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INTRODUCTION

During the past decades it has been a com-
mon situation to see rivers flooding, some-
times dramatically, and often unexpected. 
This was the case for the Maas River in The 

Netherlands during the winters of 1993–94 
and 1994–95. In January 2011, flooding of 
the Maas and its tributaries was also immi-
nent, although with less vigor, especially in 
the Belgian Ardennes. Such flooding events 
are also relatively common in the lower 
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reaches of other catchments in NW and cen-
tral Europe, as for instance in the Rhine, 
Elbe and Oder-Nysa river catchments (Gla-
ser and Hagedorn, 1990; Fink et al., 1996; 
Zielinski, 2003). Apart from distress across 
the local population, the financial damage 
rose up to several millions of euro in ei-
ther case. For instance, the flooding of the 

Maas River during the winter 1993–1994 
caused a financial damage to houses, fac-
tories and infrastructure of more than 100 
million euro (Ward et al., 2008a). The loss 
of land as a cause of erosion is more local 
and might appear less spectacular. However, 
during that same flood disaster of 1993–94 
erosion gullies of several metres deep and 

Figure1. Location map of the Maas and Geul river catchments (modified after Ward, 2009).
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a few tens of metres wide, were cut into the 
Holocene floodplain. Even less spectacular 
is the continuous lateral erosion by mean-
der migration, especially in highly sinuous 
meander bends, for instance up to 2myear–1 
in the Geul River as measured over tens of 
years (De Moor, 2006). Besides the loss of 
valuable soil, the removed sediment causes 
downstream obstruction of the channel. Riv-
er basins may be drinking water reservoirs, 
on condition of good quality of soil and wa-
ter. In regions with intensive rural activities 
the soil quality is often under pressure. The 
concentration of heavy metals, pesticides or 
nutrients may increase by soil erosion to val-
ues that are too high for drinking water con-
sumption (Leenaers, 1989; Swennen et al., 
1994; Wolfert, 2001).

Factors of different origin and magnitude 
may be considered to drive or enforce such 
flooding actions in the river system. They 
may be the expression of external forcing 
(people’s activity, climate conditions, tec-
tonic movements) or may simply be induced 
by internal evolution within the river system 
without interference from the outside. In ad-
dition, it should be kept in mind that rivers 
do not always respond immediately to all 
external forces, and the delay of their reac-
tion may have substantial influences in the 
fluvial morphology (Gregory and Walling, 
1973; Schumm, 1977; Vandenberghe, 1995).

Laws that govern the response of riv-
ers to external and internal forcing are not 
new in fluvial geomorphology (e.g., Starkel, 
1990, 2003). However, they are often not 
considered in river management. In this per-
spective, it is our objective to provide in this 
paper a framework for a better understand-
ing of frequency and magnitude of flooding, 
and thus help in river management. As a case 
study, we deal with the lower Maas River 
valley and one of its main tributaries in The 
Netherlands, the Geul River (Stam, 2002; 
De Moor, 2006; for location see Fig. 1).

We focus on the impact of people’s ac-
tivities in the floodplains and their modifi-
cations of the river system. Therefore, the 
discussion is limited to relatively short time 
scales (decades, centennials). The ideas re-

ported here result from a project that was 
carried out within the Dutch research pro-
gramme “Climate Changes Spatial Planning” 
(<www.climateresearchnetherlands.nl>). 
In this project, the evolution of the Maas 
River as a response to climate change and 
human interference in the past four millen-
nia was reconstructed. The outcome pro-
vides a framework for estimating (predict-
ing) the effects of potential future changes 
of climate and human works in the river 
system. The project results are expressed 
in three PhD- theses at the VU University 
Amsterdam (Ward 2009; Versteegh 2009; 
Brader, in prep.), and for specific results we 
refer to these works and related publications. 
In addition, our results make also use of the 
advices of the European Water Framework 
Directive (EC, 2000). 

Since our objective here is to provide 
a general framework, river responses are 
estimated qualitatively and expressed, for 
instance, in terms of increased or decreased 
river discharge, sediment deposition, flood-
ing frequency, etc. 

THE TEMPORAL SCALE

It appears that the nature and magnitude 
of river response to external forcing and 
the relative dominance of the involved pro-
cesses within the river system depend on the 
concerned temporal scale (Vandenberghe, 
1995). Obviously, this scale factor cannot be 
neglected in understanding river behaviour.

THE LONG-TERM SCALE
On a geological time scale, the evolution of 
river systems may be directed by natural ex-
trinsic forces, such as tectonic movements, 
orbital climatic changes and base level fluc-
tuations. Given the long-term scale, at which 
these forces normally interact with fluvial 
system evolution, in contrast with the tem-
poral constraints imposed by forecasting at 
relatively short term, we do not deal with 
those forcing factors here. Even the faulting 
that occurred at the end of the last glacial in 
the southern Netherlands played only a rela-
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tively marginal role in shaping the Maas Riv-
er valley in comparison with the present-day 
changes (Huisink, 1998b).

In this respect, the climatic change at the 
last glacial-interglacial transition was much 
more significant to the Maas River system 
(Huisink, 1998a; Kasse et al., 1995; Vanden-
berghe et al., 1994). It is an illustration of 
the general phenomenon of increased river 
activity at climatic transitions, in contrast to 
relative river stability in periods of uniform 
climatic conditions, especially induced by 
delayed response of the vegetation devel-
opment to climate change (Starkel, 2003; 
Vandenberghe, 1995). However, climate 
changes as the ones that occurred at the 
Lateglacial- Holocene transition are not ex-
pected in the near future and are not of any 
significance either for our rivers.

THE SHORT-TERM SCALE 
Steering of the fluvial system at decad-
al-to-centennial scale may be induced by 
relatively short-term climate changes at 
sub-orbital scale and human activity. How-
ever, even without such external forcing, riv-
ers are not stationary at the same scale and 
are characterized by their own, independent 
(intrinsic or internal) evolution (Schumm, 
1977). 

SHORT-TERM EXTERNAL AND INTERNAL 
FORCING OF CHANGES IN THE RIVER SYSTEM

CLIMATE
To separate the effects of present-day hu-
man interventions from short-term climate 
fluctuations, we studied the evolution of the 
Maas River system from a period just before 
substantial human influence on river behav-
iour until the present time. Initial agrarian 
activity, accompanied with deforestation, 
started in the southern Netherlands around 
3,000 years ago (Bunnik, 1999; De Moor 
et al., 2008). Before that time, Holocene 
landscape evolution and vegetation develop-
ment were influenced by internal evolution 
and only to a minor extent by human activi-
ties and climatic fluctuations (e.g., Starkel, 

1985; Hoffmann et al., 2010; Notebaert and 
Verstraeten, 2010). 

However, it is not excluded that the mag-
nitude of present-day global warming may 
have an impact on the river system that is 
unprecedented in Holocene times. In gen-
eral, increase in temperature will lead to 
enhanced evaporation and thus lower run-
off. The effect of predicted higher frequency 
and intensity of precipitation may be much 
higher. Extremes in precipitation amount 
may invoke increased probability of flooding 
and erosion. Such phases of extreme precipi-
tation were more frequent already during 
the 20th century and will further increase 
according to model prediction (IPCC, 2007; 
Ward et al., 2008a, b). 

INTRINSIC RIVER EVOLUTION
Holocene lowland rivers in tectonically stable 
regions, as in northwest and central Europe, 
may be considered to be near to equilibrium. 
In general, they appear to follow the prin-
ciples of ‘dynamic equilibrium’ (Schumm, 
1977). This means that changes in external 
conditions are internally compensated for by 
adaptation of the channel processes and en-
ergy conditions, which are expressed by the 
modification of channel dimensions and pat-
terns. Rivers in dynamic equilibrium tend 
to keep balance between river’s transport 
capacity and sediment transport (e.g., Lane, 
1955). For instance, increased (decreased) 
sediment supply will need a steeper (weaker) 
river gradient to provide the precise quan-
tity of required energy, or higher (smaller) 
discharges will invoke erosion (sediment 
accumulation) as they are the expression 
of superfluous (insufficient) energy. Erkens 
et al. (2009) demonstrated the importance 
of intrinsic evolution in the Rhine River val-
ley during the Holocene, expressed by the 
formation of a terrace series.

HUMAN INTERFERENCE BY LAND USE CHANGE 
Effects of river behaviour on population are 
obvious, but also men’s influence on fluvial 
processes and morphology is clear. Until to-
day people influence the river system indi-
rectly by changes in land use. Since roughly 
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1000 years ago, however, people have been 
interfering also more directly in the river 
management. Indirect influences on the 
catchment level, as land use, or direct inter-
ventions in the rivers, such as construction 
of ditches, have their specific effects on the 
fluvial landscape (e.g., Houben et al., 2006; 
Ward et al., 2008b; Vandenberghe et al., 
2011). Soils may be eroded, land surfaces 
polluted and the ecology modified when 
water and sediment invade the floodplain. 
It is well known that forest growth induces 
lowered discharge due to higher evapotran-
spiration, and lower soil erosion due to in-
creased soil infiltration capacity (e.g., Brown 
and Quine, 1999; Macklin and Lewin, 1989; 
Meybeck, 2003). In addition, pasture land 
provides a good protection against soil ero-
sion. Eroded slope sediment may be stored 
along the slope, within the main channel and 
on the floodplain, or may be transported 
further downstream depending on the ratio 
between sediment supply and transport ca-
pacity (Rommens et al., 2006; De Moor and 
Verstraeten, 2008; Notebaert et al., 2009). 
Otherwise, a vegetation cover on the flood-
plain favours the deposition of sediment af-
ter flooding events (Verstraeten et al., 2006; 
De Moor and Verstraeten, 2008).

Before 4000 years ago, the Maas River 
catchment was fully forested. Large-scale 
deforestation took place especially between 
1000 and 1800 AD and large areas of pas-
ture or crop land were established. As a re-
sult, evapotranspiration decreased, leading 
to increased river discharges and flood fre-
quencies (Ward et al., 2008a). In addition, 
slope erosion increased considerably (e.g., 
until 40 times in the Geul River catchment 
during the Middle Ages in comparison with 
the more natural conditions in the preceding 
period; cf. De Moor and Verstraeten, 2008). 
Around 1900, reforestation took place in the 
same catchment, and thus water and sedi-
ment discharges decreased also. In contrast, 
urbanization, in combination with a slight 
increase in precipitation, is held responsible 
for increased water discharge and sediment 
supply in the 20th century as evidenced by 
Stam (2002) and De Moor (2006). 

Short-term effects of land-use changes 
on river activity, and especially the amount 
of eroded soil, are complex and cannot be 
defined only by the exact nature of those 
land-use changes but also their areal extent 
and local factors, such as relief, sensitivity 
of the soil for rain erosion, and the type of 
land use have to be considered. For instance, 
the transition from forest to crop land caus-
es a much larger effect than the transition 
from forest to pasture (De Moor and Ver-
straeten, 2008). A complete transition from 
forest to crop land may lead to consider-
ably decreased evapotranspiration and thus 
a higher water table. In contrast, the effect of 
the partial reforestation during the 19–20th 
centuries was relatively small in comparison 
with the effects of the increased precipita-
tion (Stam, 2002; Ward et al., 2008c). Simi-
larly, potential changes in land use during 
the 21st century will probably be of minor 
importance in comparison with the expect-
ed climate change as appears from model 
simulations. More particularly, it is expected 
that the present-day relative distribution of 
forest/ cropland/ urban land of 35/55/10 will 
remain at a rather constant level due to rea-
sons of conservation of cultural heritance 
and the economical value of the agricultural 
land (Ward et al., 2008b).

It is also well known that urbanization 
may provoke accelerated and increased 
water runoff as a consequence of lower ab-
sorption capacity of the soils and lowered 
evapotranspiration. However, paved sur-
faces will lead to decreased soil erosion and 
thus sediment supply to the rivers. In urban 
areas, drainage of rain water should be well 
controlled. Rapid drainage would lead to 
excessive discharges and flooding and/or 
erosion and only a downstream movement 
of the problem (see examples, for instance, 
in Gregory and Walling, 1973 and Embleton 
et al., 1978)

Land use, as a main exponent of 
land-surface characteristics, is theoreti-
cally the principal external forcing factor of 
river behaviour at the very short time scale 
(Notebaert and Verstraeten, 2010; Houben 
et al., 2006). Starting from the forecasted 
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climate and expected land use in the 21st 
century, Ward et al. (2008b,c, 2011) predict 
by modelling experiments a significant in-
crease in discharge due to both increased 
precipitation and changed land use for the 
near future. In addition, they predict that 
land-use changes may also have a substan-
tial impact on sediment supply to the rivers. 
Therefore, it is important to consider the 
potentially significant efficacy of land-use 
planning as a tool to mitigate local effects 
of soil erosion and sediment delivery to 
rivers (Fig. 2). In addition, the effect of 
land cover will probably be enhanced by 
the forecasted increase in extreme climate 

events (peaked precipitation events with 
subsequent flooding). 

HUMAN INTERFERENCE BY RIVER 
MANAGEMENT
River management has become an impor-
tant steering factor in determining river ac-
tivity since relatively recent times only. The 
first ditches were constructed in the Middle 
Ages, while large-scaled projects to protect 
against flooding only date from the past tens 
of years. Intentionally, their effects on river 
processes should play at short term. The ap-
plied measures are rather diverse: some of 
them attempt to reinforce the river bed and 

Figure2. Long-term changes in mean annual discharge at Borgharen (5 km downstream of Maastricht), 
basin averaged precipitation (pre) and basin averaged temperature (tmp). For the 21stcentury, 

the upper line represents scenario A2, the lower one scenario B1 (from Ward, 2009; Ward et al., 2011; 
with permission).
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Figure3. Erosion reducing measures along the Geul River: bank toe protection using large boulders 
(a); planted poplar trees on the river bank in order to stabilise the bank (b); artificial walls replacing 

natural river banks to protect properties (c) (De Moor, 2006).
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thus counteract erosion, while others at-
tempt to avoid a too high groundwater table 
and prevent flooding.

Several types of intervention that strive 
to decrease bank failure and general ero-
sion were distinguished by De Moor et al. 
(2006) and papers referenced therein: bank 
stabilization, bank toe protection, channel 
straightening and flow retardation construc-
tions (Fig. 3). Bank stabilization can consist 
of natural measures (e.g., tree plantation 
or riparian vegetation on the levees of the 
river) or artificial ones as the replacement 
of natural banks by stone or concrete walls. 
Trees remain vulnerable, protect only lim-
ited spots and may cause flow diversion. Ar-
tificial measures are more effective but visu-
ally less attractive and more expensive. They 
are applied preferentially at places where 
valuable buildings or infrastructure have 
to be protected. Bank toe protection meas-
ures may consist of wooden wattle struc-
tures, and boulders and/or concrete rubble 
placed at the foot of the river banks. They 
are not always successful in preventing ero-
sion because discharge is variable. Wooden 
wattle structures are mainly used where the 
chance of severe erosion is not very high. 
Sometimes, wooden wattle structures lose 
their function when the banks behind the 
structures are eroded. Boulders and con-
crete rubble are much more common and 
successful. All these measures have differ-
ent costs and provide different degrees of 
bank stability. 

Straightening of rivers may have dif-
ferent reasons: lowering of the groundwa-
ter table or facilitation of ship navigation. 
A consequence of straightening is that the 
river stretch is shortened and subsequently 
the river gradient and flow velocity increase, 
in turn influencing the suspended sediment 
load (e.g., Nakamura et al., 1997).

Flood prevention measures consist of the 
construction of dikes, the creation of water 
retention basins and side channels, and the 
modification of the river bed (deepening 
or widening). Dutch regulations stipulate 
that flood recurrence is allowed to be once 
in 1250 year for the embanked floodplains 

and once in 250 years for the unembanked 
areas. This discharge of the Maas River may 
attain 3,800 m3s–1 between the present dikes. 
According to model simulations for the 21st 
century (Ward et al., 2008b), a peak dis-
charge with recurrence time of 1250 years is 
estimated at 4,137 m3s–1. 

MANAGEMENT MEASURES AND THEIR 
EFFECTS IN A RIVER AT DYNAMIC 
EQUILIBRIUM

It seems likely that, apart from technical in-
terventions in the drainage process, the fre-

quency of extremes in discharge regimes and 
imbalances in the sedimentation/erosion 
rate may only be reduced to some extent by 
intervention in the land use. Its potential 
effects are described above. Measures to 
adapt to the effects of undesired discharge 
extremes and disturbances of the sedi-
mentation/erosion budget may be more at 
hand. In that respect, it has to be stressed 
that natural floodplains are characterized 
by a morphology that is adapted to natural, 
changing discharges while keeping the equi-
librium between sedimentation and erosion 
in a dynamic way and at the long term (Star-
kel, 1990). 

Illustrative examples of such morphology 
are the occurrence of large backswamps and 
a number of secondary distributary chan-
nels. They may provide helpful inspiration 
for artificial constructions within the flood-
plain to regulate to some extent (extremes 
of) river activity, for instance by the creation 
of retention basins and side channels. Mod-
elling of such scenarios will certainly con-
tribute to quantify their respective effects 
(De Moor et al., 2007; Notebaert et al., 2011; 
Ward et al., 2008a). At the time of comple-
tion of this paper, results became available 
from a risk analysis by hydrological model-
ling for the river Rhine as a result of pre-
dicted global warming (te Linde, 2011). In 
general, artificial adaptation strategies are 
rather complex since river management may 
have conflicting consequences, especially 
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with respect to the different functions of riv-
ers and their valleys. 

Ditches are the most obvious protec-
tion against flooding. Concerning sediment 
transport ditches may have a double effect. 
They keep all sediment within the channel 
(Lemin et al., 1987) and prevent sediment 
accretion on the floodplain On the other 
hand, ditches stop the supply of local sedi-
ment from the hillslopes to the river. These 
complex effects can only be evaluated by 
modelling and field measurements. Dikes 
at relatively large distance from the chan-
nel should mimic the most natural situation, 
but their impact would be less while mainte-
nance costs would increase.

For large rivers, there are obvious rea-
sons for regulating the river course due to the 
functionality as transport route of these riv-
ers. For small rivers, straightening has often 
been applied for rapid drainage of the agri-
cultural fields. In addition, lateral river ero-
sion should be avoided, for instance for the 
protection of buildings and infra-structure 
or farm land (De Moor, 2006). In the case 
of bed stabilization, however, it should be 
kept in mind that according to the laws of 
dynamic equilibrium, as explained above, 
the natural sediment balance of the river will 
be distorted, depending on the grain-size of 
the supplied sediment (Dade et al., 2011). It 
means that aggradation of the river should 
not be prohibited as a compensation for sed-
iment removal. In natural conditions, this 
aggradation takes place on the floodplain 
at times of flooding. If natural flooding is 
artificially reduced, downstream in-channel 
sediment deposition may be a consequence 
which should lead to extra costs of dredging 
that sediment.

The shortening of the river course obvious-
ly causes the steepening of the longitudinal 
gradient of the river, resulting in a distorted 
dynamic equilibrium (Schumm, 1977). The 
consequent extra stream power may be used 
for lateral bank erosion, incision or mean-
dering within the river bed (e.g., Gregory 
and Walling, 1973). These are undesired ef-
fects in populated areas, which will require 
compensating measures of bed or bank 

protection or reducing stream power (for 
instance flow velocity retardation by dam 
constructions), thereby reducing bank ero-
sion. The main disadvantages of these meas-
ures are that the river system cannot adapt 
adequately to high and low extremes of dis-
charges and sediment transport is hindered 
(Parker and Andres, 1976; Brookes, 1988). 
The retention of sediment behind dams may 
provoke downstream channel erosion. In ad-
dition, retardation measures may provoke 
sedimentation at (extremely) low discharges. 
Therefore, it is often observed that straight-
ened rivers tend to find back their naturally 
meandering course by lateral migration, and 
thus re-establishing their dynamic equilib-
rium (Parker and Andres, 1976).

Widening or deepening of the river chan-
nel may certainly be effective in preventing 
against flooding at high discharges, but will 
certainly give problems at low stage. More 
particularly, channel transect enlargement 
may obviously lead to decreased sediment 
transport capacity and thus sedimentation 
in the river bed at low discharges. 

Moreover, a complete stop of flooding 
also has its consequences for the natural 

ecology and morphological environment of 
valley plains. The above described problems 
and the fact that naturally meandering riv-
ers have more diverse flora and fauna and 
a higher aesthetic value, have in recent dec-
ades led to the restoration of many origi-
nally meandering rivers (e.g., Brookes and 
Shields, 1996; Wolfert, 2001). The reasons 
for a change in management policy towards 
restoration of mainly small rivers were the 
need for water retention and the recognition 
of the value of unique valley landscapes. 
Water retention was necessary because of 
flooding downstream. Water management 
and nature conservation should be com-
bined according to the European Water 
Framework Directive (EC, 2000). Imple-
mentation of water management according 
to this European Directive will conserve 
or increase the ecological value of the area 
and also significantly contribute to reducing 
flood risk, as the flood retention capacity 
will increase. 
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These principles were applied recently 
in the Geul River catchment where nature 
conservation is a main aim of the local wa-
ter board. Practically, the sinuosity of the 
Geul River has been restored in an indi-
rect way: bank stabilization and protection 
were removed and the Geul was allowed 
to meander freely. Evidently, lateral river 
erosion must be prevented at some places 
by bank reinforcement as indicated above. 
However, such costly measures may coun-
teract the aesthetic value and biotic and abi-
otic attractiveness of a rural landscape with 
high touristic potential, as for instance this 
catchment. Once natural processes are op-
erating, a geomorphologically more diverse 
river is developed with higher ecological 
value with higher biodiversity (De Moor, 
2006). Although several stretches of the 
Geul River remain heavily modified, other 
stretches now show natural meandering 
processes that fulfil the requirements of the 
European Water Framework Directive (EC, 
2000). Another example concerns the mid-
dle Ebro River in Spain where Ollero (2010) 
proposes the creation of a ‘fluvial territory’, 
a ‘non-defended space in which the river can 
overflow and its course can have mobility’ 
(Ollero, 2010).

SYNTHESIS AND CONCLUSIONS

The numerous and different functions of 
a river and its valley plain lead to different 
expectations and measures to comply with. 
As a consequence, the desired or required 
measures may sometimes be conflicting. 
Natural flooding will enable erosion at high 
stage and deposition at low stage, resulting 
in maintaining the dynamic equilibrium 
(Schumm, 1977; Brookes, 1988). However, 
social and economic functions require, at 
least locally, course fixation and regulation, 
protection against floods, and bank protec-
tion. It is clear that compromises have to be 
found. An integrated approach is required 
(Verstraeten et al., 2002; Van Rompaey 
et al., 2003; Ward et al., 2008c; Notebaert 
et al., 2011). It is shown here that prior to 

management decisions the river processes 
should be understood. The palaeohydrologic 
evolution is shown to be capable of providing 
important and relevant information to river 
managers in general (Starkel, 1993, 2004; 
Sear and Arnell, 2006) and specifically in 
the Maas River catchment (Ward, 2008a; 
Vandenberghe et al., 2011). In this respect, 
the principles of dynamic equilibrium pro-
vide a reliable framework in combination 
with numerical modelling. In practice, the 
effects of changing land-use and climate or 
different management measures should be 
conceptualized in specific scenarios and 
subsequently be quantified by appropriate 
modelling. 

To conclude, all management measures 
involve distortion of the dynamic equilib-
rium. In a certain way, the river will always 
counteract such distortions. However, where 
management is required best results will be 
obtained when they mimic natural fluvial 
environments as much as possible. It is strik-
ing that also te Linde (2011, p. 149) came to 
the conclusion for the Rhine River that the 
reduction of flood probabilities should not 
only be addressed by flood protection mea-
sures, but also by adaptation options.
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