J. Ranzani-Paiva, J. C. Eiras and E. L. Rodrigues: Myxobolus macroplasmodialis sp. n. (Myxozoa: Myxosporea), a parasite of the abdominal cavity of the characid teleost, Salminus maxillosus, in Brazil 241

Mora de Pindak M. see F. F. Pindak 159

Mylnikov A. P. see K. A. Mikrjukov 179

Mulisch M., T. Heep, W. Sturm and J. Borcherding: Redescription of Ascobius lentus, a rare freshwater folliculinid (Ciliophora: Heterotrichida) from a pond in Germany 29

Muralirangan M. C. see K. Pushkala 247

Odening K., M. Rudolph, S. Quandt, R. G. Bengis, I. Bockhardt and D. Viertel: Sarcocystis spp. in antelopes from Southern Africa 149

Pindak F. F. and M. Mora de Pindak: Diagnostic characteristics of owl monkey (Aotus trivirgatus) intestinal trichomonads 159

Platek A. see J. Wiejak et al. 215

Pushkala K. and M. C. Muralirangan: Life history and description of Leidyana subramanii sp. n. (Apicomplexa: Eugregarinida). A new cephaline gregarine parasite of a grasshopper (Insecta: Orthoptera) in Tamil Nadu, India 247

Quandt S. see K. Odening et al. 149

Ranzani-Paiva M. J. see K. Molnár et al. 241

Rebora M. see E. Gaino 125

Rodrigues E. L. see K. Molnár et al. 241

Rudolph M. see K. Odening et al. 149

Sinha R. P. see M. Banerjee et al. 145

Sobota A. see K. Kwiatkowska 191

Stenson M. O. see W. van Hoven et al. 113

Sturm W. see M. Mulisch et al. 29

Surmacz W. see J. Wiejak et al. 215

Tajé E. see P. Madoni et al. 221

Uspenskaya Z. I. and A. L. Yudin: An attempt to induce stable serotype transformation in the ciliate Dileptus anser with homologous immune serum 93

Van As L. L., L. Basson and J. G. Van As: Two new species of Mantoscyphidia Jankowski, 1980 (Ciliophora: Peritrichia) gill symbionts of limpets, from South Africa and the Sub-Antarctic Island, Marion 101

Van As J. G. see L. L. Van As et al. 101

van Hoven W., F. M. C. Gilchrist and M. O. Stenson: Six new ciliated protozoan species of Trichostomatida, Entodiniomorphida and Suctorida from the intestine of wild African rhinoceroses 113

Vávra J. see J. I. R. Larsson et al. 41

Viertel D. see K. Odening et al. 149

Walczczyk M. see H. Fabczak et al. 209

Wasik A.: Antarctic tintinnids: their ecology, morphology, ultrastructure and polymorphism 5

Wiejak J., A. Platek, L. Surmacz and E. Wyroba: PCR amplification of Paramecium DNA using the β-adrenergic-specific primers 215

Wyroba E. see J. Wiejak et al. 215

Yudin A. L. see Z. I. Uspenskaya 93

http://rcin.org.pl
Subject Index: Acta Protozooligica 37 (1-4) 1998

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Adrenergic receptor in Paramecium</td>
<td>215</td>
</tr>
<tr>
<td>Acanthamoeba castellanii</td>
<td>191</td>
</tr>
<tr>
<td>Actin</td>
<td></td>
</tr>
<tr>
<td>- Acanthamoeba castellanii</td>
<td>191</td>
</tr>
<tr>
<td>- Tetrahymena pyriformis</td>
<td>201</td>
</tr>
<tr>
<td>Actinomycin D</td>
<td>93</td>
</tr>
<tr>
<td>Activated sludge</td>
<td>221</td>
</tr>
<tr>
<td>Allantosoma multisuctores sp. n.</td>
<td>113</td>
</tr>
<tr>
<td>Amoebae</td>
<td>17, 133, 139, 149</td>
</tr>
<tr>
<td>Amoeba-flagellate genera</td>
<td>179</td>
</tr>
<tr>
<td>Amplification of Paramecium DNA</td>
<td>215</td>
</tr>
<tr>
<td>Antarctic tintinnids</td>
<td>5</td>
</tr>
<tr>
<td>Antelopes parasites</td>
<td>53, 149</td>
</tr>
<tr>
<td>Aotus trivirgatus parasites</td>
<td>159</td>
</tr>
<tr>
<td>Apicomplexa</td>
<td>53, 247</td>
</tr>
<tr>
<td>Apoptosis</td>
<td>201</td>
</tr>
<tr>
<td>Arcellinida</td>
<td>133</td>
</tr>
<tr>
<td>Ascobius lentus redescription</td>
<td>29</td>
</tr>
<tr>
<td>Aulosira fertilissima</td>
<td>145</td>
</tr>
<tr>
<td>Baetis rhodani parasite</td>
<td>125</td>
</tr>
<tr>
<td>Bagrus bayad parasite</td>
<td>57</td>
</tr>
<tr>
<td>Baltic Sea coasts testate amoebae</td>
<td>133</td>
</tr>
<tr>
<td>Basal body in Tetrahymena pyriformis</td>
<td>201</td>
</tr>
<tr>
<td>Biochemical changes in phycobiliproteins</td>
<td>145</td>
</tr>
<tr>
<td>Biodiversity of Gymnamoebae</td>
<td>17</td>
</tr>
<tr>
<td>Blepharisma</td>
<td></td>
</tr>
<tr>
<td>- americanum</td>
<td>71</td>
</tr>
<tr>
<td>- hyalinum</td>
<td>71</td>
</tr>
<tr>
<td>- japonicum</td>
<td>209</td>
</tr>
<tr>
<td>- undulans</td>
<td>71</td>
</tr>
<tr>
<td>Borkovia desaeleleri nom. n.</td>
<td>179</td>
</tr>
<tr>
<td>Bryometopus</td>
<td>227</td>
</tr>
<tr>
<td>Bursaria</td>
<td>227</td>
</tr>
<tr>
<td>Bursaridium</td>
<td>227</td>
</tr>
<tr>
<td>C₂-Ceramide effect on Tetrahymena pyriformis</td>
<td>201</td>
</tr>
<tr>
<td>Cephaline gregarine</td>
<td>247</td>
</tr>
<tr>
<td>Check list of testate amoebae from</td>
<td></td>
</tr>
<tr>
<td>- Baltic Sea coasts</td>
<td>133</td>
</tr>
<tr>
<td>- Italian coast of Mediterranean Sea</td>
<td>139</td>
</tr>
<tr>
<td>Chlorine dioxide effect on ciliates</td>
<td>221</td>
</tr>
<tr>
<td>Chloromyxum vanasi sp. n.</td>
<td>57</td>
</tr>
<tr>
<td>Choanoflagellate taxonomy</td>
<td>23</td>
</tr>
<tr>
<td>Ciliophora</td>
<td>5, 29, 71, 93, 101, 113, 173, 201, 209, 215, 221, 227</td>
</tr>
<tr>
<td>Colpodea</td>
<td>227</td>
</tr>
<tr>
<td>Confocal microscopy</td>
<td>201, 209</td>
</tr>
<tr>
<td>Connochaetes gnu parasite</td>
<td>53</td>
</tr>
<tr>
<td>Contractile vacuoles in Tetrahymena pyriformis</td>
<td>201</td>
</tr>
<tr>
<td>Cyanobacterium</td>
<td>145</td>
</tr>
<tr>
<td>Cymatoclysis affinis/convallaria</td>
<td>5</td>
</tr>
<tr>
<td>Cytoskeleton</td>
<td>191, 201</td>
</tr>
<tr>
<td>Daphnia magna parasite</td>
<td>41</td>
</tr>
<tr>
<td>Desmarella moniliformis</td>
<td>23</td>
</tr>
<tr>
<td>Dexiostoma campylum</td>
<td>221</td>
</tr>
<tr>
<td>Diagnostic of intestinal trichomonads</td>
<td>159</td>
</tr>
<tr>
<td>Digoxigenin-labeled oligonucleotides</td>
<td>215</td>
</tr>
<tr>
<td>Dileptus anser</td>
<td>93</td>
</tr>
<tr>
<td>Disinfectants effect on ciliates</td>
<td>221</td>
</tr>
<tr>
<td>Divisional morphogenesis in Blepharisma</td>
<td>71</td>
</tr>
<tr>
<td>DNA – PCR amplification</td>
<td>215</td>
</tr>
<tr>
<td>Duboscquiidae</td>
<td>41</td>
</tr>
</tbody>
</table>
Ecology of
- Antarctic tintinnids 5
- Gymnamoebae 17
- *Ascobius lentus* 29
- interstitial testate amoebae 133, 139
Ectosymbionic peritrichs 101
Eimeria gnui sp. n. 53
Eimeriidae 53
Encephalitozoon - cuniculi 63
- hellem 63
- *intestinalis* 63
- *bienesi* 63
Endocommensals of rhinoceros 113
Enterocystis racovitzai 125
Enterocytozoon bienesi 63
Entodiniomorphida new species 113
Eugregarinida 247
Euplotes patella 221

Finnish Coast testate amoebae 133
Fish parasites 57, 173, 241
Flabelliforma magnivora sp. n. 41
Folliculinid 29
Food vacuoles in
- *Acanthamoeba castellanii* 191
- *Tetrahymena pyriformis* 201

**Grasshopper* Eyprepocnemis alacris* parasite 247
Gregarine 125, 247
Gromida 133
Gymnamoebae abundance and diversity 17
Gymnophrea cl. n. 179
Gymnophrys cometa 179

Helicozoster
- *africanus* sp. n. 113
- *apicalis* sp. n. 113
Hennigian phylogeny 227
Heterotrichida 29, 71
HIV- microsporidia infection 63
Homologous immune serum 93
Human - HIV 63
Hybridization of nucleic acid 215

Immobilization reaction 93
Immune serum 93
Immunocompetency 63
Immunodeficiency 63
Indirect immunofluorescence 93
Induction of serotype transformation 93
Infection in HIV
- negative subjects 63
- positive subjects 63
Infraciliature of
- *Cymatocylis affinis/convallaria* 5
- *Paracondylostoma cavistoma oligostriatum* ssp. n. 227
- *Paracondylostoma setigerum chlorelligerum* ssp. n. 227
Inositol trisphosphate receptor 209
Insect parasite 125, 247
Intestinal trichomonads 159
Interstitial testate amoebae 133, 139
Italian Coast testate amoebae 139

Karyorelictida 71
Kentrosiga thienemanni 23
Laviere I la klipdrifi sp. n. 113
Leidyana subramanii sp. n. 247

http://rcin.org.pl
Life cycle of
- Gymnophrys cometa 179
- Leidyana subramanii sp. n. 247
Light signal transduction 209
Localization of inositol trisphosphate receptor 209
Loricae of Antarctic tintinnids 5

Mantoscyphidia
- branchi sp. n. 101
- marioni sp. n. 101
Mayfly parasite 125
Microarchitecture of
- testate amoebae 133, 139
- tinitinnid loricae 5
Microfilaments in
- Acanthamoeba castellanii 191
- Tetrahymena pyriformis GL 201
Microsporidia 41, 63

Microsporidium
- ceylonensis 63
- africanum 63

Monkey parasites 159

Morphogenesis in Blepharisma 71

Mucocysts of Tetrahymena pyriformis 201
Myosin I in Acanthamoeba castellanii 191
Myxobolus macroplasmodialis sp. n. 241

Myxosporea 57, 241
Myxozoa 57, 241

Nacella delesserti parasites 101

New class Gymnophrea 179

New species
- Allantosoma multisuctores 113
- Chloromyxum vanasi 57
- Eimeria gnui 53
- Flabelliforma magnivora 41
- Helicobolus africanus 113
- Helicobolus apicalis 113
- Leidyana kipfrishi 113
- Leidyana subramanii 247
- Mantoscyphidia branchi 101
- Mantoscyphidia marioni 101
- Myxobolus macroplasmodialis 241
- Rhinozeta pedale 113
- Sarcocystis melampe 149
- Trichodina mystusi 173
- Trichomonas aotus 159
- Triplumaria corrugata 113

New subspecies
- Paracondylostoma cavistoma oligostriatum 227
- Paracondylostoma setigerum chlorelligerum 227

Nosema ocularum 63

Nucleic acid hybridization 215

Obituary notice - Karl-Ernst Wohlfarth-Bottermann 1

Ontogenesis of Blepharisma spp. 71

Owl monkey parasites
- Pentatrichomonas hominis 159
- Trichomonas aotus sp. n. 159

Paracondylostoma
- cavistoma oligostriatum ssp. n. 227
- setigerum chlorelligerum ssp. n. 227

Paramecium aurelia β-adrenergic receptor 215

Parasite of
- antelopes 53, 149
- Daphnia magna 41
- fish Bagrus bayad 57
- fish Mystus gulio 173
- fish Salminus maxillosus 241

http://rcin.org.pl
- grasshopper *Eyprepocnemis alacris* 247
- mayfly *Baetis rhodani* 125
- owl monkey *Aotus trivirgatus* 159
- white-tailed gnu *Connochaetes gnu* 53

PCR 215

Pentatrichomonas hominis 159

Peracetic acid effect on ciliates 221

Peritrichia 101

Phagocytosis in *Acanthamoeba castellanii* 191

Phalloidin 191, 201

Phosphoinositide second messenger 209

Photophobic response of *Blepharisma* 209

Phototransduction in *Blepharisma* 209

Phycobiliproteins 145

Phylogeny of
- *Blepharisma* 71
- Hennigian 227

Polymorphism of Antarctic tintinnids 5

Polyribosomes of *Flabelliforma magnivora* sp. n. 41

Protein
- phosphorylation 191
- tyrosine kinase 191

Psammobiotic testate amoebae 133, 139

Psammophilic testate amoebae 133, 139

Psammoxenic testate amoebae 133, 139

Redescription of *Ascobius lentus* 29

Revision of
- Choanoflagellate 23
- *Desmarella* 23
- *Kentrosiga* 23

Rhinoceros endocommensals 113

Rhinoxeta pedale sp. n. 113

Rhopoda 133, 139, 179

Sarcocystis
- gazellae 149
- hominis 149
- melampi sp. n. 149
- spp. 149
- woodhousei 149

Scyphidiid peritrich 101

Septate gregarine 247

Serotype transformation 93

Sessile ciliophoran 101

Sodium hypochlorite effect on ciliates 221

Soil Gymnamoebae 17

Spectrophotometric changes in phycobiliproteins 145

Spirostomum teres 221

Stable serotype in *Dileptus anser* 93

Suctorida new species 113

Symbionts of
- limpets gill 101
- rhinoceros hindgut 113

Taxonomy of
- Choanoflagellate 23
- *Ascobius lentus* 29
- *Flabelliforma magnivora* sp. n. 41
- *Borkovia desaedeleeri* nom. n. 179
- *Gymnophrys cometa* 179

Teratological development of *Flabelliforma magnivora* sp. n. 41

Testate amoebae 133, 139

Tetrahymena pyriformis GL actin cytoskeleton 201

Thylakidium 227

Tintinnids 5

Toxicology of waste-water 221
Trachypleistophora hominis 63
Transformation of serotype 93
Trichodina mystusi sp. n. 173
Trichomonads 159
Trichomonas aotus sp.n. 159
Trichostomatida new species 113, 173
Triplumaria corrugata sp. n. 113
Tyrosine - phosphorylated proteins 191

Ultrastructure of
- Antarctic tintinnids 5
- Ascobitus lentus 29

- Desmarella moniliformis 23
- Enterocystis racovitzai 125
- Flabelliforma magnivora sp. n. 41
- Gymnophrys cometa 179
- Sarcocystis spp. 149
- Trichomonads 159
UV-B radiation effect 145

Vittaforma corneae 63

Wastewater disinfection 221
White-tailed gnu Connochaetes gnu parasite 53
Polish Academy of Sciences
Nencki Institute of Experimental Biology
and
Polish Society of Cell Biology

ACTA PROTOZOOLOGICA

International Journal on Protistology

Editor in Chief Jerzy SIKORA
Editors Hanna FABCZAK and Anna WASIK
Managing Editor Małgorzata WORONOWICZ

Editorial Board

André ADOUTTE, Paris
Christian F. BARDELE, Tübingen
Magdolna Cs. BERECZKY, Göd
Y.-Z. CHEN, Beijing
Jean COHEN, Gif-Sur-Yvette
John O. CORLISS, Albuquerque
Gyorgy CSABA, Budapest
Isabelle DESPORTES-LIVAGE, Paris
Tom FENCHEL, Helsingor
Wilhelm FOISSNER, Salsburg
Vassil GOLEMANSKY, Sofia
Andrzej GRĘBECKI, Warszawa, Vice-Chairman
Lucyna GRĘBECKA, Warszawa
Donat-Peter HÁDER, Erlangen
Janina KACZANOWSKA, Warszawa
Stanisław L. KAZUBSKI, Warszawa
Leszek KUZNICKI, Warszawa, Chairman
J. I. Ronny LARSSON, Lund
John J. LEE, New York
Jiří LOM, České Budějovice
Pierangelo LUPORINI, Camerino
Hans MACHEMER, Bochum
Jean-Pierre MIGNOT, Aubière
Yutaka NAITO, Tsukuba
Jytte R. NILSSON, Copenhagen
Eduardo ORIAS, Santa Barbara
Dimitrii V. OSSIPOV, St. Petersburg
Igor B. RAIKOV, St. Petersburg
Leif RASMUSSEN, Odense
Michael SLEIGH, Southampton
Ksenia M. SUKHANOVA, St. Petersburg
Jiří VÁVRA, Praha
Patricia L. WALNE, Knoxville

ACTA PROTOZOOLOGICA appears quarterly.

The price (including Air Mail postage) of subscription to ACTA PROTOZOOLOGICA at 1999 is: US $ 180,- by institutions and US $ 120,- by individual subscribers. Limited number of back volumes at reduced rate are available. TERMS OF PAYMENT: Cheque, money order or payment to be made to the Nencki Institute of Experimental Biology. Account Number: 11101053-3522-2700-1-34 at Państwowy Bank Kredytowy XIII Oddz. Warszawa, Poland. WITH NOTE: ACTA PROTOZOOLOGICA! For matters regarding ACTA PROTOZOOLOGICA, contact Managing Editor, Nencki Institute of Experimental Biology, ul. Pasteura 3, 02-093 Warszawa, Poland; Fax: (4822) 8225342; E-mail: jurek@ameba.nencki.gov.pl (for more information see web page http://www.nencki.gov.pl/public.htm).

Front cover: Polychaos dubium. In: A. A. Schaeffer (1916) Notes on the specific and other characters of Amoeba proteus Pallas (Leidy), A. discoides spec. nov. and A. dubia spec. nov. Arch. Protistenk. 37: 204 - 228

©Nencki Institute of Experimental Biology
Polish Academy of Sciences
This publication is supported by the State Committee for Scientific Research

Desktop processing: Justyna Osmulska, Data Processing Laboratory of the Nencki Institute
Printed at the MARBIS, ul. Komorawan 60, 05-070 Sulejów, Poland

http://rcin.org.pl
Contents of Volume 37 (1-4) 1998

Number 1

Karl-Ernst Wohlfarth-Bottermann - obituary notice 1-3

A. Wasik: Antarctic tintinnids: their ecology, morphology, ultrastructure and polymorphism 5-15

P. J. Bischoff and O. R. Anderson: Abundance and diversity of Gymnamoebae at varying soil sites in Northeastern U. S. A. 17-21

M. Mulisch, T. Heep, W. Sturm and J. Boreherding: Redescription of Ascobius lentus, a rare freshwater folliculinid (Ciliophora: Heterotrichida) from a pond in Germany 29-39

J. I R. Larsson, D. Ebert, K. L. Mangin and J. Vávra: Ultrastructural study and description of Flabelliforma magnivora sp. n. (Microspora: Duboscqiidae), a microsporidian parasite of Daphnia magna (Crustacea: Cladocera: Daphniidae) 41-52

M.S. Alyousif and Y. R. Al-Shawa: Eimeria gnui sp. n. (Apicomplexa: Eimeriidae) from white-tailed gnu, Connochaetes gnui 53-55

M. A. Ali: Light and scanning electron microscopy of Chloromyxum vanasi sp. n. (Myxozoa: Myxosporea) infecting gallbladder of the Nile catfish Bagrus butad (Forskal, 1775) (Teleostei: Bagridae) 57-61

Number 2

I. Desportes-Livage and E. Bylen: Microsporidia infection in HIV-negative subjects 63-70

E. Aescht and W. Foissner: Divisional morphogenesis in Blepharisma americanum, B. undulans, and B. hyalinum (Ciliophora: Heterotrichida) 71-92

Z. I. Uspenskaya and A. L. Yudin: An attempt to induce stable serotype transformation in the ciliate Dileptus anser with homologous immune serum 93-99

L. L. Van As, L. Basson and J. G. Van As: Two new species of Mantoscyphidia Jankowski, 1980 (Ciliophora: Peritrichia) gill symbionts of limpets, from South Africa and the Sub-Antarctic Island, Marion 101-111

W. van Hoven, F. M. C. Gilchrist and M. O. Stenson: Six new ciliated protozoan species of Trichostomatida, Entodiniomorphida and Suctorida from the intestine of wild African rhinoceroses 113-124

Number 3

E. Gaino and M. Rebora: Contribution to the study of Enterocystis racovitzai, a gregarine parasite of Baetis rhodani (Ephemeroptera: Baetidae) 125-131

V. Golemskaya: Interstitial testate amoebae (Rhizopoda: Arcellinida and Gromida) from the Finnish Coast of the Baltic Sea and summary check list of the interstitial testate amoebae in the Baltic Sea 133-137

V. Golemskaya: Interstitial testate amoebae (Rhizopoda: Testacea) from the Italian Coast of the Mediterranean Sea 139-143

M. Banejee, R. P. Sinha and D-P. Hader: Biochemical and spectroscopic changes in phycobiliproteins of the cyanobacterium, Aulosira fertilissima, induced by UV-B radiation 145-148

K. Odening, M. Rudolph, S. Quandt, R. G. Bengis, I. Bockhardt and D. Viertel: Sarcocystis spp. in antelopes from Southern Africa 149-158

http://rcin.org.pl
F. F. Pindak and M. Mora de Pindak: Diagnostic characteristics of owl monkey (Aotus trivirgatus) intestinal trichomonads 159-172

G. S. M. Asmat and D. P. Haldar: Trichodina mystusi, a new species of trichodinid ciliophoran from Indian estuarine fish, Mystus gulio (Hamilton) 173-177

K. A. Mikrjukov and A. P. Mylnikov: A study of the structure and the life cycle of Gymnophrys cometa Cienkowski, 1876 (Gymnophrea cl. n.) with remarks on the taxonomy of the amoeboid flagellated genera Gymnophrys and Borkovia 179-189

Number 4

K. Kwiatkowska and A. Sobota: Participation of myosin I, spectrin analogue and tyrosine-phosphorylated proteins at early stages of phagocytosis in Acanthamoeba castellanii 191-199

P. Kovács and G. Csaba: Effect of ceramide-analogues on the actin cytoskeleton of Tetrahymena pyriformis GL. A confocal microscopic analysis 201-208

H. Fabczak, M. Walerczyk and S. Fabczak: Identification of protein homologous to inositol trisphosphate receptor in ciliate Blepharisma 209-213

J. Wiejak, A. Płatek, L. Surmacz and E. Wyroba: PCR amplification of Paramecium DNA using the β-adrenergic-specific primers 215-219

P. Madoni, G. Gorbi and E. Tajé: Toxic effect of chemical disinfection of wastewater on freshwater ciliates 221-225

W. Foissner and M. Kreutz: Systematic position and phylogenetic relationships of the genera Bursaridium, Paracondylostoma, Thylakidium, Bryometopus, and Bursaria (Ciliophora: Colpodea) 227-240

K. Molnár, M. J. Ranzani-Paiva, J. C. Eiras and E. L. Rodrigues: Myxobolus macroplasmodialis sp. n. (Myxozoa: Myxosporea), a parasite of the abdominal cavity of the characid teleost, Salminus maxillosus, in Brazil 241-245

K. Pushkala and M.C. Muralirangan: Life history and description of Leidyana subramanii sp. n. (Apicomplexa: Eugregarinida). A new cephaline gregarine parasite of a grasshopper (Insecta: Orthoptera) in Tamil Nadu, India 247-258

http://rcin.org.pl
INSTRUCTIONS FOR AUTHORS

ACTA PROTOZOOLOGICA publishes original papers on experimental or theoretical research in all fields of protistology with the exception of fanatical notices of local character and purely clinical reports. Short communications as well as longer review articles may also be submitted. Contributions should be written in English. Submission of a manuscript to ACTA PROTOZOOLOGICA implies that the contents are original and have not been published previously, and are not under consideration or accepted for publication elsewhere. There are no page charges except colour illustration. Names and addresses of suggested reviewers (four to six) will be appreciated. In case of any question please do not hesitate to contact Editor. Authors should submit papers to:

Miss Malgorzata Woronowicz
Managing Editor of ACTA PROTOZOOLOGICA
Nencki Institute of Experimental Biology, ul. Pasteura 3
02-093 Warszawa, Poland
Fax: (4822)8225342
E-mail: jurek@ameba.nencki.gov.pl

Extensive information on ACTA PROTOZOOLOGICA is now available via internet. The address is: http://www.nencki.gov.pl/public.htm

Organization of Manuscripts

Submissions

Please enclose three copies of the text, one set of original of line drawings (without lettering) and three sets of copies with lettering, four sets of photographs (one without lettering), in case of photographs arranged in the form of plate, please submit one set of original photographs unmounted and without lettering, and three sets of plates with lettering.

The ACTA PROTOZOOLOGICA prefers to use the author’s word-processor disks (3.5” and 5.25” format IBM or IBM compatible, and Macintosh 6 or 7 system on 3.5” 1.44 MB disk only) of the manuscripts instead of rekeying articles. If available, please send a copy of the disk with your manuscript. Preferable programs are Word or WordPerfect for Windows and DOS WordPerfect 5.1. Disks will be returned with galley proof of accepted article at the same time. Please observe the following instructions:

1. Label the disk with your name: the word processor/computer used, e.g. IBM; the printer used, e.g. Laserwriter; the name of the program, e.g. Word for Windows or WordPerfect 5.1.
2. Send the manuscript as a single file; do not split it into smaller files.
3. Give the file a name which is no longer than 8 characters.
4. If necessary, use only italic, bold, underline, subscript and superscript. Multiple font, style or ruler changes, or graphics inserted in the text, reduce the usefulness of the disc.
5. Do not right-justify and use of hyphen at the end of line.
6. Avoid the use of footnotes.
7. Distinguish the numerals 0 and 1 from the letters O and I.

Text (three copies)

The text must be typewritten, double-spaced, with numbered pages. The manuscript should be organized into Summary, Key words, Abbreviations used, Introduction, Materials and Methods, Results, Discussion, Acknowledgements, References, Tables and Figure Legends. The Title Page should include the full title of the article, first name(s) in full and surname(s) of author(s), the address(es) where the work was carried out, page heading of up to 40 characters. The present address for correspondence, Fax, and E-mail should also be given.

Each table must be on a separate page. Figure legends must be in a single series at the end of the manuscript. References must be listed alphabetically, abbreviated according to the World List of Scientific Periodicals, 4th ed. (1993). Nomenclature of genera and species names must agree with the International Code of Zoological Nomenclature, third edition, London (1985) or International Code of Botanical Nomenclature, adopted by XIV International Botanical Congress, Berlin, 1987. SI units are preferred.

Examples for bibliographic arrangement of references:

Journals:

Books:

Articles from books:

Illustrations

All line drawings and photographs should be labelled, with the first author’s name written on the back. The figures should be numbered in the text as Arabic numerals (e.g. Fig. 1). Illustrations must fit within either one column (86 x 231 mm) or the full width and length of the page (177 x 231 mm). Figures and legends should fit on the same page. Lettering will be inserted by the printers and should be indicated on a tracing-paper overlay or a duplicate copy.

Line drawings (three copies + one copy without lettering)

Line drawings should preferably be drawn twice in size, suitable for reproduction in the form of well-defined line drawings and should have a white background. Avoid fine stippling or shading. Computer printouts of laser printer quality may be accepted, however *TIFF, *PCX, *BMP graphic formats on disk are preferred.

Photographs (three copies + one copy without lettering)

Photographs at final size should be sharp, with a glossy finish, bromide prints. Photographs grouped as plates (in size not exceeding 177 x 231 including legend) must be trimmed at right angles accurately mounted on a firm board. The engraver will then cut a fine line of separation between figures. Magnification should be indicated. Colour illustration on transparent positive media (slides 60 x 45 mm, 60 x 60 mm or transparency) are preferred.

Proof sheets and offprints

Authors will receive one set of page proofs for correction and are asked to return these to the Editor within 48 hours. Fifty reprints will be furnished free of charge. Orders for additional reprints have to be submitted with the proofs.

Indexed in Chemical Abstracts Service, Current Contents (Agriculture, Biology and Environmental Sciences), Elsevier BIOBASE/Current Awareness in Biological Sciences, LIBREX-AGEN, Protozoological Abstracts. POLISH SCIENTIFIC JOURNALS CONTENTS - AGRIC. & BIOL. SCI. data base is available in INTERNET under URL (UNIFORM RESOURCE LOCATOR) address: http://ciuw.warman.net.pl/alf/pages. The manuscript should be organized into Summary, Key words, Abbreviations used, Introduction, Materials and Methods, Results, Discussion, Acknowledgements, References, Tables and Figure Legends. The Title Page should include the full title of the article, first name(s) in full and surname(s) of author(s), the address(es) where the work was carried out, page heading of up to 40 characters. The present address for correspondence, Fax, and E-mail should also be given.

Each table must be on a separate page. Figure legends must be in a single series at the end of the manuscript. References must be listed alphabetically, abbreviated according to the World List of Scientific Periodicals, 4th ed. (1993). Nomenclature of genera and species names must agree with the International Code of Zoological Nomenclature, third edition, London (1985) or International Code of Botanical Nomenclature, adopted by XIV International Botanical Congress, Berlin, 1987. SI units are preferred.

Examples for bibliographic arrangement of references:

Journals:

Books:

Articles from books:

Illustrations

All line drawings and photographs should be labelled, with the first author’s name written on the back. The figures should be numbered in the text as Arabic numerals (e.g. Fig. 1). Illustrations must fit within either one column (86 x 231 mm) or the full width and length of the page (177 x 231 mm). Figures and legends should fit on the same page. Lettering will be inserted by the printers and should be indicated on a tracing-paper overlay or a duplicate copy.

Line drawings (three copies + one copy without lettering)

Line drawings should preferably be drawn twice in size, suitable for reproduction in the form of well-defined line drawings and should have a white background. Avoid fine stippling or shading. Computer printouts of laser printer quality may be accepted, however *TIFF, *PCX, *BMP graphic formats on disk are preferred.

Photographs (three copies + one copy without lettering)

Photographs at final size should be sharp, with a glossy finish, bromide prints. Photographs grouped as plates (in size not exceeding 177 x 231 including legend) must be trimmed at right angles accurately mounted and with edges touching and mounted on firm board. The engraver will then cut a fine line of separation between figures. Magnification should be indicated. Colour illustration on transparent positive media (slides 60 x 45 mm, 60 x 60 mm or transparency) are preferred.

Proof sheets and offprints

Authors will receive one set of page proofs for correction and are asked to return these to the Editor within 48 hours. Fifty reprints will be furnished free of charge. Orders for additional reprints have to be submitted with the proofs.

Indexed in Chemical Abstracts Service, Current Contents (Agriculture, Biology and Environmental Sciences), Elsevier BIOBASE/Current Awareness in Biological Sciences, LIBREX-AGEN, Protozoological Abstracts. POLISH SCIENTIFIC JOURNALS CONTENTS - AGRIC. & BIOL. SCI. data base is available in INTERNET under URL (UNIFORM RESOURCE LOCATOR) address: http://ciuw.warman.net.pl/alf/pages.
ORIGINAL ARTICLES

K. Kwiatkowska and A. Sobota: Participation of myosin I, spectrin analogue and tyrosine-phosphorylated proteins at early stages of phagocytosis in Acanthamoeba castellanii ... 191

P. Kovács and G. Csaba: Effect of ceramide-analogues on the actin cytoskeleton of Tetrahymena pyriformis GL. A confocal microscopic analysis 201

H. Fabczak, M. Walarczyk and S. Fabczak: Identification of protein homologous to inositol triphosphate receptor in ciliate Blepharisma ... 209

J. Wiejak, A. Płatek, L. Surmacz and E. Wyroba: PCR amplification of Paramecium DNA using the β-adrenergic-specific primers .. 215

P. Madoni, G. Gorbi and E. Tajé: Toxic effect of chemical disinfection of wastewater on freshwater ciliates ... 221

W. Foissner and M. Kreutz: Systematic position and phylogenetic relationships of the genera Bursaridium, Paracondylostoma, Thylakidium, Bryometopus, and Bursaria (Ciliophora: Colpodea) .. 227

K. Molnár, M. J. Ranzani-Paiva, J. C. Eiras and E. L. Rodrigues: Myxobolus macroplasmodialis sp. n. (Myxozoa: Myxosporea), a parasite of the abdominal cavity of the characid teleost, Salminus maxillosus, in Brazil ... 241

K. Pushkala and M.C. Muralirangan: Life history and description of Leidyana subramanii sp. n. (Apicomplexa: Eugregarinida). A new cephaline gregarine parasite of a grasshopper (Insecta: Orthoptera) in Tamil Nadu, India ... 247