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Jerzy Rudowski 

Samodzielna Pracownia Dynamiki Stosowanej 

STEADY STATES IN THE TWIN-WELL POTENTIAL OSCILLATOR: 

COHPUTER SIHULATIONS AND APPROXIHATE ANALYTICAL STUDIES 

ABSTRACT 

The paper is focused on the phenomena of various steady state 
oscillations exhibited by the twin-well potential system. 
Regions of existence of different attractors in the system 
parameter domain are examined and a picture book ot different 
steady states for fixed damping and fo~cing is presented: 20 
different combinations of single or coexisting, Small Orbit or 
Large Orbit, periodic and chaotic attractors are displayed. 

Computer simulations are followed by an apprciximate 
analytical analysis: a study of various forms of instability of 
periodic solutions gives close form approximate criteria for 
occurrence of T-periodic Small Orbit and Large Orbit 
oscillations, and for cross-well chaos. 

h INTRODUCTION 

The sinusoidally driven twin-well oscillator governed by 

equation in the form: 

(l) F cos wt , 

h > O , a > O , ~ > O , T 
2IT 
w 

has become a elassie central model for analysis of inherently 
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nonlinear phenomena, the phenomena in which enormously complex 

chaotic motion and highly regular periodic behavior can coexist 

or to neighbor upon each other in the system parameter domain. 

The equation was originally studied by Holmes and Moon since 

1979 and was derived as mathematical model of a buckled beam or 

of plasma oscillations (Mahaffey [l],Moon [2], Moon and Li (3]). 

The simplest experimental device for eqs(l) is that depicted 

in Fig. 1: a particle placed in a twin-well potential with the 

base vibrating with periodic motion. When the amplitude of 

excitation is large enough the particle escapes from one of the 

potential well and can jump from one well to the other in 

random-like, irregular manner. 

X 

/ 

l. - 1 .l. + 1 .l 
Fig . l. A physical model of twin-well potential oscillator. 

The equation is a l so a elassie model for the study of various 

complex bifurcation phenomena, fractal basins boundaries between 

Competing coexisting attractors and the related problem of 

sensitivity to initial conditions, homoclinic tangling of the 

invariant manifolds of saddle point and the Melnikov criterion, 

fractal dimension s of strange attractors and Lapunov exponents 



http://rcin.org.pl

- 5 -

(Arecci and Califano (4], Grebogi, 

(5],Guckenheimer and Holmes [6], Holmes [7], 

ott and Yorke 

Mo on Holmes 

[8], McDonald, Grebogi, Ott and Yorke (9], Moon and 

Pezeshki and Dowell (11,12], Szemplińska, Joos and 

Szemplińska (14], szemplińska, Plaut and Hsieh (15], 

Dowell (16], Ueda, Yoshida, Stewart and Thompson 

and 

Li [3 ,10], 

Moon (13], 

Tang and 

(17]). The 

problem of criteria for chaos received also a great deal of 

attention and was examined by numerical, experimental and 

analytical methods (Moon (2], Guckenheimer and Holmes (6], 

Dowell and Pezeshki[18], Dowell [19] , Szemplińska (14,20], 

Szemplińska , Plaut and Hsieh [15], Szemplińska and Rudowski 

(21)) . Some attempts toward 

approximate criteria is also due 

Yamashida (23], Virgin (24]. 

constructing the analytical 

to Moon (22], Takimoto and 

The aim of this paper is two-fold: first we want to present a 

picture book of various, unique or 

exhibited in the system (l) at fixed 

range driving frequency, which covers 

coexisting steady states 

damping and within the 

the principal and 2-nd 

order superharmonie resonance, 0.25 ~w s 1.1. Second, we show 

that the approximate theory of nonlinear oscillations, and in 

particular, stability analysis of an approximate periodic 

solution, makes it possible to estimate the system parameter 

domains, where certain types of steady state occur, and to 

predict boundaries of the region , where the system exhibits 

cross-well chaotic motion. The approximate study involves the 

T-periodic second approximate solution of eqs. (l) obtained by a 

perturbation method, and the analysis of various forros of 

instability of the solution by considering approximate solutions 

of Hill's type variational equation. This enables us to 

calculate domains of existence of stable symmetric T-periodic 

Large Orbit solution (trajectory, which encircles all 

equilibria) and the domain, where the T-periodic Small Orbit 

attractor does not exist. The latter provides us with the 

approximate criterion for the system parameters critical values, 

for which the system exhibits cross-well chaotic motion . 

Good coincidence of computer simulations and the approximate 



http://rcin.org.pl

- 6 -

theoretical results throws new light on some traditional 

concepts and views: the results seem to blur the distinction 

between weak and strong nonlinearity, and to explain why the 

apparently close neighborhood of regular nearly harmonie 

response and the complex, continuous spectrum chaotic sol.ution, 

makes the approximate methods applicable in detecting strange 

phenomena domains. The results help us also to find out a close 

relationship between the elassie nonlinear phenomena, such as 

principal, super- or subharmonic resonances and the 

bifurcations, which lead to the strict loss of stability of a 

periodic attractor and to the escape from a potential well. 

2........:.. ~ ~ I.!!: :riD; NEIGHBOBHOOD OF PRINCIPAL M:W, 

SUPERHABMONIC RESONANCE. 

First we notice, that the three equilibrium positions of the 

system (l) are defined by: 

(2a) -ax + {3x3 
= o 

x<•> -ff 
1,2 = + 'j3 ' 

x~·> = o 

- stable equilibria 

unstable equilibria (saddle point) 

and that the oscillations around the stable rest point are 

governed by equation: 

(2b) 

where 

- - ra X = X + V i . 

F c os wt , 

Setting a = f3 -; gives us a normalized system, in whic h the 

linear natural frequency and the positions of stable equilibria 

are given as: 
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Therefore we eonsicter the system (l) reduced to the form: 

( 3) X + hx - }c + }'3 = F co s wt , 

and that for the deflection from the stable rest point, eqs . 

(2b) as: 

(4) F cos wt ; 

From the theory of nonlinear oscillations we have learned 

that the system can exhibit twa types of periodic motion: Small 

Orbit i.e. oscillations around one of the twa stable equilibria 

and La~ge Orbit motion, i.e. large amplitude oscillations which 

encircle all three rest points (Fig. 2). 

Fig. 2. Twa types of periodic motion: s.o. - Small Orbit, L.O. 
- Large Orbit. 
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Equation (4), for the Small Orbit motion, is a classic, 

dissipative, driven oscillator with quadratic and qubic 

nonlinearity. When we observe the Small Orbit motion in the 

neighborhood of the principal resonance, i.e. at w ~ l, we 

notice that the resonance curve x~x· x~x(w) is bent to the 

left, i.e. that it has softening restoring force characteristic. 

At sufficiently low values of the forcing term F the response is 

close to a harmonie function of time, with the driving frequency 

w, and it shows elassie jump phenomena and hysteresis behavior 

(see Fig. 3a). When F exceeds certain critical value denoted as 

F
1

, F
1 

< F < F
2

, the T-periodic nearly harmonie response 

bifurcates into 2T-periodic solution at the top of the resonant 

branch of the resonance curve, but still "jumps" down to the 

nonresonant branch and the hysteresis behavior still occurb 

(Fig. 3b). On furtber increase ot the parameter F, F > F
2

, 

elassie Feigenbaum Period Doubling cascade (Feigenbaum 

occurs and the system escapes from the potential well x = o 
falls into the other well. Because properties of the two 

Orbits are identical (one is the mirror image of the other) 

cross-well chaotic motion develops (Fig. 3c). 

Sometimes Small Orbit chaos can be also detected within a 

narrew frequency band, just before the escape, but 

phenomenon seems to be negligible and is not eonaidered in 

paper. 

t he 
(25)) 

and 

Small 

t he 

very 

t he 

this 

Therefore the higher frequency boundary of the cross- well 

chaos, the boundary which is related to the resonant branch of 

the resonance curve, is preceded by the universal period 

doubling cascade, All the enormously complex bifurcations occur, 

however, within a very narrew frequency zone, denoted as ćw in 

Fig. 3c. The lower frequency boundary corresponds to saddle-node 

bifurcation (cyclic fold, Thornpson and 

(27,28)). Here a sudden change tojfrorn 

fromjto chaotic attractor occurs and the 

Stewart (26], Thompson 

T-periodic Small Orbit 

two different steady 

states are separated by translent motion only. This is often 

referred to as crisis phenomena, or crisis type transitlon 
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X a) 
X PDB 

b) 
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E 

~ 
E 
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w c.J 

X L. O. F2<F<F3 
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E 
X 

6w 

POB 

os 10 w 
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X L.O. 
d) 

X 
e) 
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M t 
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w w 

WJ wpoe WA 

Fig. 3. Resonance curves and bifurcation in the principal 

resonance region: (a) Srnall Orbit, F< F
1

• (b) Srnall 

Orbit, F
1 

< F < F
2

. (c) F
2 

< F < F
3 

- Srnall Orbit and 

coexisting Large Orbit rnotion. (d,e) Interaction of 
Srnall and Large Orbit rnotion, F > F . 
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toffrom chaotic attractor (Grebogi, Ott and Yorke (5)). Fig. Je 

depicts also a resonance curve of Large Orbit motion. Here the 

Large Orbit T-periodic response coexists with cross-well chaos, 

or with nonresonant T-periodic Small Orbit. Depending on initial 

conditions the system exhibits one or the other steady state. 

Higher values of the forcing term brings an appearance of a 

new phenomena: if the experiment is performed with decreasing 

frequency, cross-well chaos changes suddenly to Large Orbit 

Attractor (Fig. Jd). Fig . Je depicts the system behavior for 

decreasing w: here nonresonant Small Orbit response jumps into 

Large Orbit attractor, so that eross-well motion is not 

observed. In both cases (Fig. Jd-e) there is a frequency zone, 

where Large Orbit is a unique steady state of the system. 

X SBB o 
E 

i11 
X 

L.O. sym 

t 
l 
t 

__) 
Wpos 

Fig. 4. Resonace curves, bifureation ~nd interaetion of L.O. 

and S.O . at the superharmonie resonance region. 
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Next Fig. 4 depicts the mechanism of transition to steady 

s t a te cross-well chaos, which occurs in the neighborhood of the 

2-nd order superharmonie resonance, i.e. close to w= 0 . 5. Here 

both types of regular responses - Small and Large Orbit lose 

their stability and disappear of a sequence o f complex 

bifurcations , giving rise to unique chaotic attractor. If the 

numerical experiment begins at w> 0.5 with the initial 

conditions, which generate Small Orbit motion, and is performed 

on decreasing w, the elassie period doubling cascade is 

observed. Yet, instead of changing into cross-well chaos, the 

response "jumps" up to Large Orbit. On further decrease of the 

driving frequency T-periodic symmetric Large Orbit attractor 

bifurcates into an unsymmetric one (a pair of two unsymmetric 

attractors) and this is followed again by the cascade of period 

doublings.This period doubling cascade results in transition to 

cross-well chaos. 

The lower frequency band of chaotic region is related to the 

saddle-node bifurcation of the nonresonant Small Orbit solution 

(cycle fold bifurcation) and is related to a sudden, crisis type 

change to/from chaotic attractor. 

The computer based results, within the frequency 

0 . 25 < w< 1.1 at fixed damping are displayed in Fig. 5-8. 

zon e 

Fig . 5 depicts the system parameter reg ion (F,w), where Small 

Orbit, symmetric Large Orbit, unsymmetric Large Orbit and 

cross-well chaotic or regular stable attractors exist. The Small 

Orb i t motion occurs within the whole F-w plane except two 

V- s h a ped regions: one with the cusp at w ~ 0.8 and F= F
2 

at the 

principal resonance region (see Fig. 3a-e), and the other cusp 

at w~ 0.4 and F ~ 0.14 i.e . at the superharmonie resonance 

zone . Inside the two V-shaped regions the s ystem can exhibit 

cross-well chaotic (or regular) motion. We see also that in some 

r egions two different attractors coexist, while in the others 

single steady state motion can be observed . In the latter case 

we can say, that the attractors are globally stable. In the case 

o f two coexisting steady states we deal with the question of 

t heir domains of attractions, but the problem is not studied in 
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this paper. 

F 

l 
li y·· F 
3T 

.. 

o 9 a 6 
o 

0.15 l; 0.1 5 .. 

FJ 

0.1 o 

0.05 

Ol. 06 0.8 1.0 w 

Fig. 5. Regions of different steady states exhibited by the 
twin-well potential oscillator. h= 0.1. 

11111111111111 L.O . symmetric, 1~%1 L.O . un s ymmetric, 

cross-well chaotic motion, 

s.o. occur outside V-shaped regions. 

The various single and coexisting steady states denoted in Fig. 

5 as 1, 2 ... 20 are then shown in Fig. 6: regular 

attractors are illustrated by their phase-portraits and chao tic 

attractors - by Poincare maps. 
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2 

3 4 

5 6 

Fig . 6. Various types of steady state attractors : h = 0.1 

~F= 0.06, w= 0.74; F= 0.17: ~w= 1.1; 

~ w= 1.0; ~w= 0.982; ~w= 0.93; ~w- 0.85. 
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7 8 

g 

12 

Fig. 6 continued: F =0.17: C2) w= 0.79; ~w = 0 . 75; 

®w =_0.70; @_w= 0.60; @ F= 0.11, w= 0.7 5 ; 
~ F- 0.17, w - 0.48. 
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13 14 

15 16 

17 

20 

Fig. 6 continued : F =0.17: @ w = 0 .4 5 ; @ w = 0 . 44; 

@ w 0.41; @ w= 0 . 4045; @ w = 0.40 ; 

@ w= 0 . 3845 ; @ w = 0.38; ® w = 0.30 . 
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First point l shows periodic response close to t he 

principal resonance at low values of F (F < F
2
): the system can 

exhibit resonant, large amplitude, or nonresonant, low amplitude 

SmallOrbit motion (see Fig. 3b). Note that only Right Small 

Orbit attractor is depicted in Fig. 6, although we realize, that 

the Left one, a mirror image of it , always coexists. 

Then, points 2 10 cover the principal resonance region 

at large values of forcing parameter F =0.17 > F
3

, at decreasing 

driving frequency. We observe here the sequence of two period 

doubling bifurcations of Small Orbit T-periodic response (points 

2 - 4) , cross-we l l periodic mot i on ( "periodic window") - p. 5 , 

cross-well chaotic attractor coexisting with symmetric Large 

Orbit (p. 6 ), 3T periodic cross-well motion coexisting with 

L.O . attractors (p. 8 ). Point 9 lies in the region, where 

symmetric L.O. is an unique attractor, and p. 10 show again 

coexistence of L.O. and s.o. 
Point 11 illustrates the case, where cross-well chaotic 

motion is an unique attractor. 

The consequtive points 12 20 cover the zone of the 

superharmonie resonance. Point 12 shows again the L.O. and 

s.o. coexistence, but the complex trajectory of s.o. indicates 

multi-frequency response. Next the T-periodic Small Orbit 

bifurcates into 2T (further period doublin3 not detected) and 

disappears, leaving us with the symmetric Large Orbit as an 

unique attractor (see also Fig. 4). This is followed by Symmetry 

Breaking bifurcation, and period doubling bifurcation of Large 

Orbit attractor (points 15 and 16 ) and finally by chaotic 

(point 17 ) and regular {point 18 ) cross well motion. Point 

19 shows also regular cross-well motion. coexisting with 

T-periodie Small Orbit attraetor, the phenomena, which was 

deteeted within a very narrow frequency zone. The last point 20 

illustrates the superharmonie resonance of Large Orbit solution: 

this is strongly unsymmetric Large Orbit T-periodic motion, in 

which eonstant term and second harmonie are of the same order as 

the fundamental harmonie . 

Fig. 7a-g give more details about some of the steady-state 
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motions: from Fig. 7a, we learn that the T-periodic Small Orbit 

at p. 2 involves large fundamental harmonie, and small second 

harmonie and constant term; Fig. 7b tells us, that the first 

period doubling bifurcation manifests itself by an appearance of 

harmonie caroponent with frequency ~w and ~-
Fig. 7c depicts cross-well chaos characteristics at w= 0.97, 

i.e. very close to the boundary of chaotic region. In this 

strange attractor the difference in image density is observed 

(Ueda [29,30]). 

Next Figs. 7d,e 

frequency spectrum and 

attractors (points 5 

show time histories , phase portraits, 

Poincare map of the twa "periodic window" 

and 7 ) . The four characteristics of 

cross-well chaotic attractor in point 6 are depicted in Fig. 

7f. 

Results presented in Fig . 7g lead to surprising conclusions: 

the large amplitude Large Orbit appears to be highly regular and 

very close to harmonie function of time, with frequency w. 

Fig. sa,b are aimed to illustrate the phenomenon of 2-nd 

order superharmonie resonance of Large orbit solution: the 

response is strongly unsymmetric, the constant term and second 

harmonie caroponent are of the same order as the fundamental 

frequency component. Fig. Sb shows the corresponding resonance 

curves and i llustrates the lass of s t ability of the solution at 

w = 0.325, thus explaining the disappearance of the unsymmetr ic 

Large Orbit at higher values of the driving frequenc y (see Fig.• 

5). 



http://rcin.org.pl

- 18 -

8 8 

~ 
.., 

~ 
": 

o o ...; .; 
8 ,.. ~ ~ o. r N 

)( o • o 
~ l ~ 

l X r X 
o Cl o Cl 

8 
N L ~ 

~~ 
o L o 

l l 

~ 8 8 
"' 

.., 
o o 
l l 

o 8 ~ ~ ~ 8 8 8 ~ ..; CD "' o o o o 

X X 

~ 

~ 8 .: g .. CD 

,_ ,_ L )( 

l!! o ... l ... 
8 o l .. 

"' .. .; 
l i l l c 

" w o i 
8 a: o t- lL .., 

l .. 
l 

i. 
::3 l 

8 ======-· . -==-~ ' 
o 

! .. 2 "" N 
-==- i 

=~=~~=-~-~i~~:=.-~ l 
3 

t o o 
' l i i i l l 

o 8 ~ ~ 8 8 8 ~ ~ CD "' 
.., 

o o o o o o o 

X .,dWV 
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Fig. Ba. Superharmonie resonance of Large Orbit motion : 
F= 0 . 17 , w= 0 . 30, h = 0.1. Four character istics of 
the response . 
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Fig. Sb. Superharmonie resonanee of Large Orbit motion: 

F= 0.17, w= 0.30, h = 0.1. 
A

0
, A

1
, A

2
- resonanee eurve of L. O. 

- resonance eurve of S.O. 

w 

~ LARGE ORBIT T-PERIODIC SOLUTION: APPROXIMATE THEORETICAL 

ANALYSIS . 

In previous seetion we notieed, that Large Orbit T-periodic 

motion within a wide range of driving frequeney is elose to 

harmonie funetion of time, with the frequeney w. This makes us 
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believe, that the first approximate solution and analysis of 

stability of the solution might give good estimation of the 

system parameter domain, in which Large Orbit occurs. 

With this aim in mind we seek T-periodic solution of eqs. (3) 

by a perturbation method, the solution which is close to 

harmonie function of time as: 

-(Q) x = A
1
cos (wt + tp) 

We have, therefore, to transform eqs. (1, 3) into the form: 

(5) x + w2x + ~f(x,x,wt) = o ; 
To make the transformation possible, we first examine natural 

oscillation of the system and notice, that the natural 

frequency, which is imaginary for linearized system, i.e. at 

~ = o, becemes real, when the amplitude becemes sufficiently 

large. Therefore we set F = h = O and assume harmonie solution 

as 

(6) A cos Ot 
1 

Applying one of approximate techniques, such as: harmonie 

balance method or equivalent linearization method, we obtain 

(7) 

The natural frequency 0 2 (A) is positive if 
l 

A2 > .i . 
3 ' 

Now we can write 

and consequently we rewrite eqs (5) into: 

(9) 
. 

X + w2x + ~(hx + xer - 0 2 (A )x - <XX + i3x3 
- F cos wt) 

1 
o 
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where 

h u a .l 
2 ' 

.l 
2 ' 

F • 

From numerous perturbation 

the literature on the subject 

Nayfeh [32], Nayfed and Mook_ 

techniques, which are available in 

(Bogoliubov and Mitropolski [31], 

[33], Hayashi [34], Szemplińska 

[35)) the most popular is that called multiple-scale method. It 

applies a transformation of variables by introducing different 

time scales: 

2 T
0 

= t , T
1 

= ut , T
2 

= 1J. t , • . . , 

and assumes the solution in the power series of 1.1 as: 

(10) 

where the slow scales T , n ~ 2 characterize the modulation in 
n 

the amplitude and phase caused by nonlinearity, damping and 

excitation . In terms of the new variable the time derivative 

are: 

(11) 

where D 
n 

ddt = D + IJ,D + ,_/ o o l 2 

a =w 
n 

D
0

2 + 1J. 20 D + 1.1
2 

( 20 D + D
2

) + • . . , o l o 1 

For the sake of clarity we apply an equivalent perturbation 

technique, the technique which represents the modulation of the 

amplitude and phase explicitly, not introducing any ch anges of 

variables. Therefore we assume the approximate solution of eq. 

(9) in the following power series of u, 
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(12a) 

(12b) 

(12c) 

where, 

(13) 

- 29 -

X(I.L,t) = A
1
cos (wt + <p) + 1.LX

1 
(A

1
,<p,t) + 1.1

2 

dA, 2 
dt=I.LD

1
(A

1
,rp) +I.LD

2
(A

1
,<p) + ... , 

~- 2 ( ) dt- 1.LE
1

(A
1

,<p) + 1.L E2 A
1

,tp + . .. , 

in the sought steady state solution, we put: 

dA 
l 

dt 
~ 
d t o . 

In fact this is the asymptotic method developed first by 

Bogoliubov and Mitropolski (31] (see a1so Szemplióska (35]). 

Differentiating eqs.12a-c, substituting into eq. (9) and 

equating coefficients of like power of 1.1, we obtain 

(14) - 2- (20 w+ hwA X+ wx 
l 1 1 

+ 
1 

F sin <p) sin e + (2E
1
A

1
w - u A + 

l 

F tp) e 1- 3 3e + co s co s - 413A
1
cos ; 

e wt + 'P 

Elimination of secular terms in i. e. equating 

coefficients of cos e and sin e to zero, yields: 

(15) o 

+ F cos 'P o 

The steady-state condition (13) is now reduced to the 

condition 

0
1 

= E
1 

= O , 

and eq (15) give us the desire d amplitude and phase as: 

(16) A F tg tp 
-hw 

l 

j [02(A) 02(A
1

) 
2 

_ w2) 2 + h2w2 - w 
l 

where 

n2
(A > J. + kA2 k 1. 

l 2 l 8 



http://rcin.org.pl

- 30 -

Next we solve eq {14), {15) to obtain the correction function 

;et <t>: 

(17) IJXt (t) = A
3
cos 3 (wt + <p) , 

1Ji3A
3
t A 3 

A = t 
3

· 32w2 64w2 

Finally, the refined first approximate solution, 

describes Large Orbit motion is: 

w h ich 

{18) x<t + TJ , 

where A , <p, A are defined by eq. (16), (17). 
. 1 3 

To examine stability of the solution we first look at the 

form of instability, which manifests itself by an exponential 

growth with time of the harmonie components, which are involved 

in x(t). We do this by adding small disturbances to amplitudes 

and phases i.e. by considering the disturbed solution as: 

(19) x<t> {At + ~A1 ) cos(wt + <p + ~'l') + 

+ (A
3 

+ ~AJ) cos 3(wt + <p +~<p) , 

~AJ E ~AJ (~At l ' 

and by making use of eqs. (12b,c), which in the 

approximation considered are reduced to: 

dAt d<p -
(20a) dt = IJDt (At' tp) ' d t - IlE l (Al' <p) ' 

first 

where Ot, A
1 

are given by eqs. (15). Adding small disturbances 

to the steady-state solution (16-18), expanding the righ~ hand 

side of eqs. (20) into Taylor series and rejecting higher powers 

of ~At, ~<p, we obtain linear variational equations with constant 

coefficients: 
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(20b) 

For a particular solution of eqs. (20b): 

óA = C eAl órp = c eh 
l 1 t 2 , 

the characteristic equation for >. is 

>.
2 + b>. + C = O , 

where b > O in the dissipative system (h > O) and 

8D 8E 8D 8E 

< 21 l c = ll2 ( aA: arp t - arp t aA: } ; 

From Routh-Hurwitz criterion we learn , that the real values 

of the root s >.
1

, >.
2 

are positive, i.e. the solution is unstable 

if 

C < O , Re ( >. 
1 

) > O • 

The stability limit is defined by c = O and the condition is 

satisfied at those pointsof the resonance curve A
1

(w), rp(w), 

which have vertical tangent 

(22a) c = o drp dAl 
dw = dw = "' 

o i = 1 or 2 

Moreover we know, that unstable branches of the resonance 
dA 

curve are those, for which ---d 1 and w - O(A ) have the same sign: w l 

(22b) c < o Re(>-
1

) > o l i l or 2 

dA 
1 o and w 

d w > - O(A,l > o or 

dA 
1 

< O and w - O(A,) o dW < 
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The stability limit parameters can be easily derived by 

differentiating eqs. (16) with the result 

(22c) 

where 

8 
c 

• w -
l 

2 

l + 2kA2 
- !:!__ 

l 2 
0

4 
(A ) + 2kA

2
0

2
(A ) 

l l l 

o 

and w= w 
l B 

- the stability limit on the resonant branch of 

A
1 
(w) 1 

w
1
= w. - the stability limit on the nonresonant branch (see 

Figs. 3 1 9-12). 

The unstable regions examined by eqs . (19-22c) are referred 

to as the first order instabilities and an analysis of this type 

is commonly used in the approximate theory of nonlinear 

oscillations (e.g . Bogoliubov and Mitropolski [31] 1 Hayashi 

[34] 1 Nayfeh and Mook [33] 1 Szemplińska [35]). It is worth 

not~cing 1 that the first order instability occurs in the region 

of the system parameters where more than one solution for 

A
1
= A

1
(w) exists. Therefore the criterion (22b) eliminates some 

branches of the resonance curves 1 leaving us with other 

branches 1 which seem to be "stable". 

To examine other forms of possible instabilities of the 

periodic solution (18) we should consider other f unctions for 

the disturbance ÓX 1 the function 1 which are not confined to that 

imposed by eqs. (19). We do this by adding a small disturbance 

óx to x(t) : 

( 23) xct> + óx l 

and considering the variational equation for óx(t). For small 

disturbance 1 terms of order (óx)" 1 n ~ 2 are rejected 1 and the 

linear variational equation yields: 

(24) óx + hóx + atl óx = o ax - l 
X (l ) 

f "' -
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Inserting eqs. ( 18 l and expanding t he term at 
ax\ x(l) 

in to 

Fourier series, we obtain: 

( 25 l ox + Mx +ox [A
0 

+ L A ces 
n=2, 4,& 

nwt] o ' 

A 
l + ].A2 + ].A2 

o - 2 4 l 4 J 

A 
2 

].A2 
4 l 

+ ].A A 
2 l J 

A ].A A 
4 2 l 3 

;>.. :J.A2 
' 6 4 3 

Introducing new variable ~ by the aid of transforrnation: 

(26al 

enables us to reduce eqs. (25l to the Hill's type equation: 

(26bl 

We note, that period 

L \COS nwt i s 
fi = 2. "' 6 

(26cl T I 
l 2 

Therefore, by virtue o f 

solutions of eqs. (25l can 

(27l 
c t 

1J(tl = e 1 ą>(tl 

o f t he t i me dependent 

t he Floquet theorern, 

be sought as: 

C t 
ox(tl = e ą>(tl 

unstable regions where c is real and positive in 

periodic function of tirne, with the period 2T
1

, or 

coefficient 

particular 

h c = c 
l 2 ' 

and ą>(tl i s 

T: 
l 
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l/l
1 
(t) = l/l

1 
(t + 2T

1
) " !fl

1 
(t + T) 

1/JII (t) = !fl
11 

(t + T
1

) " l/l11 (t + ~) 

Functions !fl
1

, !fl
11

(t) can be expanded in the Fourier series as 

(Bolotin [36], Hayashi [34)): 

.;;: 
(29a) 1/ll(t) = L b

0
cos n(wt + <5 ) 

o k w -k-n 
n= l, 3, 5 ... 

.;;: 
(29b) 1/JII (t) = L b

0
cos (nwt + <5) 

o k w -k- , 
n 

n =0,2 ,4 . . 

The unstable regions emanate from the w-axis at w 

l, 3, 5, ... 

2, 4, .. . 

2h 
o 

-k- where 

k is an odd integer, (eqs . 28a, 29a), or k is an even integer 

(eqs. 28b, 29b). They are referred to as odd and even order 

instabilities, respectively. 

Eqs. (28a,b 29a,b) tell us, that none of the instabilities 

brings a growth of period 2T harmonie components, so that Period 

Ooubling bifurcation does not occur . Type II instability brings, 

however, another interesting phenomena: it results in a build-up 

of even order harmonics. This we call Symmetry Breaking 

instability, the form of instability which is a strong indicator 

of Symmetry Breaking Bifurcation. Note, that the conclusion 

which is now drawn from the approximate analysis is in full 

agreement with general results based on qualitative, topological 

methods and computer based studies (Hubermann and Crutchfield 

[37], Raty, von Boem and Isomaki [38], Swift and Wiesenfeld 

[39], Nayfeh and Sanchez [40]) . 

To examine the symmetry breaking instability of the symmetric 

solution (18), we assume two-term solution in eqs. (27, 29b) as: 

c l 

( 30 ) T) (t) e 1 (b + b cos 2wt + b
22

sin 2wt) 
o 2 1 

Then we insert it into eqs . (25) .and apply harmonie balance 
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method, i.e. we equate constant term, coefficients of cos 2wt 

and of sin 2wt separately to zero. This gives us a set of 

linear , algebraic, homogeneous equations for b
0

, b21 , b22 
Equating to zero the characteristic determinant, we obtain: 

h2 ;\. 

(31.) ;\. + 2 2 o c - 4 2 o l 

h2 ;\. 

t.(<)= ;\. , -4w2+ ;\. - +c~+i 4wc
1 

=O, 2 o 4 
h2 ;\. 

o -4wc , -4w2+ ;\.- + 2 4 

4 c - 2 l o l 

At the stability limit, where 2 h2 
o, the above determinant c - 4= l 

i s reduced to: 

;\. 

;\. 
2 o o 2 

;\. 

(32a) t.(h2) ;\.2 -4w2+ ;\. + • 4wh o o 2 , 
;\. 

o -4wh -4w2+ ;\.- • 
o 2 

This result is a quadratic polynomial for w2: 

(32b) w4 
- 2Bw

2 + C 
SB SB 

o , B"' B(A
1

) , 

and gives 

amplitude 

u s t he desired relationship 

be satisfied at the 

between w and the 

Breaking A 
l 

to 

instability limit: 

(32c) 

To make sure, which region in 

unstable solution, we expand the 

Symmetry 

\-w plane 

determinant 

corresponds to 

(31) into power 
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2 h 2 

series in the neighborhood of c
1

- ~=o. For small values of 
2 

c~- ~ we reject higher power terros and obtain: 

(33) o 

Noticing that ~ > O in the whole range of amplitudes 
ac2 

1 

considered, we conclude that in the unstable region: 

(34) 2 h 2 

c
1

- ~ > O 

t. (h2
) < o 

We conclude, therefore, that the resonant branch o f 

A
1
= A

1
(w), which seems to be stable in the sense of criterion 

(22b), is unstable in the sense of Symmetry Breaking instability 

criterion (34) at w< w
58

, (see Fig. 9). To determine the 

Symmetry Breaking stability limit in the F - w plane, we 

calculate the forcing parameter F by the aid of eq. (16) 

(35) F 
SB 

Fig. 10 depicts both stability limits in the F- w 

first order stability limit, which coincides with p. 

and the Symmetry Breaking stability limit defined by 

plane: the 

B in Fig. 9 

eqs. 32b. 

The computer simulations results presented alresdy in Fig. 5 are 

shown again, for comparis on. We see, that the theoretical w
8

(F) 

values are very close to the true boundary of existence of Large 

Orbit motion. we notice also that the theoretical Symmetry 

Breaking stability limit w
58 

overestimates the values of driving 

frequency, for which symmetry breaking instability really 

occurs .· This i s, however, d ue not only to low order 

approximation used in the theoretical solution, but also to the 

fact, that in the computer based studies we determine the values 
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l 
S.B.U.I 

l 
l 

F =0.17 

--- v' F = 0.17 -- --- L F=0.07 ----!._ 
- - l l ---

O. 2 O.L. 0.6 O. 8 1.0 

Wss ws 
Fig . 9. Resonance curves and unstable regions in L.O. 

approximate solution: 

~ Symmetry Breaking instability 

w 
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of driving frequency, for which the even order harrnonics are 

that large that can be detected. 

It is obvious, that the theoretical analysis can not 

reasonable results in the region of F, w pararneters, where 

two stability limits approach each other. 

F 

0.20 

12 9 6 

0.1 5 

w s s 

0.1 o 

give 

t he 

0.0 5 Lt----'------'--...L._ _ _,I __ __.__ _ _L_ _ _l_ __ J__ __ • 

O.l. 0.6 0.8 1.0 w 

Fig. 10. Regions of L.O. attractor: computer sirnulation and 

theoretical stability l irnits: h= 0.1. 
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~ SMALL ORBIT MOTION: APPROXIMATE THEORETICAL ANALYSIS. 

Computer simulations, presented in section 2, 

the Small Orbit motion in the neighborhood of 

resonance is very close to harmonie function of 

revealed, that 

the principal 

time with the 

frequency w, even at high values of the forcing parameter, at 

F > F
2

• This is true for the values of the driving frequency 

which are outside the zone defined bywA and wPDB (see Fig. 3c), 

when wA is the cycle fold bifurcation point, and wPDB denotes 

the first period doubling bifurcation. 

Therefore, we consider T-periodic solution of eq. (4), the 

solution which is close to: 

(36) xcol (t) 

and we seek an answer to the question, whether approximate 

analysis of various forms of instability of the solution can be 

useful in predicting the true wA and w~8 values, and thus 

whether it enables us to construct approximate criteria for 

steady-state cross-well chaotic motion. 

To apply perturbation methods we transform eqs. (4) into the 

form: 

(37) o l 

where 
2- .l 

1.1 C:XJ 2 • 

1.1 - small parameter. 

Note, that we put the quadratic term to be of order 1.1
1

, with 

all other terms to be proportional to 1.1
2

, and that the 

assumption is not related to the magnitudes of respective 

coefficients. The relation between x2 and x3 terros comes from a 

rescaling properties. Setting damping, detuning parameter and 

forcing term of order that of x3 is motivated by the fact, that 
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perturbation methods need higher approximation to capture 

effects of quadratic term. The assumed form of eq. (32) gives 

us, therefore, good opportunity to account properly for the 

quadratic term and to obtain the second approximate solution in 

as sirople form as possible. 

Next we apply the perturbation technique,which was used in 

section 3, and assume solution of eq. (37) in the form: 

2 
(JSa) x(t) = a

1
cos(wt + tp) + llX

1
(a

1
,<p,t) + 

da 

ll ... 

(38b) 
1 2 3 dt = llD

1
(a

1
,tp) + ll D

2
(a

1
,tp) + ll ... 

(38c) ddtpt = IlE (a ,tp ) + ll2E (a ,<p) + ll3 
• • • 

l l 2 l 

The terms of order ll1 give us: 

(39) x
1 

+ ,}x
1 

= 2D
1
w sin 9 + 2E

1
w a

1
cos 9 - ~a2a~ 

9 = wt +tp 

Elimination of secular terms yields: 

and the correction function x
1
(t) is 

llX
1 
(t) = a

0 
+ a

12
cos 29 , 

Terros of order ll2 and eq. (40) yield: 

( 41) x + w
2
x = (2wD

2 
+ha w+ F sin tp)sin 9 + 

2 2 2 l 

- aa
1 

+F cos <p]cos 9- 2a
2
a

1
x

1
(t) cos 9 

Elimination of secular terms and the steady-state condition 
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(42) = 1-10 + 1-1
2
0 = O 

1 2 ' 

1-!Et + l-l2E2 = O 

results in the amplitude and phase solution as: 

(43) 

where 

a 
1 

2 
l - ka

1 
, 

F tg tp 

k 

-hw 
2 - w 

Finally the seeond approximate s olution for Small Orbit 

motion elose to the prineipal resonanee, w z 1 is 

(44) x(t) = a
1
eos(wt + rp) + a

0 
+ a

2
eos 2 (wt + rp) 

_1.a2 = .la2 
ao 4 t at2 4 t 

and a
1

, <p are given by eqs. (43) . 

The natural frequeney Q(a
1

) is deereasing with the amplitude, 

and eonsequently the resonanee eurves a
1
= a

1
(w) are bent to the 

left (see Fig. 11). They preserve the elassie shape and possess 

the peak amplitude with the point B 
da 

1 for whieh dWI = = unless 

F> F
1

• The theoretieal limit value of the foreing parameter for 

point B to exist, at low damping, is: 

(45) 
l 

~ 

For F > F
1 

the resonanee eurve a
1
= a

1 
(w) look like those for 

undamped system. 

Therefore the first order stability limits, defined by 

criterion (22e) exist on the nonresonant braneh only (point A), 

and the whole resonant braneh seems to be "stable" in the sense 

of eriterion (22b). To examine other forms of instability of the 
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T-periodic solution (44) we turn to Hill 1 s type variational 

equation (24) 1 which yields: 

a, 

1.0 

0.8 

0.6 

O.l. 

0.2 

o w 
WA W po 

Fig. 11. Resonance curves and two types of unstable regions of 

S.O. solution: ~ - first orde r instability ~ -

Period Doubling instability. 

4 

(4 6 ) óx + Mx + óx(;\ + I A cos nwt] o l 

n= l 

A l - 3 2 57 4 

2a1 + 64al l o 

A 3a - 15 3 - a l l 8 1 

A J.a2 - 9 4 

2 2 l 16al 

A 3 3 - a 
3 8 l 

A 3 4 

4 64al ; 
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Note, that period of time-dependent term T
1 

equals to the 

period of x(t): 

(47) T 
l 

T 

Therefore, the two types of instability defined by eqs. 

(28 a,b, 29 a,b) now are: 

óx(t) 
(c - ~)t 

e l 2 t/l(t) 

(48a) t/1
1 
(t) = t/1

1 
(t + 2T) = I bncos (~wt + ón). , 

n= l , 3, S ... 

2~ 
w" --k- k = l, 3, 5, 

( 48b) t/lu (t + T) = I bncos (~wt + ón) 
n=0,2,4.~. 

k 2, 4, 6, .. . 

We notice immediately that the odd type instability given by 

eqs. (48a) brings a growth with time of the harmonie components, 

which nave period 2T. This is, therefore, Period Doubling 

instability , which leads to Period Doubling Bifurcations. 

To examine the instability, we assume two term solution for 

óx(t) as: 

(c - ~,t 
~t nwt) ( 49) óx(t) = e l 2 I (b cos + b sin n c 2 n s 2 

n : l , 3, S 

and we follew t he procedure, which was outlined in sec . 3 . 

Finally we arrive at the fourth order determinant and the fourth 

order polynomial for the desired wP
0

: 

8 w 
PO 

+ b w6 + b w4 + b w2 + b 
6 PO 4 PO 2 PD O 

o 
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If we neglect damping in the variational equation (46) we can 

set b =O, h= 1,2. in the solution (49) and thus to reduce 
n s 

eqs. (50) to the quadratic equation for wP
0

• The simplification 

appears to give surprisingly good results even at damping 

coefficient that high as 0.2 (see Szemplińska, Plaut and Hsieh 

[15]) . This can be explained by the fact that boundaries of 

unstable regions are strongly affected by damping at low values 

of parametric excitation term (A
1

, A
2 
••• in eqs. 46). We are, 

however, exploring regions of high magnitudes of the amplitude 

a
1

, and so of the coefficient An' the region where the effect of 

damping is negligible (Hayashi [34]). 

Setting h= O in eqs. (50), we obtain: 

(51) t. 4 2&./ + c o w - ' 2 PD PD 

where : 

B 20A 
9 o +A 

l 
+ .lA 

9 3 

16 A A 
- .l(A c [(A + f l (A + ..2) + A ) 2) 

9 o o 2 4 l 2 ' 

and A
1
= At (a

1
) are given by eqs. (46). 

In the unstable region the determinant is negative: · 

(52) 

The resonance curves a
1
= a

1
(w) and the two types of unstable 

regions: the first order instability defined by eqs. (22b) and 

the Period Doubling unstable regions given by eqs. (51, 52) are 

depicted in Fig. 11. The two-term solution (49) gives us two 

Period Doubling unstable regions: one which emanates from the 

w- axis at w= 2, and the other - at w=~. At low amplitudes 

they correspond to the 1/2 subharmonic resonance and 3/2 

supersubharmonic resonance, respectively. We see, however, that 

the Period Doubling instability visits also the principal 

resonance region and the stability boundary crosses the resonant 

branch of a
1
= a

1
(w), if the forcing parameter F exceeds c e rtain 
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critical value, the value denoted as F
2

• For F > F
2 

the resonant 

branch of a
1 

(w) loses stability by Period Doubling at w = wpo' 

while the nonresonant branch has lost its stability at the point 

with vertical tangent - at w •. We may conclude, therefore, that 

within the range 

w < w< w 
A PO 

the T-periodic solution is unstable, and that "strange 

phenomena" can be expected . 

We could continue to examine stability of the resonant branch 

by considering 2T periodic solution and again studying a 

corresponding variational equation. This would have led us to 

the second bifurcation, and further to the cascade of Period 

Doublings. The computer based studies, which revealed that the 

cascade of bifurcations occurs in a very narrow frequency band 

ów (see Fig.3c, 5) allow us to confine our theoretical analysis 

to the first bifurcation. 

The theoretical stability boundary defined by the frequency w• 

and wP
0 

are plotted in F - w plane and compared to the computer 

simulation results (Fig. 12). We see, that the crude 

u s with simple, close approximation analysis, which provides 

form algebraic formulae for the two stability limits, gives 

system parameter critical surprisingly good estimation of the 

values, the values for which cross-well c haos really occurs. 

~ CONCLUDING REMARKS 

The computer based studies show, that the twin-well potential 

oscillator exhibits a great of variety of different steady state 

motions. Highly regular periodic and complex chaotic attractors 

are very close to each other in the system parameter domain, and 

alternate with a change of one parameter. The survey of steady 

states at fixed damping and fixed forcing allow us to notice, 

that large amplitude motion can be highly regular, or even close 

to harmonie function of time, while a smaller amplitude motion 

appears to be very complex, chaotic. The observation seems to 

blur a distinction between weak and strong nonlinearity effects. 
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Computer simulations bring an observation, that the lower 

f r e quency boundary of cross- well chaotic motion is related to 

jump phenomenon, and that upper boundary is separ ated from 

T-periodic regular Small Orbit by a very narrow frequency band . 

F 

0.15 A PDB 

T.- S.O. 

0.1 o 

T. - S.O. 

0.05 

0.5 0.6 0.7 0.8 0.9 1.0 w 

Fig . 12 . Regions of S.O . attractor: compute r simulations and 
theoretical s t ability limit, 

l'· .. .. ,. ' .. •j .·:·;·: .... :.:::: .. :::_ - cross- we l l c haos. 
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This brings us to the result, that the crude theoretical 

analysis, the analysis which has its roots in the elassie 

approximate theory of nonlinear oscillations, can give us 

simple, close form approximate criteria for cross-well chaos. 

Also, high regularity of Large Orbit motion enables us to use 

a low order approximate solution and to obtain good estimation 

of the system parameter values, where this type of steady state 

occurs . 
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