Andrzej Warchałowski

CHRYSMOMELIDAE
stonkowate
(Insecta: Coleoptera)
W serii «Fauna Polski» ukazały się dotychczas:

Tom 2. A. Riedel i A. Wiktor. Arionacea — Ślimaki krążalkowate i ślinikowate (Gastropoda: Stylommatophora), 1974, 140 ss.
CHRYSOMELIDAE

Stonkowate

(Insecta: Coleoptera)
ERRATA

<table>
<thead>
<tr>
<th>Stronica</th>
<th>Wiersz od góry</th>
<th>Jest</th>
<th>Powinno być</th>
</tr>
</thead>
<tbody>
<tr>
<td>271</td>
<td>4 kol. I</td>
<td>(Juliusiana)</td>
<td>(Juliusina)</td>
</tr>
<tr>
<td>272</td>
<td>27 kol. I</td>
<td>153</td>
<td>135</td>
</tr>
</tbody>
</table>

Chrysomelidae. Stonkowate, Część I.
Seria: Fauna Polski, Tom X.
ANDRZEJ WARCHAŁOWSKI

CHRYSOMELIDAE

Stonkowate

(Insecta: Coleoptera)

Część I

(część ogólna oraz podrodziny: Donaciinae, Orsodacninae, Synetinae, Zeugopherinae i Criocerinae)

WARSZAWA 1985

http://rcin.org.pl
Praca związana z problemem międzyresortowym
Nr MR-II. 3

© Copyright by Państwowe Wydawnictwo Naukowe
Warszawa 1985

ISBN 83-01-03950-7
ISSN 0303-4909

http://rcin.org.pl
SŁOWO. WSTĘPNE

Ten stan rzeczy każe oczekiwać, że dalsze badania faunistyczne i autokologiczne nad chrząszczami stonkowatymi Polski, chociaż bardzo dla pogłębienia wiadomości o tych owadach potrzebne, poważniejszych zmian jakościowych do stanu wiedzy już nie wprowadzą. Ten rodzaj badań pozwoli tylko jeszcze uzupełnić i korygować dane szczegółowe, takie jak przebieg granic obszarów rozsiedlenia, gęstość populacji czy zakresy spektrów pokarmowych. W ślad za tym należy oczekiwać, że w miarę wyczerpywania się tematyki tradycyjnej uwaga badaczy coraz częściej będzie się zwraćac ku tematom niedostatecznie opracowanym, a w odniesieniu do wielu gatunków nigdy jeszcze nie podejmowanych, jak morfologia porównawcza stadiów przedimaginalnych, morfologia narządów wewnętrznych, onogeneza, genetyka, etologia, synekologia itp. Dla podjęcia tej tematyki nie wystarczą już metody stosowane w badaniach terenowych, sprowadzające się niemal wyłącznie do odlawanienia postaci imaginalnych lub — rzadziej — larw w ich środowisku naturalnym. Już na wstępie stanie się konieczne rozwinięcie prac poświęconych podobnym dla nich metodom, a zwłaszcza opanowanie techniki hodowli tych owadów w warunkach kontroliowyanych.

Nieuchronny proces specjalizacji coraz bardziej odsuwa pracowników naukowych od dziedzin leżących w zakresie zainteresowań entomologów-amatorów. Toteż potrzebą chwili staje się dzisiaj pomoc w podtrzymywaniu zainteresowań szybko powiększającej się grupy miłośników przyrody, a także ukazywanie nowych obszarów dla ich działalności, tak zawsze pożytecznej, a często nieodzownej w procesie rozwoju i popularyzacji nauki.

Leży w intencjach wydawnictwa, by wydane w serii „Fauna Polski” opracowanie rodziny Chrysolinae nie było tylko powtórzeniem czy rozwinięciem informacji zawartych w „Kluczach” (Warchałowski, op. cit.), lecz by mogło stanowić pomoc przy podejmowaniu badań nad poszczególnymi gatunkami. Celem przedstawienia aktualnego stanu wiedzy o omawianych owadach, przy każdym gatunku zostały podane — w formie odsyłaczy bibliograficznych i krótkich komentarzy — możliwe kompletnie informacje, czy i jakiego rodzaju badania, zwłaszcza z zakresu bionomii i morfologii stadiów przedimaginalnych, dotyczących nad nimi prowadzono. Powinno to stanowić ułatwienie przy planowaniu nowych badań oraz zapobiec wielokrotnemu powtarzaniu obserwacji wcześniej już dokonanych i udokumentowanych. Zacytowanie wszystkich istniejących pozycji piśmiennictwa oczy-
więc nie jest możliwe ze względu na ich wielką liczbę. Doboru cytatów dokonano więc w taki sposób, by wykorzystując wskazane w odsyłaczu publikacje dało się odnaleźć pozycje pozostałe, tutaj nie zacytowane, a nawiązujące do danego tematu.

W omówieniu każdego gatunku podane są terra typica lub locus typicus, ustalone wyłącznie w oparciu o tekst opisu oryginalnego bez uwzględniania innych źródeł lub wskazówek.

Dla umożliwienia przyszłych studiów nad polimorfizmem, zwłaszcza na użytek biogeografii genetycznej, uwzględniono najważniejsze znane odmiany omawianych gatunków (zwykle aberracje barwne). Nazwy tych odmian, jakkolwiek pozbawione uprawnień w nomenklaturze zoologicznej, wprowadzono nie tylko z myślą o miłośnikach owadów, którzy gromadzą kolekcje amatorskie, lecz także dlatego, że ułatwia to przedstawienie zmienności w formie prostego wykazu odmian, a więc o wiele oszczędniej i przejrzystiej niż przez jej szczegółowe omawianie w opisie gatunku lub cytowanie opisów odmian in extenso.

Obraz fauny chrząszczy stonkowatych Polski byłby niepełny, gdyby nie został ukazany na szerszym tle faktograficznym przynajmniej w odniesieniu do fauny Provinces Europejskiej (Atlas Mira 1964). Z tego względu oprócz gatunków stwierdzonych w Polsce w sposób niewątpliwy, umówiono szczegółowo gatunki pasa krajów ościennych, a także takie, których stanowisko systematyczne jest na tyle niejasne, że mogłyby się kiedyś znaleźć w wykazie fauny Polski jako synonimy gatunków krajowych. Stosunkowo duże zasięgi araeów rozsiedlenia chrząszczy stonkowatych są przyczyną, że wśród tych szczegółowo omawianych gatunków znalazły się niemal wszystkie, zasiedlające Provinces Europejską. Dla uzupełnienia obrazu fauny tego obszaru i umożliwienia porównania z fauną Polski, wprowadzono do kluczy do oznaczania również gatunki pozostałe, zresztą bardzo nieliczne, których omówienie w części szczegółowej ma charakter skrótowny i jest wyróżnione drobniejszą czcionką (petitem).

Przy ustalaniu rozsiedlenia poszczególnych gatunków na obszarze Polski korzystano z notatek roboczych trójosobowego zespołu autorskiego, zgromadzonych w formie kartoteki przez ów zespół jako materiał do opracowania kolejnych tomów części XXIII — Coleoptera „Katalogu Fauny Polski” i znajdującej się w Instytucie Zoologii PAN w Warszawie. Za jej udostępnienie autor składa serdeczne podziękowanie Panu doc. dr hab. Maciejowi Mroczkowskemu.
I. CZĘŚĆ OGÓLNA

1. HISTORIA BADAN

Znaczna zwartość morfologiczna omawianych tutaj chrząszczy, mimo stwierdzającej przeciwnie pozory różnorodności w zakresie pokroju i ubarwienia ciała, została zauważona bardzo wcześnie. Wyodrębniony przez LINNEUSZA (1758) rodzaj o nazwie Chrysomela obejmował wszystkie znane mu chrząszcze stonkowe z wyjątkiem rzędnie – Donaciinae, ujętych przez niego w osobny rodzaj Cassida oraz ciernic – Hispinae, które również jako osobny rodzaj Hispa opisał później, w XII wydaniu „Systema Naturae” (1767). W ciągu drugiej połowy XVIII wieku z linneuszowskiego rodzaju Chrysomela wyodrębniano grupy pokrewnych sobie gatunków, nadając tym grupom rangę samodzielnych rodzajów. Tak powstały kolejno rodzaje Crioceris, Cryptocepha/us, Luperus, Galeruca, Haltica (Geoffroy 1762), Donacia (Fabricius 1775) i Clytra (Laicharting 1781). Podobny los spotkał w ogóle znaczną większość rodzajów ustanowionych przez LINNEUSZA i z początkiem XIX stulecia jednym z najważniejszych zadań entomologii stało się pogrupowanie tych już licznych podówek rodzajów w jednostki wyższego rzędu. Granice rodziny Chrysomelidae pierwszy zakreślił LATREILLE (1802), nie zmieniając jednak zakresu znaczeniowego rodzajów, ani nie ustanawiając podrodzin.

Po okresie osiemnastowiecznych dzieł monumentalnych rozpoczęna się w entomologii era specjalizacji, której początek przypada na pierwsze dwudziestolecia XIX stulecia. Nie znaczy to bynajmniej, że już wcześniej nie było monografii poświęconych mniejszym grupom systematycznym; monografie te jednak zawsze były podporządkowane systemom przedstawianym w wielkich, zwykle zbiorowych dziełach i nie miały wpływu na kształtowanie makrosystematyki. Przykładem takiej monografii może być w odniesieniu do chrząszczy stonkowatych dzieło J. D. KOCHA (1803), który – rzecz na owe czasy wyjątkowa – opracował monografię rodzaju Haltica (dzisiejsza podrodzina Alticinae), obejmującego w rodzinie Chrysomelidae formy najdrobniejsze. Jednakże najważniejsze monografie poświęcone poszczególnym podrodzinom lub bogatszym w gatunki rodzajom powstały dopiero w ciągu czterdziestolecia 1840 —
1880. Należą tutaj przede wszystkim monografie rodzajów Cassida Linn. (Boheman 1850, 1854, 1855, Suffrian 1844), Chrysomela Linn. (Suffrian 1851) i Cryptocephalus Müller (Suffrian 1847a, 1848, 1852a, 1852b, 1854, 1857, 1858, 1859) oraz podrodzin Clytrinae (Lefèvre 1872) i Alticinae (Foudras 1860, Allard 1860, Kutscher 1859–1864). Podsumowaniem wszystkich tych prac, zamykającym okres morfologii opisowej w badaniach nad chrząszczami stonkowatymi, jest opracowanie Juliusza Weisego „Chrysomelidae” (1881–1893), które wypełnia szósty tom fundamentalnego dzieła, rozpoczętego przez Wilhelma Ferdynanda Erichsona „Naturgeschichte der Insekten Deutschlands”.

W tym właśnie okresie, tj. w dziewięćdziesiątym latach ubiegłego stulecia, w studiach morfologicznych zaczyna znów — po stuletniej przerwie — dochodzić do głosu kierunek porównawczy. Tym razem już nie na szczeblu gromad i rzędów, jak to miało miejsce u twórców ogólnej klasyfikacji stawonogów w XVIII wieku, lecz na szczeblu rodzin i gatunków, jako instrument krytycznych rewizji i prób odtworzenia rozwoju rodowego. Pierwszym widownym efektem tej zmiany kierunku pracy było ukazanie się licznych podręczników i kluczy do oznaczania chrząszczy, a równolegle do nich — wielkich katalogów o zasięgu światowym (Coleopterorum Catalogus) lub obejmujących większe obszary geograficzne (Gemminge i Harald 1868–1876). Znaczna część tych dzieł weiąż jeszcze dobrze służy, szczególnie początkującym entomologom, a zwłaszcza znany i w bardzo dużym nakładzie wydany klucz Edmunda Winklera „Fauna Germanica” (1908–1916) oraz „Catalogus Coleopterorum Regio- nis Palaearticae” Alberta Winklera (1927–1932).

Spośród specjalistów drugiego i trzeciego ćwierćwiecza XX stulecia, poświęcających się opracowaniu tej rodziny, należy — zachowując przybliżoną kolejność chronologiczną — wymienić badaczy włoskich Giuseppe Mullera (systematyka Chrysomelidae) i Milo Burliniego (Cryptocephalinae), austriackiego Franza Heikertingera (Alticinae), chińskiego Sicien Hsien Chena (systematyka i filogeneza Chrysomelidae), czeskiego Jana Bechnego (Chrysomelinae), francuskiego Pierre Joliveta (Chrysomelinae), niemieckich Karl-Heinza Mohra...
(Alticinae) i Gerhardta Scherera (Alticinae Obszaru Orientalnego i Paleotropikalnego), radzieckich Lwa Nikandrowicza Miedwiedewa (Clytrinae, systematyka larw) i Igora Konstantynowicza Łopatina (Chrysomelidae Azji Środkowej), japońskich Michio Chūjō (Chrysomelidae Japonii) i Shinsaku Kimoto (Chrysomelidae wschodniej Azji), wreszcie amerykańskiego J. L. Gressita (Chrysomelidae Nearktyki i Obszaru Pacyficznego). W stosunku do niezliczonych problemów, jakich nastręcza badanie tak wielkiej grupy organizmów, kadra specjalistów zajmujących się chrząszczami stonkowatymi jest o wiele za szczupła nawet na potrzeby „klasycznych” dyscyplin, jakimi w entomologii są morfologia opisowa i porównawcza postaci imaginalnych, taksonomia i faunistyka. Odkrycia, opisania i sklasyfikowania oczekuje jeszcze zapewne co najmniej kilkanaście tysięcy gatunków chrząszczy stonkowatych, zwłaszcza z obszarów tropikalnych Ameryki i Archipelagu Sundajskiego. Wiele wskazuje na to, że podrodziną, gdzie ujawni się wielka liczba nieznanych jeszcze gatunków, będą Galerucinae. Wielu entomologów od badań nad Chrysomelidae odstręcza stosunkowo dobre poznanie tej rodziny w Holarktyce. Nie każdy jednak zdaje sobie sprawę z faktu, że na tym ogromnym obszarze żyje nie więcej niż 10% poznanych dotychczas gatunków i że wskaźnik ten w miarę eksploracji obszarów tropikalnych będzie się ustawicznie kurczył.

2. BUDOWA ZEWNĘTRZNA I ANATOMIA OWADÓW DOROSŁYCH

Budowa zewnętrzna

Mimo wspólnego planu budowy wynikającego z monofiletyzmu rodziny Chrysomelidae, różnice w budowie ciała u przedstawicieli poszczególnych podrodzin mogą być znaczące. Szczegóły potrzebne do ich scharakteryzowania będą podane na początku rozdziałów poświęconych kolejnym podrodzinom. Tutaj zostaną jedynie omówione cechy wspólne dla rodziny ze wskazaniem zakresu zmienności w budowie poszczególnych części ciała.

Ciała chrząszczy stonkowatych jest w większości przypadków krępe, jajowate lub krótko-walcowate, jednakże jego sylwetka nawet w obrębie jednej podrodziny może być bardzo różna. Ma na to wpływ zwłaszcza kształt przedplecza i stopień przypłaszczenia ciała. Przegląd form ukazany jest na rys. 1-12, gdzie uwzględniono typowe przykłady ilustrujące polimorfizm na szczeblu rodziny. Wielkość ciała większości znanych gatunków waha się w granicach 2×1,2 do 8×5 mm, lecz liczne są również formy mniejsze, o długości 1-2 mm, a także formy większe, mierzące kilkanaście do dwudziestu kilku milimetrów. Długość ciała największych znanych gatunków, południowoamerykańskich przedstawicieli podrodziny Cassidinae, nie przekracza 40 mm. Stopień sklerotyzacji powłok ciała jest zazwyczaj znaczny, a niektóre rodzaje, jak np. Timarcha LATR. mogą stanowić przykład owadów o szczególnie grubym i wytrzymały...
Panzerzu. Wyjątek stanowi podrodzina Galerucinae, której przedstawiciele odznaczają się w większości cienkim, słabo zesklerotyzowanym integumentem i delikatną budową ciała.

Powierzchnia ciała najczęściej naga lub skąpo owłosiona, istnieją jednak liczne formy owłosione gęsto (np rodzaje Galerucella Crotch, Epithrix Foudr.),

Rys. 1–12. Przykłady zróżnicowania pokroju ciała w rodzinie Chrysomelidae (oryg.): 1 – Sagra femorata (Drury), 2 – Poecilomorpha pretiosa Rein., 3 – Labidostomis taxicornis (Fabr.), 4 – Cryptocephalus laetus Fabr., 5 – Chlamisus godenae Gress. et Kim., 6 – Timarcha tenebricosa (Fabr.), 7 – Luperus flavipes (Linn.), 8 – Nyctiphantus hirtus (Weise), 9 – Chaetocnema hainanensis Chen, 10 – Leptispa longipennis (Gestro), 11 – Platypris melli Uhm., 12 – Cassida plausibilis (Boh.).
a nawet szczeoteczkowato (np. orientalny rodzaj *Trichochrysea Baly*). Łuśki jako pokrycie powierzchni ciała występują znacznie rzadziej, a u gatunków europejskich tylko w rodzaju *Pachnephorus Redt.* (*Euomolpinae*).

Ubarwienie ciała niezwykle zróżnicowane, zarówno pod względem rozmaitości deseni, jak i pod względem rozpiętości skal barw. Najczęściej spotykane jest ubarwienie kutikularne, zarówno pigmentowe, jak i strukturalne, natomiast ubarwienie hypodermalne występuje o wiele rzadziej, a w odniesieniu do przedstawicieli fauny europejskiej niemal wyłącznie u podrodziny *Cassidinae.* Z pigmentów w integumencie chrząszczy stonkowatych występują melaniny (u części gatunków także karotenoidy), odpowiedzialne za całą gamę barw żółtych, orzechowych, rzdawych, czerwonych i brunatnych aż po smolistą i czarną.

Ubarwienie strukturalne, powstające w wyniku dyfrakcji i interferencji światła widzialnego, jest u chrząszczy stonkowatych bardzo rozpowszechnione i obejmuje barwy metaliczne, najczęściej w odcieniach zielonych, błękitnych i fioletowych, rzadziej żółtych, czerwonych lub purpurowych. Wiele gatunków intensywnością połysku ciała przypomina polerowany metal, a pod względem czystości i blasku tęczowych barw nie ustępuje najpiękniejszym bogatkom (*Buprestidae*) i trzyszczom (*Cicindelidae*). Przykładów takiego ubarwienia mogą dostarczyć pospolite gatunki krajowe, jak *Dlochrysa fastuosa (Linn.), Oreina speciosissima (Scop.) czy Chrysolina herbacea (Duft.).* Ubarwienie strukturalne odznacza się niezwykłą trwałością i doskonale zachowuje się nawet u form kopalnych. Niekiedy jest uzależnione od obecności wody w tkance hypodermalnej. Znika ono wówczas po wysuszeniu owada i może być przywrócone po namoczeniu w wodzie lub w glicerynie. Ten typ ubarwienia występuje głównie u tarczyków (*Cassidinae*), w tym również u paru gatunków krajowych, jak np. *Cassida nobilis Linn.* Manifestowanie się barw metalicznych tylko w obecności płynu tkankowego leży u podstaw fachującego zjawiska, jakim jest zmiana barw żywego owada pod wpływem bodźców zewnętrznych. Występuje ono u niektórych tarczyków z obszarów tropikalnych, jak np. u amerykańskich gatunków *Metriona bicolor (Fabr.) lub Chirida signifera (Herdst).* U wymienionych chrząszczy, dopóki owad pozostaje w spokoju, desen wierzchu ciała ma barwę polerowanego złota; pod wpływem podrażnienia lub przestrachu barwa ta w przeciągu około pół minuty traci połysk i zamienia się na czarno-fioletową lub czerwonobrunatną, a gdy owad uspokoi się, złoty kolor powraca w całym blasku (*Mason 1929*).

Ubarwienie hypodermalne uwarunkowane jest obecnością barwników zawartych w plazmie żywych komórek hypodermy i znika wraz z rozkładem tej tkanki po śmierci owada. Najczęściej spotykane odcięcie ubarwienia hypodermalnego to kolory żółtozielony, seledynowy i trawiasty, znacznie rzadziej żółty lub pomarańczowy. Można tutaj zaliczyć również ubarwienie tła pokryw u odmiany gatunku *Chrysomela (Microdera) vigintipunctata Linn.* znanej pod nazwą var. *miniata Auel.* Normalnie bladożółte tło pokryw przybiera u tej odmiany odcień różowy lub czerwony wskutek nagromadzenia się barwników...
lipochromowych z grupy karotenoidów w komórkach hypodermy. Po wyrzwoleniu takich okazów w rozpuszczalnikach organicznych czerwona barwa blaknie i owady upodobniają się do formy typowej. Można przypuszczać, że powstanie takiego zabarwienia sygnalizuje określony stan fizjologiczny organizmu (okres dojrzałości płciowej lub patologiczne zaburzenia przemiany materii).

Głową, wyjątkowy podrodzinę *Hispinae*, a częściowo *Galerucinae* i *Cassidinae*, jest z reguły duża; jej szerokość mierzona wraz z oczami często osiąga, a nawet przekracza szerokość przedplecza. Puszka głowowa zawsze mocna, bruzdy czołowe u jednych rodzajów bardzo silnie rozwinięte (*Lema* FABR., *Crioceris* MÜLLER.) u innych całkowicie zanikłe (*Chaetocnema* s. str.). Urzęduenie powierzchni czoła i ciemienia może mieć formę punktowania, podłużnych lub promieniście rozbiegających się zmarszczek, siateczkowania lub, znacznie rzadziej, ziarenkowania. U wielu gatunków urzęduenie głowy zanika całkowicie i powierzchnia jej jest jednolicie gładka i lśniąca, jeśli nie liczyć dołeczków szczecionośnych (chetoporów), zawsze w mniejszej lub większej liczbie obecnych i zgrupowanych najczęściej po wewnętrznej stronie oka. Sama puszka głowowa owadów rzadko bywa przedmiotem badań porównawczych; dla rzędu chrząszczy analizę taką przeprowadził *Stickney* (1923), lecz w odniesieniu do chrząszczy stonkowatych jej wyniki nie dają się wykorzystać przy badaniu korelacji morfologicznych na szczeblach niższych od rodziny.

Czułki z reguły 11-członowe. W Europie u jednego tylko rodzaju *Psylliodes* LATR. czułki są dziesięciozłonowe, a u egzotycznego rodzaju *Nonarthra* BALy – dziewięcioczłonowe. Czułki są najczęściej nitkowate, o członach walcowatych, jajowatych lub kulistych, nigdy nie załamanie kolanki i nigdy nie tworzą na końcu buławki zbudowanej ze skróconych członów. U podrodzin *Megalopodinae* i *Clytrinae* poszczególne człony mogą być na końcu rozszerzone lub opatrzne wyrostkiem, przez co czułki stają się piłkowane lub grzebieniaste (rys. 13). Zazwyczaj czułki u samców są nieco dłuższe niż u samica a u niektórych gatunków, szczególnie z podrodzin *Galerucinae* i *Alticinae*, może się w ich budowie dymorfizm płciowy manifestować jeszcze wyraźniej. Wówczas najczęściej albo jeden człon, albo dwa lub trzy sąsiadujące ze sobą mają u sameń kształt odmienny od pozostałych; mogą być rozszerzone, wydłużone, spłaszczone lub opatrzne wyrostkiem. Zjawisko to występuje zwykle w obrębie członów 3–6 lub 8–9, a z gatunków krajowych mogą tutaj dostarczyć przykładow przedstawiciele rodzaju *Phyllotreta* STEPH. (rys. 14–17). Wśród gatunków tropikalnych, zwłaszcza z podrodziny *Galerucinae*, można spotkać znaczną różnorodność dymorficznych modyfikacji budowy człułków (rys. 18–20).

Narządy gębowe (rys. 21–26) stosunkowo słabo zróżnicowane, u podrodzin z grupy *Eupoda* najczęściej prognatyczne (rys. 27), u *Camptosomata* i *Clyctica* hipognatyczne (rys. 28), u *Cryptostoma* opistognatyczne (rys. 29). U niektórych rodzajów podrodziny *Clytrinae* żuwaczki bywają szczególnie silnie rozwinięte i opatrzne po grzbietowej stronie wzniesioną listwą krawędziową (rys. 30). Ten przerost żuwaczek występuje głównie lub wyłącznie u samców i często

http://rcin.org.pl
związany jest z asymetrią, obejmującą oprócz budowy samych żuwaczek także wargę górną i nadustek. Przerost żuwaczek spotyka się także w innych podrodzinach, lecz tylko sporadycznie i u gatunków pozaeuropejskich. Jeśli zjawisko przerostu żuwaczek pominąć, to różnice w budowie narządów gębowych prowadzą się najczęściej tylko do proporcji długości poszczególnych części I pary szczęk oraz do liczby i położenia zębów na tnącej krawędzi żuwaczek (rys. 31–33). Te różnice są słabo skorelowane z cechami podrodzinowymi i występują zwykle na szczeblu rodzaju a nawet podrodzaju (CARPENTER i MACDOWELL)

http://rcin.org.pl
1912). Narządom gębowym *Chrysomelidae* obszerne studium porównawcze poświęcił VERHOEFF (1922).

Oczy złożone owalne lub nerkowate i tylko u podrodzin z grupy *Eupoda* bywają wycięte głębiej (podkowiaste).

Rys. 30–33. Przykłady zróżnicowania kształtu żuwaczek (oryg.): 30 — *Labidostomis longimana* (Linn.), 31 — *Chrysolina vernalis* (BRULLÉ), 32 — *Chaetocnema concinna* (MARSH.), 33 — *Ch. hortensis* (FOURCR.).

Przedtułów wykazuje najrozmaitsze modyfikacje w budowie. Najogólniej, droga ewolucji tej części ciała biegnie od form cylindrycznych, pozbawionych wyraźnych krawędzi bocznych (*Eupoda*), poprzez silnie sklepione i opatrzone krawędzią boczną (*Camptosomata*), spłaszczone z wciiskami, bruzdami i dółkami na powierzchni (*Galerucinae, Alticinae*), aż po płaskie, tarczowato rozszerzone

Rys. 34, 35. Przednie panewki biodrowe (oryg.): 34 — typ otwarty, *Chrysolina* sp., 35 — typ zamknięty, *Cassida* sp.

http://rcin.org.pl
(Cassidinae) lub pokryte kolcami (Hispinae). Do ważnych cech diagnostycz-
nycych należą budowa i położenie panewek biodrowych, które mogą być owalne
lub okrągłe, z tyłu zamknięte (rys. 35) lub otwarte (rys. 34), stykające się ze
sobą lub rozdzielone wyrostkiem przedpierśnia.

Śródtułów i zatulów są zróżnicowane znacznie słabiej, toteż ich budowa
rzadko tylko bywa wykorzystywana w diagnozach. Śródpłeczce jest niemal
w wszystkich przedstawicieli rodziny widoczne po stronie grzbietowej w postaci
tarczki, której u bardzo nielicznych rodzajów brak (w Europie tylko u rodzaju
Stylosomus Suffr.).

Skrzydła przednie przekształcone w pokrywy, zawsze obecne i u większości
gatunków całkowicie zakrywające odwłok. U podrodziny Cryptocephalinae są
one nieco skrócone i nie zasłaniają ostatniego tergitu odwłoka, a u niektórych
pozaeuropejskich Galerucinae i Alticinae mogą ulegać dość daleko idącej reduk-
cji, odkładając znaczną część grzbietowej strony odwłoka (rys. 8); form o tak
dalece zredukowanych pokrywach jest jednak w rodzinie bardzo niewiele. Urzeź-
bienie powierzchni pokryw jest niezwykle zróżnicowane i zostanie omówione
szczegółowo przy opisach podrodzin. U niektórych grup, jak np. u rodzaju
Timarcha Latr. (Chrysomelinae) lub u podrodzaju Testergus Weise (Alticinae)
pokrywy są zrosnięte wzdłuż szwu.

Skrzydła tylne zazwyczaj dobrze wykształcone. Niemniej, u licznych ga-
tunków szczególnie z podrodzin Chlamisinæ, Chrysomelinae i Alticinae bywają
one uwstecznione lub prawie zupełnie zaniżone, co wówczas uniemożliwia studio-
wanie ich użytkowania. W poszukiwaniu zespołów cech potwierdzających
podział na podrodziny badania porównawcze nad użytkowaniem skrzydeł
tylnych prowadzili CHEN (1940), JOLIVET (1954, 1959) i SUZUKI (1969, 1970);
obfitego materiału przeglądowego dostarcza też praca KEMPERSA (1923). Wciąż
jeszcze niedostateczna liczba przebadanych przykładow nie pozwala dzisiaj
orzec, czy i w jakim stopniu użytkowanie drugiej pary skrzydeł może być wykorzystane w diagnozach jednostek systematycznych niższych od plemienia. Hipotetyczny, wyjściowy dla nadrodziny Cerambycoidea (= Phytophaga) sche-
mat użytkowania przedstawiono na rys. 36; w rodzinie Chrysomelidae daje on
sześć podstawowych modyfikacji:

1) Typ Eupoda (rys. 37), najprymitywniejszy i najmniej odbiegający od typu
wyjściowego, odznacza się wyraźnie schytynizowaną żyłką medialną M1,
rozdwojoną na końcu żyłką łoczową Cu1 oraz obecnością wydłużonej ko-
mórki an, leżącej między żyłkami analnymi A1 i A2. Taki typ użytkowania
mają podrodziny Sagrinae, Donaciinae, Orsodacninae, Zeugophorinae, Sy-
netinae i Megalopodinae.

2) Typ Chrysomelinae (rys. 38), u którego użytkowanie jest nieco uproszczone,
a żyłka łoczowa Cu1 nie rozwiódiona na końcu. Należą tu podrodziny Cri-
cerinae, Chrysomelinae, Galerucinae i Alticinae, a także podrodzina Aula-
coscelinae, której użytkowanie skrzydeł nawiązuje jednakże częściowo do
typu Eupoda.
3) Typ Camptosomata (rys. 39). Tutaj charakterystyczna jest obecność dwóch komórek \(an_1 \) i \(an_2 \) oraz zanik nasadowej części żyłki łokciowej \(Cu_1 \) na znacznym odcinku długości. Ten typ użytkowania występuje u podrodzin Clytrinae i Cryptocephalinae.

4) Typ Cryptostoma (rys. 40), różni się od typu poprzedniego ciągłością żyłki \(Cu_1 \). Należą tutaj podrodziny Hispinae i Cassidinae; u podrodziny Hispinae zazwyczaj zanika żyłka poprzeczna \(R_t \).

5) Typ Eumolpinae (rys. 41) posiada dobrze rozwinięte żyłki analne i łokciowe. Obecne są obydwie komórki \(an_1 \) i \(an_2 \) oraz rozwidlenie żyłki łokciowej \(Cu_1 \). Tutaj należą podrodziny Eumolpinae i Megascelinae.

6) Typ Chlamisinae (rys. 42) ma jedną, krótką komórkę analną \(an \) oraz całkowicie zanikłą żyłkę poprzeczną \(R_t \). Należy tutaj tylko podrodzina Chlamisinae.

Użyłkowanie skrzydeł tylnych u podrodziny Lamprosomatinae (rys. 43) wykazuje cechy pośrednie między typem 4 i 5.

Nogi przednie kroczne. Jedynie u samców z niektórych rodzajów podrodzin Clytrinae bywają one chwytne, przystosowane do przytrzymywania samicy w czasie kopulacji. Są wówczas wydłużone, o goleniach zagiętych i opatrzonych ząbkami po wewnętrznej stronie (rys. 44). U znacznej większości gatunków Chrysomelidae w budowie przednich, a niekiedy także środkowych i tylnych stóp zaznacza się dymorfizm płciowy, bowiem ich pierwszy człon, a często i człony pozostałe, są u samców wyraźnie szersze aniżeli u samic. Nogi środkowe zawsze kroczne. Nogi tylne u podrodziny Alticinae skoczne, o zgru-
białych tylnych udach, zawierających wewnątrz tzw. aparat Maulika (rys. 45). U niektórych gatunków z podrodzin Sagrinae, Donaciinae i Megalopodinae tylnie nogi mogą wykazywać przystosowanie do poruszania się owadów po gładkich, obłych źdźbłach i łodygach. Golenie ich są wówczas wygięte łukowato, a uda opatrzone po wewnętrznej stronie kolcami, jedne i drugie zwykle wydłużone (rys. 46). Rozliczne adaptacje i modyfikacje kształtu poszczególnych części nóg będą bliżej omówione przy podrodzinach.

Odwłok złożony z 9 segmentów, których sternity i tergity są nie tylko inaczej ukształtowane, ale i przesunięte względem siebie, wskutek czego identyfikacja poszczególnych pierścieni bywa nieraz bardzo utrudniona. Tergity są błoniaste i tylko u grup o skróconych pokrywach, jak np. u podrodzin Cryptocephalinae, jeden lub rzadziej dwa ostatnie tergity są zesklerotyzowane i tworzą tzw. kuper (pigidium). Liczba tergitów dających się wyróżnić przy oglądaniu chrząszcza od góry po rozchylaniu lub obserwaniu skrzydeł i pokryw wynosi zwykle sześć (są to tergity III-VIII), u przedstawicieli Cryptocephalinae siedem, a u Cassidinae osiem. Od tego schematu istnieją odstępstwa, głównie u gatunków pozaeuropejskich. Natomiast liczba sternitów jest stała dla całej rodziny. Z dziewięciu pierwotnych (larwalnych) sternitów dwa pierwsze są silnie zredukowane i wchodzą w skład tylniej panewki biodrowej. Pięć dalszych (III-VII)

Rys. 44–46. Kształt nóg (45 wg Warchyłowskiego 1978, pozostałe oryg.): Macrolenes bimaculata (Rossi), przednia noga samca, 45 — Longitarsus tabidus (Fabr.), tylna noga z uwidocznionym wewnątrz aparatem Maulika, 46 — Sominella macrocnemia (Fisch.), tylna noga samca.

...to sternity widoczne przy oglądaniu owada od strony brzusznej (rys. 47–49).Ósmy segment tworzy zwykle rodzaj obrączki ukrytej wewnątrz segmentu siódmego. Dziewiąty przekształcony jest u sameca w element szkieletowy (spiculum gastrale) o kształcie litery Y lub V, zwany niekiedy błędnie paramerami przednimi, a u samicy tworzy błoniastą płytkę, zakończoną tzw. głaszczkami genitalnymi (styli). U podrodziny Cryptocephalinae trzeci (pierwszy widoczny)

2 — Chrysomelidae

http://rcin.org.pl
i siódmy (ostatni widoczny) sternit odwłoka są półkoliście wydluzone ku środkowi ciała i zbliżone wzajemnie, a nawet zetknięte ze sobą, jak gdyby zgniatając trzy segmenty leżące między nimi. Z tych trzech segmentów są wówczas widoczne głównie ich części leżące po bokach odwłoka (rys. 48). U samców na przedostatnim sternicie odwłoka występują zazwyczaj różne ważne diag-

nostycznie utwory, jak dołki, bruzdki, guzki, kolce, wycięcia itp. Obecność tych utworów związana jest ze sklerotyzacją wewnętrznej strony brzusznej ściany odwłoka w miejscu, gdzie znajdują się przyczepy dla mięśni musculus retractor penis i m. contractor penis. U samic z podrodzin Clytrinae, Cryptocephalinae i Chlamisinae na tym sternicie widnieje duże, miseczkowate wgłębienie (fossa ovigera).

Męski aparat kopulacyjny u chrząszczy stonkowatych odznacza się dobrze wykształconym, dużym, silnie zesklerotyzowanym, zwykle tubularnym prąciem oraz całkowitym oddzieleniem się paramerów (tegmen) od części podstawowej (phallobasis), która jest z prąciem zrośnięta w jeden narząd. Ogólny schemat budowy i wzajemnego położenia sklerytów składających się na męski aparat kopulacyjny jest przedstawiony na rys. 50-57. Sklerytów tych jest w zasadzie tylko dwa: prącie (aedeagus) i paramery (tegmen). Tak zwane paramery przednie (spiculum gastrale),idelkowaty lub z dwóch cienkich listewek złożony twór, leżący pod dystalną częścią prącia, jest — jak już wspomniano — zredukowanym IX segmentem odwłoka i stanowi wzmocnienie błoniastej ściany komory genitalnej od zewnątrz. Płaty boczne paramerów mogą się zrastać po grzbietowej stronie prącia i wówczas paramery mają formę obrączki (typ zupełny aparatu kopulacyjnego, rys. 50-53); gdy płaty boczne ulegają skróceniu, paramery przybierają postać widełek lub rzadziej litery V, a nawet prostej pałeczki (typ niezupełny aparatu kopulacyjnego, rys. 54-57). Obrączkowaty kształt paramerów jest u chrząszczy stonkowatych cechą prymitywną, toteż typ zupełny męskiego aparatu kopulacyjnego jest charakterystyczny dla podro-
dzin Sagrinae, Donaciinae, Orsodacninae, Zeugophorinae, Synetinae i Megalopodinae. Pozostałe podrodziny posiadają aparat kopulacyjny typu niezupełnego; osobliwy wyjątek stanowi rodzaj Timarcha Latr., należący do podrodziny Chrysomelinae, a mimo to mający paramery zrośnięte po stronie grzbietowej (rys. 53). Budowie narządów rozrodczych u Chrysomelidae poświęcono wiele prac przyczynkowych i studiów specjalnych. Z ważniejszych należy tutaj wymienić anatomiczne i histologiczne studia opisowe Bordasa (1899a, b), Harnisch (1915) oraz Spetta i Lewitta (1925).

Aparat kopulacyjny żeński, słabo zesklerotyzowany, jest omówiony wraz z całym układem rozrodczym na s. 23.
Narządy wewnętrzne chrząszczy stonkowatych nie były dotychczas przedmiotem obszerniejszych studiów porównawczych, jakkolwiek niektórym układowym, badanym na przykładzie wybranych gatunków, poświęcono kilka opracowań szczegółowych. Co prawda omawiane tutaj chrząszcze dostarczały — podobnie jak i przedstawiciele innych rodzin — materiału do badań porównawczych w skali całego rzędu Coleoptera, lecz takie wyrywkowe przykłady nie wystarczają na wykrycie prawidłowości przydatnych do scharakteryzowania rodziny, a tym bardziej niższych jednostek taksonomicznych.

Przewód pokarmowy (rys. 58) nie wykazuje w swej budowie szczególnych osobliwości. W części stomodealnej zróżnicowanie na przełyk (oesophagus), wole (ingluvies) i przedżołądek (proventriculus) nie zawsze jest wyraźne, zwłaszcza u przedstawicieli podrodzin Galerucinae i Alticinae. Część mezenteralna, żołądek (ventriculus), najczęściej tubularny lub gruszkowato rozszerzony ku tyłow i; w przedniej, a rzadziej także w tylnej części ma kilka lub kilkanaście uchyłków (caeca). Budowie histologicznej tych uchyłków u rodzaju Donacia Fabr. osobną pracę poświęcił Hirschler (1906). Część proktodealna jest wyraźnie zróżnicowana na odcinek zwieracza (pylorus), jelito cienkie (ileum) i grube (colon) oraz na zgrubiały odcinek końcowy, jelito tylne (rectum).

Rys. 58. Układ pokarmowy Pyrrhalta viburni (Payk.) (wg Zorina 1931). Oznaczenia:
p — przełyk, ż — żołądek, cM — cewki Malpighiego, j — jelito tylne.

http://rcin.org.pl
Cewki Malpighiego chrząszczy były przedmiotem licznych badań, a Kolbe (1901) próbował nawet ich liczbę wprowadzić jako kryterium podziału na podrzędy. Proponowany wówczas przez niego podział wyróżniał dwie grupy: Tetranephria, posiadające cztery cewki Malpighiego i Hexanephria o sześciu cewkach. Do Tetranephria zaliczył wszystkie rodziny podrzędu Adephaga oraz nadrodziny Staphylinoidae z wyjątkiem gnilińków (Histeridae). Do Hexanephria miały należeć wszystkie pozostałe rodziny podrzędu Polypagha. Podział ten nie utrzymał się, był bowiem zbyt słabo skorelowany z podziałami opartymi o inne kryteria, a także dlatego, że wśród Hexanephria istnieje wiele rodzajów a nawet podrodzin, u których występują tylko cztery cewki Malpighiego, być może wskutek wtórnej redukcji ich liczby; pewną osobliwość stanowi tutaj rodzina Malachiidae, u której liczba cewek wynosi zawsze pięć. Chrząszcze stonkowate mają zawsze sześć cewek, lecz stosunki ich długości, przebieg oraz miejsce połączenia z jelitem są bardzo zróżnicowane. W najczęściej spotykanym przypadku występują cztery cewki dłuższe i dwie krótsze; przy końcu łączą

http://rcin.org.pl
się ze sobą — zgodnie z dwuboczną symetrią tego narządu — po trzy, tworząc po każdej stronie ciała: krótki odcinek o wspólnym świetle, wnikający pod tunica propria tylnej części jelita, gdzie rozgałęzia się on na trzy oddzielne, a często dodatkowo jeszcze porozgałęzione przewody. Cztery dłuższe cewki są narzędziami wydalniczymi, dwie krótsze — sekretorycznymi. Ten typ budowy można traktować jako wyjściowy, jest on bowiem charakterystyczny także dla całej rodziny *Cerambycidae*. Ważniejsze jego modyfikacje spotykane u chruścików stonkowatych, to dalsze skracanie jednej pary cewek, przesunięcie miejsca ujścia cewek w rejonie zwieracza (osobno cztery dłuższe, osobno dwie krótsze), przekształcenie jednej pary cewek w narząd namnażający bakterie symbiontyczne, a także oswobadzanie końców cewek, które wówczas nie wnikają pod tunica propria jelita, lecz leżą swobodnie w jamie ciała. Modyfikacje te przedstawione są na rys. 59–66, zaczerpniętych z pracy STAMMERA (1935a).

Układ oddechowy i nerwowy dorosłych *Chrysomelidae* nie były dotychczas przedmiotem osobnych badań.

Układ rozrodczy męski (rys. 67) zbudowany jest według schematu wspólnego wszystkim chruściczeom i składa się z parzystych: jąder (testes), krótkich przewodów nasiennych (vasa deferentia), pęcherzyków nasiennych (vesiculae
seminales), z których każdy opatrzony jest gruczołem wspomagającym (glandula auxiliaris), oraz z części nieparzystej, którą tworzą przewód wytryskowy (ductus ejaculatorius) oraz prącie, omówione już w części poświęconej narządom zesklerotyzowanym. Jądra są wieloplatowe, położone u form pierwotniejszych po bokach ciała, natomiast u grup filogenetycznie młodszych zblizone do siebie lub stykające się po grzbietowej stronie odwłoka a nawet zlane w jeden narząd, otoczony wspólną otoczką łącznotkankową.

Układ rozrodczy żeński (rys. 68) również nie wykazuje cech szczególnych dla rodziny. Składa się z więzadła (ligamentum) podtrzymującego wiązki włókien (filamenta terminalia), stanowiące zakończenia poszczególnych owarioli; parzystych jajników (ovaria), z których każdy złożony jest z kilku lub kilkunastu owarioli i uchodzi krótkim jajowodem (oviductus) do nieparzystego odcinka zwanego macicą (uterus). Macica wreszcie uchodzi do komory genitalnej (bursa copulatrix, vulva), do której uchodzi również przewód spermateki (receptaeculum seminis) oraz przewody wyprowadzające dwóch gruczołów dodatkowych (glandulae accessoryae), produkujących kleistą wydzielinę, umożliwiającą przytwierdzenie jaj do podłoża. Nazewnictwo poszczególnych odcinków żeńskiego układu rozrodczego nie jest ujednolicone, m. in. wskutek nie ustalonej jeszcze homologii tych części u różnych rzędów owadów. Toteż jedni autorzy (Snodgrass 1935) traktują komorę genitalną nie jako część układu rozrodczego, lecz jako wypuklenie zewnętrznej powłoki ciała i umieszczają żeński otwór płciowy (gonoporus) przy ujściu macicy, a inni, jak Paterson (1930), uważają komorę genitalną za końcową część układu i otwór płciowy widzą u jej wylotu na VIII segmencie odwłoka.

Układ krążenia, hemolimfa, ciało tłuszczowe oraz enocyty chrząszczy stonkowatych nie były jeszcze przedmiotem badań porównawczych. Wyniki stosunkowo nielicznych przeprowadzanych dotychczas badań nie wskazują jednakże, by omawiana rodzina miała się różnić jakimiś istotnymi szczegółami budowy tych tkanek od innych chrząszczy podrzędu Polyphaga.

3. BUDOWA ZEWNĘTRZNA I ANATOMIA STADIÓW PRZEDIMAGINALNYCH

Jajo

Jaja chrząszczy stonkowatych są stosunkowo mało zróżnicowane, u niektórych przedstawicieli podrodziny Galerucinae kuliste (rys. 69), w pozostałych podrodzinach mniej lub bardziej wydłużone, owalne lub walcowate. Ubarwienie jaj, stałe i charakterystyczne dla każdego gatunku, obejmuje dwie gamy barw: od białawej poprzez ochrową, żółtą i bursztynową po czerwoną oraz od bladozielonej przez brunatnozieloną po czarną. Chorion niezbyt gruby, zwykle pokryty urzeźbieniem przypominającym węzeł pszczełę. To urzeźbienie jest odwzorowaniem położenia komórek folikularnych, które w końcowej fazie oogenezy formują osłonę jajową. Opisane urzeźbienie nie zawsze jest wyraźne
i u niektórych gatunków, np. u *Plagiodera versicolora* (Laich.), zanika ono zupełnie, a powierzchnia choriunu jest jednolicie gładka i lśniąca.

Bardzo rozpowszechnione jest w rodzinie stonkowatych pokrywanie jaj kałem oraz krzepnącą wydzieliną gruczołu nadodbytowego (glandula supra-analis). Dotyczy to tych gatunków, których larwy żerują na powierzchni liści lub w ścieżce, a rodzaj i sposób nałożenia pokrywy kałowej są różne u różnych podrodzin. Pokrywa kałowa ma — jak się zdaje — dwa zadania. Pierwszym z nich jest zaopatrzenie wylęgającą się larwę w symbiontyczne bakterie, bio- rące udział w procesie trawienia. Drugim jest ochrona złoża jaj przed wpływem czynników klimatycznych, a być może i przed wrogami naturalnymi. U pod-

wydzieliną. U egzofagicznych Galerucinae oraz u rodzaju Altica Fabr. samica nakleja grudkę kału z osobna na każde jajo lub przynajmniej na niektóre jaja w złożu, rzadziej, jak u rodzaju Galeruca Geoffr., pokrywa całe złoże zasy-
chającą pokrywą. Wreszcie u podrodziny Cassidinae każde jajo wraz z grudką
kału zostaje zatopione w krzeplącej, zwykle przezroczystej wydzielinie i gdy
jał złożonych obok siebie jest kilka, smugi wydzielinę tworzą jak gdyby tarczo-
waty kokon, otulająca całe złoże (rys. 70).

Larwa

Larwy chrząszczy stonkowatych, chociaż bardzo pod względem budowy
i pokroju ciała zróżnicowane, mają dobrze wyrażone cechy nadrodziny Ceram-
bycoidea, a w obrębie tej nadrodziny wyraźnie różnią się od obydwóch rodzin
pozałych. Ceciami nadrodziny są: nogi czteroczłonowe lub pozornie trój-
członowe (istnieją też nieliczne formy beznogie), żuwaczki bez wyrostka mo-
łarnego, szczęki ruchome, nie zrośnięte w jedną płytkę z wargą dolną, dzie-
siąty segment odwłoka bez podłużnej bruzdki przed odbytem. Formy beznogie
różnią się od larw ryjkowców (Curculionidae) brakiem szwu epikranialnego.

Cechami rodzinowymi są: brak płytki gularnej (w odróżnieniu od larw
chrząszczy kózkowatych – Cerambycidae), wyraźne, jedno- lub dwuczłonowe
głaszczki wargowe oraz obecność ząbków na wewnętrznej krawędzi żuwaczek
w odróżnieniu od larw strąkowców – Bruchidae, gdzie głaszczki wargowe są
szczątkowe lub brak ich zupełnie, a żuwaczki mają krawędź wewnętrzną nie
rozwiniętą).

Larwy różnych podrodzin mogą się nieraz znacznie różnić pokrojem ciała.
Te różnice są zwykle skorelowane z położeniem systematycznym, mogą być
jejednakże również wyrazem przystosowania do określonych warunków byto-
wania. Na przykład, u larw drążących wewnątrz tkanek roślinnych występuje
tendencja do прогнazy i do redukcji, a nawet zaniku odnóży tułowio-
ych; u larw żyjących w glebie zanika pigmentacja ciała; u larw żerujących
swobodnie na liściach roślin macierzystych dochodzi do wykształcenia różnych
przystosowań obronnych itd. Najważniejsze przykłady pokroju ciała larw
Chrysomelidae pokazano na rys. 72–77.

Cechami diagnostycznymi larw chrząszczy stonkowatych są szczegóły bu-
dowy puszki głowowej i narządów gębowych, budowa nóg i ostatniego tergitu
odwłoka, położenie sklerytów tułowioowych oraz oszczecenie (chetotaksja)
ciała. Położenie i nazwy zesklerotyzowanych części tułowia i odwłoka larw
są ukazane na rys. 80. Schemat ten nie jest jednak binyajmniej uniwersalny,
a u poszczególnych podrodzin układ sklertytów i ich liczba mogą być bardzo
róźne. W wielu przypadkach mogą być one zastąpione przez pola pokryte
drobnymi szczecinkami (mikrochetami), obok których mogą występować także
dłuższe szczec (makrochety). Nazwy sklertytów lub pól szczecionośnych mają
sens wyłącznie topograficzny, nie prowadzono bowiem dotychczas żadnych prób ich homologizacji. Ze względu na zawarte w niniejszym opracowaniu klucze do oznaczania larw, przy każdej podrodzinie zostanie omówiony dominujący w niej typ sklerotyzacji i chetotaksji integumentu larw z zachowaniem, w miarę możliwości, jednolitego nazewnictwa tych struktur.

Taksonomowie wiążą duże nadzieje ze studiami nad budową wargi górnej (labrum) larw. Różnice w długości i położeniu poszczególnych szczecinek są dostatecznie wyraźne i mało zmienne, by móc je wykorzystać przy identyfikacji larw nawet na szczeblu gatunkowym. Studium porównawcze nad budową wargi górnej larw chrząszczy stonkowatych przeprowadził Steinhausen (1966), a Ogłoblin i Miedwiediew (1971), rozwijając metodę zastosowaną po raz pierwszy przez Bovinga (1906) dla rozróżniania larw Donaciinae, wykorzystali morfologię tej części aparatu gębowego w kluczach do oznaczania.

Badań porównawczych nad anatomią narządów wewnętrznych larw dotychczas nie prowadzono, lecz istnieje kilka prac opisowych, pozwalających w ogólnym zarysie zapoznać się z budową poszczególnych układów. Najważniejszą z nich jest praca Nellie Paterson (1930), poświęcona morfologii i bionomii larw gatunku Phaedon tumidulus (Germ.).

Poczwarka

W ogromnej większości przypadków przepoczwarczenie larw chrząszczy stonkowatych następuje w glebie. Dotyczy to nawet larw minujących, które dla przepoczwarczenia opuszczają roślinę macierzystą i schodzą do gleby.
Wyjątek stanowią tutaj podrodziny: Donaciinae, której przedstawiciele odbywają pełne przeobrażenie w wodzie oraz Lamprosomatinae i Cassidinae (rys. 78), które przepoczwarczają się na liściach roślin macierzystych. Na nadziemnych częściach roślin przepoczwarczają się ponadto niektóre gatunki z podrodzin Cryptocephalinae, Clytrinae i Chrysomelinae, jest ich jednak stosunkowo niewiele. Poczwarki przytwierdzone do nadziemnych części roślin mają ciało pigmentowane, natomiast poczwarki odbywające metamorfozę w glebie lub w otoczkach kałowych (scatoconcha) z reguły są bursztynowożółte i pigmentacja niektórych części ciała pojawia się u nich na krótko przed osłabu sieciowej. W owadzie dochodzi do metamorfozy, na ciele poczwarki można rozpoznać większość cech postaci imaginalej (rys. 79), lecz bliższe zbadanie jej morfologii nie jest możliwe bez uszkodzenia okazu, utrudnia je bowiem słaba sklerotyzacja integumentu i obecność osłonki poczwarczej. Poczwarki nie były dotychczas przedmiotem studiów porównawczych nie tylko ze względu na trudności techniczne, ale i dlatego, że specjaliści niewiele oczekują po wynikach takich badań.

4. PRZYSTOSOWANIA OBRONNE, LOKOMOCYJNE I SYGNAŁIZACYJNE

Przystosowania obronne, jak np. zdolność skakania u podrodziny Alticinae, czy ukrycie całego ciała pod płaską, zesklerotyzowaną tarczą utworzoną z pokryw i przedplecza u podrodziny Cassidinae, poznano głównie od strony morfologicznej, są one jednak zazwyczaj wielocelowe. Na przykład otoczka kałowo-śluzowa chroni larwę Lilioceris merdigera (Linn.) nie tylko przed określonymi wrogami naturalnymi, ale i przed wysychaniem; gruby, wysycowany pigmentami pancerz północnoafrykańskich gatunków z rodzaju Timarcha Latr. nie tylko daje im skuteczną ochronę mechaniczną, lecz także zatrzymuje większą część promieniowania słonecznego itd. Wskutek tej wielocelowości nie da się dzisiaj rozstrzygnąć, które z przytoczonych dalej przystosowań mają rzeczywiście charakter obronny i czy funkcje obronne istotnie dominują w ich roli.

Obok określonego kształtu ciała (spłaszczonego u Cassidinae, pokrytego kolcami u Hispinae), do pasywnych przystosowań obronnych należą zaliczyć również trujące właściwości, jakie wykazuje hemolimfa prawie wszystkich, jeżeli nie wszystkich Chrysomelidae. Największą zainteresowania budziły trujące właściwości larw i postaci dorosłych stonki ziemniaczanej w okresie jej ekspansji w Ameryce i pierwszych pojawów w Europie. Tematowi temu poświęcono szereg prac i wzmianek (Irwin 1869, Deyrolle 1874, Riley 1875, 1876, Park 1877, Grote i Kayser 1876, Kunze 1880). Jest rzeczą znaną, że zarówno larwy, jak i dorosłe osobniki chrząszczy stonkowatych, są omijane przez większość owadożernych w Europie. Tematowi temu poświęcono szereg prac i wzmianek (Irwin 1869, Deyrolle 1874, Riley 1875, 1876, Park 1877, Grote i Kayser 1876, Kunze 1880). Jest rzeczą znaną, że zarówno larwy, jak i dorosłe osobniki chrząszczy stonkowatych, są omijane przez większości owadożernych kręgowców (Gerstacecker 1869, Riley 1890). Znane są też przypadki zatrucia bydła, pasącego się wiosną na brzegach wód lub karmionego sienek z tzw. łąk kwaśnych w latach obfitego pojawu gatunków z pod-
rodziny Donaciinae (Osterloff 1884). Niemniej, istnieją zwierzęta odporne na zatrucia nimi, a nawet takie, dla których Chrysomelidae stanowią główne pożywienie. Przykładem może być tutaj jaszczurka Lacerta lepida Daudin, żyjąca na wybrzeżach Morza Śródziemnego i żywiąca się głównie gatunkiem Timarcha nicaensis Villa (Müller 1953).

Doświadczenia wykazały, że hemolimfa omawianych owadów, podawana różnym kręgowcom podskórnie, miała o wiele silniejsze działanie toksyczne niż domieszana do pożywienia i niektórzy autorzy (Jolivet 1946) kwestionowali na tej podstawie obronny charakter jej trujących właściwości.

Te trujące właściwości hemolimfa Chrysomelidae zawdzięcza obecności różnych substancji, głównie kantarydyny; często spotykane są także estry kwasu salicylowego i aldehyd salicylowy (Pavan 1953), specyficzne enzymy (Berlese 1925) oraz toksalbuminy, których działanie może być niezwykle gwałtowne (Schinz 1894). Wiąże się z tym zastosowanie hemolimfy larw stonkowatych z rodzajów Clacocera Hoppe i Diamphidia Gerst, a zwłaszcza gatunku D. simplex Pering (Alticinae), do zatruwania strzał przez Buszmenów. Pierwszy opis techniki zatruwania strzał hemolimfą larw dał Le Vaillant (1790) i później ten temat ten podejmowało jeszcze wielu entomologów; z ważniejszych publikacji należy wymienić prace Kolbego (1894), Starcke’a (1897) i Wellmana (1907).

Wyniki tych, a także i późniejszych badań, w syntetyzującym artykule przeglądem zebrał Jolivet (1968a).

Do aktywnych reakcji obronnych należy zaliczyć sposób zachowania się owadów dorosłych przy ich niepokojeniu, a polegający na nagłym opuszczeniu miejsca żerowania. Liczne gatunki, zwłaszcza z podrodzin Cryptocephalinae i Eumolpinae, w razie zaniepokojenia podkurczają nogi i spadają z rośliny żywicielskiej na ziemię, a susówki (Alticinae) skaczą, nieraz na znaczną odległość.

Innym typem reakcji obronnej jest wydzielanie hemolimfy (autohaemorrhoe). To zjawisko znane jest od bardzo dawna zwłaszcza w odniesieniu do godnie — Timarcha Latr., właśnie dzięki niemu noszących we Francji ludową nazwę crache-sang. Wydzielanie hemolimfy było obserwowane i badane przez licznych autorów i pierwotnie sądzono, że płyn obronny jest produkowany przez specjalne gruczoły (Bono 1889), wydobywa się on bowiem nie z otworu gębowego, a z otworów polowych na podgląd. Jako hemolimfa został on zidentyfikowany przez Cuenota (1894) i bardzo szczegółowo zbadany pod względem chemicznym i cytologicznym przez Hollande’a (1911). Późniejsze badania (Carlier i Evans 1911, Hollande 1926) wykazały, że wydzielana na zewnątrz hemolimfa pochodzi częściowo z gruczołów ślinowych, a częściowo ze ściany przygardzielowej części przełyku. W ten sposób znalazły potwierdzenie obydwie, pierwotnie sprzeczne hipotezy: jedna, o gruczołowym pochodzeniu płynu obronnego, a druga, że jest to forma samorzutnego krwawienia.

Oprócz hemolimfy wiele gatunków, zwłaszcza większych rozmiarami ciała, wydziela z otworu gębowego w celach obronnych brunatny płyn o gryzącym

http://rcin.org.pl
zapachu, pochodzący z przedniej części przewodu pokarmowego. Bliższych badań nad jego naturą nie prowadzono, a w piśmiennictwie bywa on określany zazwyczaj jako „treść” lub jako „soki” żołądkowe. Wydzieleniu owego płynu towarzyszy niekiedy także opisywane wyżej wydzielenie hemolimfy z podgębia (JOLIVET 1946).

U larw gatunków z plemion Phaedonini i Gonioctenini (Chrysomelinae) występują po grzbietowej stronie ciała dwa szeregi specjalnych brodawek, które mają zdolność wycinania się na zewnątrz z równoczesnym wydzieleniem kropelki hemolimfy. Budowa tych gruczołów, dokładnie opisanych po raz pierwszy przez CLAUSA (1861), była przedmiotem osobnego, szczegółowego studium anatomiczno-histologicznego (GARB 1915).

Ze specyficznych przystosowań lokomocjowych, oprócz zdolności do skakania u dorosłych osobników susówek — Alticinae, należy wspomnieć przyssawkę, której rolę u larw większości podrodzin pełni ostatni segment odwłoka. Jest zrozumiałe, że stracenie mało ruchliwej larwy np. z gałęzi drzewa na ziemię wybitnie zmniejsza szansę jej przeżycia, chociażby tylko wskutek powstania dłuższej przerwy w żerowaniu. Toteż wspomniana przyssawka jest najlepiej rozwinięta u larw egzofagicznych, a zwłaszcza nadrzewnych, których dzięki niej ani najsilniejszy wiatr, ani najbardziej nawalny deszcz nie jest w stanie strącić z liścia rośliny żywicielskiej. Szczegółowe studium nad budową tego pomocniczego narządu lokomocjnego przeprowadził na przykładzie kilku gatunków Chrysomelidae BRASS (1914).

Przystosowania sygnałowe u chrząszczy słoneczkowych są — jak się zdaje* — ograniczone tylko do zjawisk chemoreceptyjnych (węchowych) i to skutecznych jedynie na małą odległość. Żadnych prac na ten temat dotychczas nie prowadzono, można jednak przyjąć za pewne, że w okresie godowym partnerzy odnajdują się przy pomocy węchu i emisji feromonów. Natomiast istnienieubarwienia określany jako „godowe” np. u Cassida murraea LINN. lub u Chrysomela vigintipunctata (SCOP.) (por. rozdz. 2, str. 11), a polegającego na występowaniu pomarańczowego tła pokryw w miejsce zielonkawego lub słomkowego (SCHULZE 1912), można interpretować nie tyle jako czynnik wabiący, ile jedynie jako prosty skutek przesykania hemolimfy i ciała tłuszczowego karotenoidami, których zapas zostaje później zużyty w procesie gametogenezy.

Niektóre gatunki z podrodzin Criocerinae, Clytrinae i Hispinae potrafią wydawać skrzypiące dźwięki (stridulato), powstające przy pocieraniu o siebie zesklerotyzowanych części ciała, opatrzonych odpowiednimi ząbkami lub listewkami. Najgłośniejsze dźwięki wydają przedstawiciele podrodziny Criocerinae, czemu zawdzięczają ludowe nazwy w różnych językach, jak np. niemieckie „Lilienhähnchen” lub „Zirpkäfer”, czeską „chřestovniček”, czy polskie „skrzypionka” lub „poskrzypka”. Ich „śpiew” powstaje przy pocieraniu trzech ostatnich segmentów odwłoka o brzeg pokryw, co doświadczalnie stwierdził Löw (1866). Przedstawiciele podrodziny Clytrinae wydają dźwięki pocierające żąbkowane listewki umieszczone na nogach drugiej pary o źródłach, a podrodziny

30

http://rcin.org.pl
Hispinae — pocierając tył głowy o przednią krawędź przedplecza (Gaihan 1900). Obydwa ostatnie przykłady dotyczą chrząszczy pozaeuropejskich.

Zjawisko strydulacji zostanie bliżej omówione na przykładzie podrodziny Criocerinae na str. 185-186.

5. BIONOMIA

Rozwój osobniczy Chrysomelidae obejmuje stadia larwy, jaja, poczwarki i owada dorosłego. Moment przepoczwarczenia jest poprzedzony krótszym (parugodzinnym) lub dłuższym (kilku- a nawet kilkunastodniowym) okresem, w czasie którego dorosła larwa, nie liniejąc, przestaje pobierać pokarm i nie-ruchomieje. Okres ten bywa nazywany stadium przedpoczwarki (praepupa), o tyle niesłusznie, że nie jest on od końcowej fazy stadium larwalnego oddzielony osobnym linieniem. Ogromna większość gatunków jest jajorodna, żyworodność (viviparitas) lub jajożyworodność (ovoviviparitas) stwierdzono dotychczas tylko u nielicznych gatunków z podrodziny Chrysomelinae.

Jaja zostają złożone najczęściej na powierzchni rośliny żywicielskiej bądź przy szyjce korzeniowej, gdy larwy żyją przy podziemnych częściach rośliny, bądź na łodygach lub liściach, gdy żywią się mięsistym zieleniem. Gatunki nietkmeofilne oraz te, których larwy żywią się obumarłymi częściami roślin (Clytrinae, Cryptocephalinae) składają jaja do gleby. Gatunki, których larwy żyją wewnątrz łodyg lub owoców, zwykle wprowadzają jaja na pewną głębokość w tkankę rośliny, wyciąwszy uprzednio żuwaczki odpowiedni otwór.

Liczba okresów wzrostowych larw wynosi u podrodziny Cassidinae pięć, u niektórych Chrysomelinae cztery (Brown 1977), a u wszystkich pozostałych podrodzin — trzy. Liczba pokoleń w roku może być różna i nie zawsze stanowi cechę gatunkową. W klimacie Europy środkowej większość gatunków ma jedno pokolenie w roku, a stosunkowo nieliczna grupa gatunków — dwa pokolenia. W hodowli, przy korzystnych warunkach termicznych i obfitości pokarmu, wiele gatunków może dać kilka pokoleń w roku.

U znacznej, a prawdopodobnie przeważającej liczby gatunków przystąpienie do procesu rozrodu (produkcji gamet, kopulacji i składania jaj) jest uzależnione od określonych czynników środowiskowych. Zależności te poznane są tylko fragmentarycznie, a ich nieznajomość stanowi główną przyczynę niepowodzeń w hodowli tych owadów. Przykładem takich wymagań może być osiągnięcie określonego stopnia dojrzałości jakichś części rośliny macierzystej — np. zawiązanie nasion Anthriscus silvestris Linn. dla gatunku Chrysolina oricalca (Müll.), określoną temperaturę otoczenia — np. nie wyższa niż +5°C dla gatunku Psylliodes napi (Fabr.), odbycie wielomiesięcznej głodówki — np. u Gonioctena ruifipes (De Geer) itp. Liczne gatunki odbywają w stadium owada dorosłego diapauzę letnią, opisywaną jako „odrętwienie” lub „letarg” (Kolbe 1899).
U gatunków krajowych mających jedno pokolenie w roku — a te stanowią w naszej faunie znaczną większość — cykl rozwojowy jest skorelowany z sezonowymi zmianami klimatycznymi. Różnych wariantów cyklu rozwojowego w sensie fenologicznym jest co najmniej kilkanaście, lecz *Ghrysomelidae* można podzielić na dwie podstawowe grupy bionomiczne: gatunki zimujące jako imago oraz gatunki zimujące w stadiach przedimaginalnych.

Gatunki zimujące jako imago wychodzą z poczwarek późnym latem lub jesienią i większość z nich dojrzałość piciową osiąga w ciągu zimy. Wiosną, po złożeniu jaj, owady giną, a larwy żerują przez lato, by jesienią dać nowe pokolenie postaci dorosłych. Gatunki zimujące w stadiach przedimaginalnych pojawiają się później, zwykle dopiero pod koniec maja, a do rozrodu przystępują w pełni lata. U wielu gatunków cykl ten jest przesunięty mocno ku jesieni; należą tutaj na przykład *Longitarsus gracilis* Kutsch. lub *L. jacobeae* Waterh., u których okres składania jaj przeciąga się nieraz do grudnia. Obserwacje prowadzone nad larwami przedstawicieli podrodzin *Clytrinae* i *Cryptocephalinae* wykazały u niektórych gatunków dwuletni cykl rozwojowy (Kanervo 1939). Nie wiadomo jednakże, czy i w jakim stopniu stanowi to u badanych gatunków regułę.

Długość życia owadów dorosłych może być bardzo różna, lecz w zasadzie giną one wkrótce po zakończeniu czynności rozrodczych, tzn. samece po kopulacji, samice po złożeniu wszystkich jaj. Według obserwacji LüHManna (1940) niektóre gatunki mogą w postaci owada dorosłego przeżyć kilka lat; wydaje się jednak, że są to przypadki wyjątkowe i odnoszą się zapewne do osobników bezплодnych. Również za wyjątkowe należy uznać obserwowane przez Venturiego (1942) zjawisko dwukrotnego składania jaj, w ciągu dwóch kolejnych lat, przez samice *Lema melanopus* (Linn.). Z pewnością nie były to dwa odrębne
okresy rozrodu, trudno sobie bowiem wyobrazić powrót narządów rozrodczych do wyjściowego stadium niedojrzałości, lecz jeden okres, przerwany przez jakieś zjawiska zewnętrzne, jak np. przez brak pokarmu spowodowany suszą, przedwczesne chłody itp.

6. AUTOEKOLOGIA I STRUKTURA POPULACJI

Postaci imaginable chrząszczy stonkowatych żywią się głównie lub wyłącznie mięścikem zieleniowym roślin naczyniowych i w Europie tylko nieliczne gatunki z rodzajów Donacia Fabr., Plateumaris Thoms., Orsodacne Latr. i Cryptoccephalus Müller zjadają pylek, a niekiedy także i inne części kwiatów.

Spektrum pokarmowe gatunków żywiących się liśćmi jest zwykle ograniczone do kilku rodzajów roślin, rzadziej poszerzone na całą rodzinę botaniczną lub obejmujące kilka roślin z różnych rodzin. Chrysomelidae są więc typowymi oligofagami; spotykane w piśmiennictwie dane o wielożerności niektórych gatunków wymagają sprawdzenia i zapewne ulegną poważnym korektom. Istnienia prawdziwej monofagii, tzn. przywiązania wyłącznie do jednego gatunku rośliny żywicielskiej, dotychczas nie udowodniono. W faunie środkowoeuropejskiej da się co prawda naliczyć około 30 gatunków żerujących tylko na jednym gatunku rośliny żywicielskiej, lecz przyczyną tego może być niewystępowanie na tym obszarze roślin dostatecznie blisko spokrewnionych z rośliną macierzystą. Dużo światła na to zagadnienie rzucają badania polskich entomologów, prowadzone w ogrodach botanicznych (Kamiński 1936, Bartkowska 1977).

Allotrofia daje się stwierdzić niekiedy w warunkach sztucznych lub przy braku właściwego pokarmu; występują wówczas zjawiska tzw. żeru zastępczego, żeru wymuszonego (Warczałowski 1959), a nawet kanibalizmu polegającego na pożeraniu przez samiec złożonych przez siebie jaj (Schumann 1899). Były również opisywane przykłady allotrofii wywołanej płodozmianem. Heikertinger (1925) omawia dokładnie przypadek zniszczenia nowo posadzonego sadu brzoskwiniowego w stanie Virginia (USA) przez gatunek Derocrepis erythropus Mels., będący oligofagiem związanym z roślinami motylkowymi — Papilionaceae. Okazało się wówczas, że przestrzeń przeznaczona pod sad została jeszcze poprzedniego roku odzyskana z nieużytku porośniętego grochodrzewem (Robinia L.), rośliną żywicielską D. erythropus.

Fakty spotykania określonych gatunków chrząszczy stonkowatych na określonych roślinach znane są od dawna, a wiele nazw nadanych jeszcze przez Linnéusza potwierdza trafność obserwacji ekologicznych poczynionych przez przyrodników XVIII stulecia. Przykładami mogą być takie nazwy, jak Criocoris asparagi (Linn.), Gastrophysa polygoni (Linn.), Prasocuris phellandrii (Linn.), Pyrrhalta nymphaeae (Linn.) lub Psylliodes hyoscyami (Linn.), a także wiele nazw nadanych przez innych autorów z tego okresu, jak Schrank (1781, 1798) czy Marsham (1802).
Dane dotyczące roślin żywicielskich są od połowy XIX stulecia regularnie przytaczane w znacznej części opracowań faunistycznych. Liczba tych danych, zarejestrowanych w piśmiennictwie naukowym, jest ogromna, w większości są to jednak powtórzenia stałych samych obserwacji i dla poszczególnych gatunków chrząszczy wykazy roślin żywicielskich rzadko tylko przekraczają kilkanaście pozycji. Wykazy te w odniesieniu do gatunków niezbyt rzadkich można traktować jako kompletne, jednakże nie wszystkie dane są rzetelne i znaczna ich część wymaga jeszcze sprawdzenia i sprostowań. Specjalistą szczególnie zasłużonym przy porządkowaniu tych danych w odniesieniu do podrodziny Alticinae był austriacki entomolog Franz Heikertinger. Ustalению spektrów pokarmowych tych owadów poświęcił on 15-letni cykl obserwacji, wyniki których ogłosił w osobnej pracy (1924, 1925, 1926).

Środowiska bytowania larw są o wiele bardziej zróżnicowane (wyrośla, zbiorowiska wodne, gleba, wnętrze tkanek roślinnych, ściółka, mrowiska, powierzchnia liści roślin) i w części szczegółowej zostaną omówione przy poszczególnych gatunkach.

Rys. 81. Gromadne żerowanie larw Phratora vitellinae (Link.) (oryg.).

W odniesieniu do postaci imaginalnych populacje chrząszczy stonkowatych, mimo gromadnego zazwyczaj ich występowania, nie wykazują żadnej integracji. Pewnych cech wspólnego działania można doszukiwać się u niektórych larw egzofagicznych np. z rodzaju Phratora Redt. w I i II stadium wzrostowym.

http://rcin.org.pl
Larwy te wylęgają się ze złoża jaj równocześnie i żerują zwałą tyralierą, stykając się ze sobą bokami ciała (rys. 81). U gatunku Gonioctena rufipes (DE GEER) obserwowano specyficzny sposób zachowania się samicy, który można by interpretować jako opiekę sprawowaną nad złożem jaj i wylęgłymi z niego młodymi larwami (LÜHMANN 1940). Być może, że przejawów życia zbiorowego u omawianych chrząszczy jest więcej, lecz systematycznych obserwacji nad ich zachowaniem się w warunkach naturalnych dotychczas nie prowadzono.

7. SYNEKOLOGIA

Jako typowe fitofagi Chrysomelidae zajmują w łańcuchach troficznych biozespołów drugi szebel, zaraz po samożywnych roślinach zieleniowych, co dotyczy również gatunków żyjących się w stadium larwalnym obumarłymi częściami roślin (Cryptocephalinae). Ta okoliczność bardzo upraszcza badania synekologiczne nad tą grupą owadów i czyni z niej doskonały wskaźnik przy próbach konstrukcji systemów zoosocjologicznych.

8. WYBRANE ZAGADNIENIA Z CYTOLOGII I GENETYKI

W ostatnich latach podjęto w kilku ośrodkach (w Finlandii, Hiszpanii i USA) badania kariologiczne nad chrząszczami stonkowatymi, próbując wykorzystać liczbę i kształt chromosomów do wyświetlenia rozwoju filogenetycznego na szczeblu rodzajowym. Sama koncepcja tych badań ma w zasadzie charakter tradycyjny, gdyż forma kariotypu jest zwykle traktowana jako jeszcze jedna cecha morfologiczna, przydatna do przeprowadzania analizy porównawczej. Badanie kariotypów chrząszczy natrafia na znaczne trudności techniczne
związane z jednej strony z istnieniem w ciele owadów licznych wyspecjalizowanych komórek poliploidalnych (np. enocytów), a z drugiej z koniecznością natrafienia na komórki diploidalne w stadium metafazy, co wynik badania uzależnia w znacznej mierze od przypadku. Metodą stosunkowo najpewniejszą jest sporządzanie preparatów kariologicznych z jąder samców; przy sporządzaniu preparatów z części ciała samic niepowodzenia zdarzają się o wiele częściej. W przypadkach, gdy badania prowadzone są na pojedynczych okazach rdzakich gatunków o nieznanej bionomii, nieudanie się preparatu kariologicznego może na wiele lat odsunąć możliwość przebadania takiego gatunku. Toteż w ostatnich latach wdrożono metodę polegającą na traktowaniu komórek zwojowych kolchicyną, co wielokrotnie zwiększa szansę uzyskania preparatu przydatnego do badania kariotypu i uniezależnia badacza od takich czynników, jak płć osobnika lub faza cyklu gametogenezy.

Już wstępne badania ujawniły ogromne różnice wśród kariotypów różnych gatunków chrząszczy stonkowatych, przy równoczesnym braku wyraźnych korelacji między przynależnością system atyczną badanego gatunku a rodzajem kariotypu i liczbą chromosomów. Pod tym względem Chrysomelidae różnią się znacznie od innych chrząszczy, gdzie w obrębie rodziny panuje zazwyczaj jeden tylko typ formuły kariotypowej, a odstępstwa od tego są raczej nieliczne.

Badania Smitha (1953, 1960) wykazały, że najczęstszą i zarazem najpierwotniejszą formułą kariotypową u chrząszczy z podrodzaju Polyphaga jest 9AA + Xyp, można ją więc u tych owadów traktować jako typową i jedynie u chrząszczy stonkowatych, przynajmniej na podstawie wyników dotychczasowych badań, liczby typowej wyznaczyć się nie da. Wprawdzie liczbami haploidalnymi autosomów są najczęściej 9, 10 i 11, wiele jest jednak gatunków o liczbie znacznie wyższej, dochodzącej u Aulacophora femoralis (Motsch.) do 29 (Smith 1960). Rządziej spotyka się przypadki redukcji tej liczby; w skrajnym przypadku gatunku Homoschema nigriventre Jac. wynosi ona trzy (2n = 8); jest to w rzędzie chrząszczy w ogóle najmniejsza stwierdzona dotychczas liczba chromosomów (Virkki i Purcell 1965).

Chromosomalna determinacja płci występuje u chrząszczy stanowiących niemal we wszystkich znanych wariantach, wilecząc w to także partenogenezę stanowiącą efekt procesu poliploidyzacji. Najczęściej spotyka się typy AA + XO oraz AA + Xyp, u którego w metafazie pierwszego podziału meiotycznego chromosomy x : y tworzą kompleks przypominający kształtem spadochron („parachute form”), uwidoczniiony na rys. 82. Obok tych dwóch typów determinacji płci występują i inne, jak np. typ AA + xy u rodzaju Altica Fabr., a także wielokrotnie chromosomy płciowe jak np. AA + J + I + V u gatunków Omophrita clerica (Br).

Motschi wykazano dwa typy determinacji płci (AA + XO oraz Xyp), a liczba haploidalna autosomów waha się u różnych gatunków od 11 do 23.

Przedmiotem osobnych badań stał się ostatnio procentowy stosunek samców i samiec („sex ratio”) w populacjach różnych gatunków, gdyż zdaniem wielu badaczy wyświetlenie przyczyn dysproporcji płci może rzucić dużo światła na procesy mikroewolucji. Podejrzewa się na przykład związek między zjawiskiem przewagi liczbowej samiec a stopniem rozchwiania stabilności genomu u gatunków wikariujących (WHITE 1969). Ogromna większość poznanych dotychczas Chrysomelidae rozmnaża się biseksualnie i stwierdzana proporcja płci wynosi najczęściej 1:1. W kolekcjach entomologicznych stosunek ten często przechyla się na korzyść samiec, co wynika z faktu, że okres ich pojawu jest zwykle o wiele dłuższy, a płoehliwość w okresie składania jaj mniejsza, aniżeli u samców. Istnieją jednak gatunki, gdzie we wszystkich stadiach rozwojowych liczba samiec stale wielokrotnie przewyższa liczbę samców, a nawet takie, gdzie samce należą do rzadkości. Prób wyjaśnienia przyczyn tego zjawiska dotychczas nie podejmowano i jedynie LÜHLMANN (1949) uporządkował całość problemu w sensie fenomenologicznym. Speśród średkowo- i południowoeuropejskich gatunków Chrysomelidae, u których stwierdza się znaczną przewagę liczbową samiec, należy wymienić gatunki: Adoxus obscurus (LINN.), Phyllobrotica adusta (CREUTZ.), Exosoma lusitanicum (LINN.), Altica quercetorum (Foudr.), A. oleracea (LINN.) i A. lythri Guér. Liczba chromosomów u tych gatunków nie była dotychczas przedmiotem badań; być może zresztą, że przyczyny dysproporcji płci są u różnych gatunków różne i nie muszą być koniecznie związane z mutacjami na szczeblu genomu. Wydaje się, że na skalę gatunku znaczną rolę może tutaj odegrać proces powstawania całych populacji poliploidalnych, rozmnażających się partenogenetycznie. Na przykład, wstępne obserwacje prowadzone przez autora nad Adoxus obscurus (LINN.) wskazują wyraźnie na proces poliploidyzacji tego gatunku w późnocych częściach arealu jego rozsiedlenia, lub też — co bardziej prawdopodobne — na silniejszą ekspancję poliploidów ku północy (WARCHAŁOWSKI 1977b). Istnieje tutaj pełna analogia...
do niektórych innych chrząszczy roślinozębnych, jak np. ryjkowca *Otiorrhynchus dubius* GERM. (Kühn 1961).

Na obecnym etapie badań dane z zakresu genetyki i cytologii chrząszczy stonkowatych mają niemal wyłącznie charakter oderwanych przyczynków i ze względu na małą liczbę przebadanych gatunków wciąż jeszcze nie nadają się do wyciągnięcia wniosków uogólniających.

9. FILOGENEZA I UKŁAD SYSTEMATYCZNY

Na podstawie danych, jakimi dysponuje dzisiejsza nauka, hipotetyczny przebieg ewolucji chrząszczy stonkowatych można przedstawić jak następuje.

W drugiej połowie ery mezozoicznej, w środkowej lub górnej jurze, wyodrębniała się grupa chrząszczy roślinozębnych, których wspólnymi cechami było znaczne skrócenie czwartego członu stóp, szczeciniaste lub nitkowate czułki, obecność dwóch kolców na końcu goleni, obecność listewki na bocznej krawędzi przedplecza oraz brak tendencji do wydłużania czoła i nadustka. Larwy tych owadów rozwijały się wewnątrz tkanki roślin, zapewne w drewnie. Cechy te odnajdujemy u dzisiejszych prymitywnych *Cerambycidae* oraz u górnolurowe. zamieszkujących *Protoscelis jurassica* Medvedev. Z końcem jury i na początku kredy, jako następstwo szybkiego różnicowania się świata roślinnego, u omawianych owadów pojawiły się tendencje adaptacyjne, które przez okres górnjej
kredy i paleocenu doprowadziły do wytworzenia głównych kierunków specjalizacji.

Najbardziej konserwatywna grupa pozostała przy drążeniu korytarzy w zdrewniałych tkankach roślin; byli to przodkowie dzisiejszych chrząszczy kózkowatych — Cerambycidae. Grupa bardziej progresywna przystosowała się stopniowo do rozwoju w tkance zapasowej oraz w niezdrewniałych łodygach roślin zielnych. Pierwsze z nich to dzisiejsze strąkowce — Bruchidae, drugie to najprymitywniejsze ze stonkowatych — Sagrinae.

Larwy Sagrinae, zapewne tak jak i dzisiaj, żyły w wyroślach na łodygach roślin macierzystych, a dalsza ich ewolucja posłała w kierunku adaptacji do żerowania w różnych częściach roślin: w dolnej części łodygi, a z czasem na zanurzonych częściach roślin wodnych (Donaciinae), w łodygach (Orsodacninae), w korzeniach, a następnie na zewnątrz nich w glebie (Synetinae–Eumolpinae), wreszcie w mikswie zieleniowym liści (Zeugophorinae). Inne wyszły na powierzchnię rośliny żywicielskiej, dając początek dwóm liniom egzofagicznym. Pierwsza z nich to linia Criocerinae–†Aulacoscelinae–Chrysomelinae–Galerucinae, której najmłodszsze odgolenienie (Alticinae), zachowując egzofagię, zeszło do gleby, gdzie larwy obgryzają korzenie. Druga przystosowała się do swobodnego bytowania na powierzchni gleby i w ściółce, wykazując tendencje specjalizacyjne w dwóch kierunkach: mirmekofilii (Clytrinae) i saprofagii (Cryptocephalinae). Te grupy, jako najbardziej narażone na ataki drobnych bezkręgowców, wytworzyły twardą, trwałą osłonkę larwalną (scatoconcha), którą zachowały ich młodsze odgolenienia, wtórnie przystosowane do żerowania na liściach (Lamprosomatinae i Chlamisinae).

Opisany przebieg rozwoju Chrysomelidae przedstawiono w postaci hipotezy roboczej. Brak materiałów kopalnych nie pozwala nawet w przybliżeniu datować rozgałęzień kladogramu, toteż przedstawiony schemat należy traktować jedynie jako ilustrację hipotezy roboczej.

39

http://rcin.org.pl
Rys. 83. Hipotetyczny przebieg rozwoju rodzowego rodziny *Chrysomelidae* (oryg.). Liczby oznaczają dominujący lub wyłączny w danej podrodzinie typ specjalizacji (dla form kopalnych — przypuszczalny) w stadium larwy: 1 — ceclidobionty, 2 — hydrobionty, 3 — endofagi, 4 — ryzofagi, 5 — egzofagi, 6 — edafobionty (mirmekofile i saprobionty).
Po uwzględnieniu zmian wprowadzonych do układu systematycznego przez Chůjó (1952) i Edwardsa (1953) rodzina Chrysomelidae liczy dzisiaj 19 podrodzin, zgrupowanych w cztery grupy pomocnicze:

I. Pomoocnicza grupa podrodzin Eupoda:
 1. Sagrinae
 2. Donaciinae
 3. Megalopodinae
 4. Orsodacninae
 5. Synetinae
 6. Zeugophorinae
 7. Criocerinae
 8. Aulacoscelinae

II. Pomoocnicza grupa podrodzin Camptosomata:
 9. Megascelinae
 10. Clytrinae
 11. Cryptocoephalinae
 12. Clilamisinae

III. Pomoocnicza grupa podrodzin Cyclica:
 13. Lamprosomatinae
 14. Eumolpinae
 15. Chrysomelinae
 16. Galerucinae
 17. Alticinae

IV. Pomoocnicza grupa podrodzin Cryptostoma:
 18. Hispinae
 19. Cassidinae

W odniesieniu do podrodzin Chrysomelinae i Galerucinae bywa ponadto stosowany podział na plemiona, co zostanie bliżej przedstawione przy omawianiu podrodzin pomocniczej grupy Cyclica.

10. ROZMIESZCZENIE GEOGRAFICZNE

Archaiczne formy chrząszczy stonkowatych, których liczne cechy odnajdujemy u dzisiejszych Sagrinae, a częściowo i u pozostałych Eupoda, powstały w związku z rozwojem i różnicowaniem się roślinności jawnopłciowej. Okres, w którym ta grupa owadów oddzieliła się ostatecznie od pozostałych Cerambycoidea, przypada prawdopodobnie na górną jurę, w pełni rozwoju roślin nagonasiennych (Gymnospermophytina), a zwłaszcza sagowców (Cycadopsida), wymarłych bennettytów (Bennettitales), milorzębów (Ginkgopsida) oraz szpilkowych (Coniferopsida).

Analiza dzisiejszego rozsiedlenia podrodziny Sagrinae każe ją zaliczyć do elementu paleantarktycznego według podziału Jeannela (1961), a miejsca jej powstania szukać na kontynencie australijskim, gdzie zapewne znajdowała

http://rcin.org.pl
się kolebka dzisiejszych *Chrysomelidae*, a być może i całej nadrodziny *Cerambycoidea*. Jeanneł do elementu paleantarctycznego zalicza formy wspólne dla lądów Ameryki Południowej, południowej Afryki oraz Australii. *Sagrinae* istotnie wykazują taki właśnie typ rozsiedlenia: na 15 recentnych rodzajów 12 występuje w Australii, jeden na Madagaskarze, jeden zasiedla szeroko afry-

kańską i azjatycką strefę tropikalną oraz jeden — Amerykę Południową.

Podana wyżej hipoteza o pierwotnej lokalizacji centrum rozsiedlenia najstarszych chrząszczy stonkowatych jest zgodna z nowoczesnymi poglądami na stosunkie paleogeograficzne późnego mezozoiku (rys. 84). Natomiast w następnych okresach geologicznych obraz rozsiedlenia późniejszych, bardziej już zróżnicowanych form *Chrysomelidae* rozmywa się i nie pozwala nawet w ogólnych zarysach wskazać szlaków migracji, które doprowadziły do ich obecnego,

Na ogromne trudności napotyka się przy analizie rozsiedlenia kosmopolitycznych plemion i rodzajów, których w rodzinie stonkowatych jest bardzo dużo. Porównanie danych paleogeograficznych z przesłankami pozwalającymi oszacować wiek omawianych grup systematycznych (szczątki kopalne, dane paleobotaniczne) prowadzi tutaj często do paradoksalnej konkluzji, że poszczególne plemiona i rodzaje chrząszczy stonkowatych, już po swym ostatecznym wyodrębnieniu się i uformowaniu, „przeskoczyły” ponad oceanem na odległe kontynenty. Taka konkluzja jest, rzecz prosta, nie do przyjęcia; przy obecnym stanie wiedzy nie da się jednak rozstrzygnąć, które z danych wyjściowych są błędne. Te kłopoty pogłębia okoliczność, że owe kosmopolityczne rodzaje należą głównie do podrodzin młodych (*Eumolpinae*, *Alticinae*, *Lamprosomatinae*, *Cassidinae*), wyodrębnionych w każdym razie nie wcześniej, niż w eocenie (rys. 85), a więc w czasie, gdy już od dawna nie mogła być mowy

o połączeniu lądowym Ameryki Południowej z Afryką, a tym bardziej z Australia. Próby cofnięcia procesu wyodrębniania się dzisiejszych rodzajów aż do dolnej kredy, kiedy istniała jeszcze ciągłość kontynentalna na Obszarze Paleantarktycznym, nie wchodzą w rachubę; nie tylko wymagałyby one ryzy-

kownego podważania zasady korelacji procesów ewolucyjnych roślin i fito-
fagów, lecz przede wszystkim nie znalazłyby potwierdzenia w istniejącym ma-
teriale kopalnym.

W strefach klimatu umiarkowanego półkuli północnej zasadniczy wpływ na rozsiedlenie chrząszczy stonkowatych miał przebieg migracji postglacjalnych. Proces przesuwania się stref roślinności i równoległy do niego proces kształt-

Rys. 86. Strefy roślinne w okresie złodowacenia würmskiego (oryg.). Oznaczenia: zaczerwone — arborealne refugium śródziemnomorskie, zakratkowane — lasy iglaste, skośnie zakreskowane — obszary tundry subarktycznej, białe — złodowacenia.
wania się fauny został poznany najlepiej w odniesieniu do terytorium Europy. W okresie ostatniego (würmskiego) zlodowacenia przebieg stref roślinnych przedstawiał się w przybliżeniu tak, jak na rys. 86. Ciepłolubna flora i fauna, które w ostatnim interglacjale zasiedlały terytoria Europy Środkowej, zostały zepchnięte na wybrzeża Morza Śródziemnego; cały jego basen tworzył tzw. śródziemnomorskie makrorefugium arborealne. Na wschód od niego leżały dwa znacznie mniejsze, również arborealne, makrorefugia: kaspiajskie, obejmujące Krym, Abchazję, przedgórza Kaukazu i południowe wybrzeża Morza Kaspijskiego, oraz syryjskie, leżące na terytorium półwyspu Synaj, Libanu, Jordanii, Mezopotamii i na północnych wybrzeżach Zatoki Perskiej. Makro-refugium śródziemnomorskie bywa dzielone na 9 subrefugiiów, z których trzy leżały na kontynencie europejskim. Były to refugia iberyjskie, adriatyckie i pontyjskie (rys. 87). Odgrywały one i nadal odgrywają rolę rezerwuarów, z których, w miarę ocieplania się klimatu środkowej części Europy, poszczególne

Rys. 87. Arborealne refugia plejstoceńskie zachodniej Palearktyki (wg de Lattina 1957).
gatunki i całe biozespoły reemigrują do obszarów opuszczonych na okres zlodowacenia (rys. 88).

Warto tutaj zwrócić uwagę, że zespoły zwierzęce strefy lasów mieszanych i strefy lasów iglastych (tajgi) dzielą tylko zmienne różnice jakościowe. Gatunki specyficzne wyłącznie dla strefy lasów iglastych stanowią drobny odsetek w bio-

Rys. 88. Szlaki reemigracji postglacjalnej z subrefugium pontyjskiego (wg WARCHALOWSKIEGO 1976).

zespołach tej strefy, gdyż ogromną przewagę liczbową mają tutaj gatunki występujące również w strefie lasów mieszanych. Toteż w Eurazji zwierzęta związane z tymi dwiema strefami roślinności stanowią — zarówno w sensie ekologicznym, jak i biogeograficznym — wspólny element zoogeograficzny, zwany elementem europejsko-syberyjskim, a obejmujący liczne formy eurytopowe o bardzo rozległych obszarach rozsiedlenia. Element europejsko-syberyjski przetrwał zlodowacenia plejstoceńskie nie w jednym, a w kilku co najmniej makrorefugiach, toteż w stosunku do niego wpływ centrów rozsiedlenia mani-
festuje się szczególnie wyraźnie, bądź na szczeblu odmiany (u gatunków polimorficznych), bądź podgatunku. Element europejsko-syberyjski stanowi trzon fauny Chrysomelidae na wielkich przestrzeniach Syberii i Nizu Euro­pejskiego, a więc i Polski, gdzie należy do niego około 50% gatunków krajo­wych.

Drugą wielką grupą, obejmującą około 35% krajowych gatunków, repre­zentuje element pontyjski. Ekologiczna rola tego elementu, szczególnie interesują­cego w badaniach zoogeograficznych, jest jednakże nieporównanie mniejsza niż rola elementu europejsko-syberyjskiego. Nie należy się sugerować dużą liczbą należących tutaj gatunków, występują one bowiem z reguły na niewielkich przestrzeniach a większość z nich to gatunki u nas rzadkie lub znane z nielicz­nych, nierzaz nawet pojedynczych okazów.

Trzecią co do liczebności grupą, obejmującą w Polsce około 8% gatunków, stanowią przedstawiciele elementu borealnego i borealno-alpejskiego. Wszystkie one osiągają znaczną gęstość populacji w Fennoskandii i mniej lub bardziej zwartym zasięgiem wkraczają na obszary północnych dzielnic Polski. Dalej ku południowi trafiają się na niewielkich połaciach, którymi z reguły są bagna i torfowiska. W górach jedne z nich wykazują wyraźny wzrost gęstości popu­lacji, drugie bywają spotykane tylko sporadycznie, inne wreszcie do siedlisk górskich nie wnikają. Należy dodać, że u gatunków o tym typie rozsiedlenia dysjunkcje borealno-alpejskie mogą mieć charakter antropogeniczny wskutek zméliorowania torfowisk i obszarów podmokłych, będących na nizinach ich właściwym biotopem. Toteż zdecydowane przyszerżegowanie poszczególnych gatunków do jednego z tych dwóch elementów nie zawsze jest możliwe.

Ostatnią ważną grupą, obejmującą pozostałe 7% gatunków krajowych chrząszczy stonkowatych są przedstawiciele fauny górskiej, tzn. elementu orealnego. Z zoogeograficznego punktu widzenia jest ona o tyle interesująca, że składa się w większości z gatunków stanowiących relikt preglacjalny, nie­koniecznie pamiętających czasy przedplejstoceńskie, ale z pewnością zasiedla­jących nasze góry w interglacjach. Są to — jeżeli ograniczyć przykład do ostatniego zlodowacenia — gatunki w górach autochtomiczne, które na okres pessimum klimatycznego migrowały stosunkowo niedaleko, zapewne na obszar Niziny Węgierskiej, pokrytej wówczas lasami (rys. 86).

Przedstawiciele innych elementów biogeograficznych w faunie Chrysome­lidae Polski nie występują, jeżeli nie liczyć stonki ziemienniczej — Leptinotarsa decemlineata (Say), zawleczonej spoza obszaru Palearktyki.

W nawiązaniu do badań nad rozsiedleniem chrząszczy stonkowatych należy tutaj zwrócić uwagę na fakt, że w pracach z zakresu biogeografii poświęconych historii powstawania i rozpowszechniania się organizmów, coraz szersze zasto­sowanie znajduje metoda analizy rozsiedlenia różnych fenotypów (aberracji, odmian, mutantów) gatunków polimorficznych (Timofeev-Ressovsky 1940, De Lattin 1959, Kühn 1961). Badania te wymagają obfitego i bardzo rzetelnie etykietowanego materiału faunistycznego, toteż dla miłośników przyrody,
a zwłaszcza dla osób gromadzących kolekcje amatorskie, otwiera się tutaj możliwość wniesienia prawdziwie wartościowego wkładu do postępu nauki. W przyszłości bowiem, kiedy wyniki badań faunistycznych zetkną się z wynikami badań cytogenetycznych, tzn. gdy powstaną mapy chromosomowe owych polimorficznych gatunków oraz jasny obraz rozsiedlenia poszczególnych odmian, otworzą się możliwości dla syntez i głębszego wniknięcia w mechanizmy ewolucyjne na skalę rodziny. Jednakże, na obecnym etapie badań faunistyka gromadzi głównie dane chorologiczne dotyczące rozsiedlenia, gdyż dla precyzyjnego określenia areałów gatunkowych danych takich wciąż jeszcze jest o wiele za mało.

W niniejszym opracowaniu dla większości omówionych gatunków dołączono mapki przedstawiające zasięgi obszarów ich rozsiedlenia w Europie, lub w zachodniej części Obszaru Palearktycznego. W północnej, zachodniej i środkowej części Europy granice areałów wyznaczono przeważnie metodą łączenia skrajnych stanowisk; na pozostałych obszarach przebieg tych granic ma charakter jedynie orientacyjny. Na mapkach wprowadzono jednolite oznaczenia:

- obszary zaczernione — stwierdzone lub domniemane areały rozsiedlenia zwartego
- kółko nie zaczernione — stanowiska wątpliwe, tzn. kwestionowane przez innych autorów lub nie potwierdzone od kilkudziesięciu lat
- kółko zaczernione — stanowiska leżące poza zasięgiem rozsiedlenia zwartego
- kółko białe — przykładowo wybrane stanowiska istotne dla rozważań co do przebiegu granic areału
- szereg kropek — ekstrapolacja granic areału na obszarach wodnych
- linia ze strzałką — przypuszczalny kierunek dalszego przebiegu granic areału

11. ZNACZENIE GOSPODARCZE

Około 100 gatunków żeruje w naszym kraju na uprawnych roślinach zielnych, a drugie 100 gatunków na drzewach i krzewach uprawianych lub eksploatowanych przez człowieka. Wszystkie one stanowią grupę potencjalnych szkodników, mogących w przypadku zaburzenia równowagi biocenotycznej spowodować straty gospodarcze. Liczba szkodników rzeczywistych, które stale pochodzą poważniejsze straty i są przedmiotem zorganizowanego zwalczania, jest jednak o wiele skromniejsza i w Polsce obejmuje około 20 gatunków.

Na zbożach jako szkodniki występują Chaetocnema aridula (Gyll.) i Ch. hortensis (Geoffr.), których larwy żyją wewnątrz źdźbła, nie dopuszczając do wytworzenia kłosa. Należy tutaj wymienić jeszcze gatunek Lema melanopus (Linn.), którego larwy współz owadami dorosłymi żerują na liściach zbóż, doprowadzając niekiedy do usychania całych roślin.

Na ziemniakach występuje jeden z najgroźniejszych szkodników rolnych, stonek ziemniaczana — Leptinotarsa decemlineata (Say). Jej larwy żerują wraz z owadami dorosłymi na liściach ziemniaków, powodując przy masowym wystąpieniu tzw. gołożer, czyli zniszczenie wszystkich liści opadniętej rośliny. W ostat-
nim trzydziestoleciu stonka ziemniaczana wywiera duży wpływ na zmiany zachodzące w strukturze rolnictwa europejskiego. Powodowane przez nią straty oraz koszty jej zwalczania znacznie obniżają opłacalność uprawy ziemniaków w wielu krajach, działając tym samym na korzyść upraw konkurujących z ziemniakiem, a zwłaszcza kukurydzy.

Na burakach pastewnych i cukrowych, a niekiedy także na gryce i szpinaku poważne szkody wyrządzaą *Chaetocnema concinna* (MARSH.) oraz tarczyk mgławy — *Cassida nebulosa* LINN. Oba te gatunki są szczególnie groźne wiosną, po pierwszej przerywce buraków, kiedy intensywny żer chrząszczy i ich larw może doprowadzić do zamierania całych roślin.

Na uprawach roślin z rodziny krzyżowych jako groźne szkodniki występują skaczące chrząszcze z podrodziny *Alticinae*. Są to przede wszystkim *Psylliodes chrysocephala* (LINN.) oraz przedstawiciele rodzaju *Phyllotreta* STEPH.: *Ph. atra* (FABR.), *Ph. cruciferae* (GOEZE), *Ph. nemorum* (LINN.), *Ph. nigripes* (FABR.), *Ph. undulata* KUTSCH. i *Ph. vittata* (FABR.). Wymienione gatunki zimują jako imago i wiosną atakują siewki i młodą rozsadę na polach rzepaku jarego, brukwii oraz kapusty, a w ogrodach wszystkie warzywa z rodziny krzyżowych. Młode roślinki zostają często uszkodzone w takim stopniu, że staje się niezbędne ponowne przeprowadzenie siewu lub przepikowanie rozsady. W późniejszym okresie, gdy rośliny wytworzą już dużą masę liści, żer wymienionych szkodników przy normalnym nasileniu ich występowania przestaje być niebezpieczny. Na uprawach chrzanu duże spustoszenia czyni *Phaedon cochleariae* (FABR.). Daje on zwykle dwa pokolenia w ciągu okresu wegetacyjnego, a owady dorosłe, żerując wespół z larwami na liściach, potrafią je całkowicie pozbawić miękiszu, pozostawiając samo unerwienie.

W ogrodach warzywnych i owocowych sporadycznie wyrządzają szkody także inne gatunki chrząszczy stonkowatych. Najczęściej są to poskrzypki — *Crioceris asparagi* (LINN.) i *C. duodecimpunctata* (LINN.) na szparagach, *Lilior Ceris merdigera* (LINN.) na cebuli, namalinka — *Batophila rubi* (PAYK.) na malinach i poziomkach ogrodowych oraz wielożerny gatunek *Galeruca tanaceti* (LINN.) na fasoli i sałacie.

Na lnie wyrządzają szkody *Aphthona euphorbiae* (SCHRANK) i *Longitarsus parvulus* (PAYK.). Larwy obgryzają korzenie lnu, co powoduje obumieranie części roślin zwłaszcza w okresie suszy; żer owadów dorosłych jest natomiast szczególnie niebezpieczny dla roślin młodych. Na roślinach starszych szkody polegają nie tylko na osłabieniu rośliny, lecz także na pogorszeniu wartości technicznej i handlowej włókna.

Na konopiach żyje *Psylliodes attenuata* (Koch), którego larwy żerują na korzeniach, a owady dorosłe na liściach. Na obszarach masowego występowania tego szkodnika zbiory nasion i słomy konopnej mogą spadać do połowy wysokości plonów normalnych.

Istnieją też liczne gatunki uszkadzające uprawne rośliny lecznicze i ozdobne; w obu tych przypadkach straty polegają nie na ubytku masy roślin, lecz przede
wszystkim na obniżeniu ich wartości handlowej. Z bardziej znanych szkodników należą tutaj Lilioceris lilii (Linn.) żyjący na liściach, Podagrica fuscicornis (Linn.) na malwach, Longitarsus succineus (Foudr.) na chrzanach i innych roślinach ozdobnych z rodziny żółciowych oraz Longitarsus lycopi (Foudr.) i Cassida viridis (Linn.) na mięcie pieprzowym.

W uprawach leśnych do szkodników zalicza się tylko kilka gatunków, z których Agelastica alni (Linn.) i Chrysomela aenea Linn. żerują na ełszach, Galeruella luteola Müll. na jesionach oraz Lochmaea caprae (Linn.) na brzozech i wierzbach. Ponadto poważne szkody w szkółkach i młodnikach topolowych wyrządzają niewielkie gatunki z rodzaju Chrysomela Linn., a na uprawach wikliny koszykarskiej gatunki z rodzajów Crepidodera Chevr. i Phratora Chevr.

12. METODY ZBIERANIA, KONSERWOWANIA I HODOWLI

Okazy dorosłe chrząszczy stonkowatych można zbierać różnymi metodami i przez cały rok, jednakże metodą ilościowo najwydajniejszą jest czerpakowanie roślin zielnych oraz otrząsanie krzewów w okresie wegetacji roślin, co dla niżo­wych dzielnic Polski w normalne pod względem rozkładu temperatur lata przypada na okres od końca kwietnia do końca października. Wcześniej, w kwietniu, a nawet w ciepłe dni marca, pojawiają się owady wywabione wiosennym słońcem z zimowych kryjówek, są to jednak głównie gatunki pospolite, łatwe

1 Do tego miejsca tekst jest nieznacznie tylko zmienionym powtórzeniem treści rozdziału „Znaczenie gospodarcze” z części wstępnej klucza do oznaczania chrząszczy stonkowatych Polski (Warchałowski 1971, str. 12–13).
do zbierania w znacznie większej liczbie z końcem lata i pod względem faunistycznym zwykle mało interesujące.

Do łowienia postaci imaginalnych stosuje się zwykle przybory entomologiczne: czerpak, sito, parasol lub płachtę i ekshaustor. Najwygodniejszym

kształtem ramy czerpaka jest półkole (rys. 90), to bowiem umożliwia zgarnianie owadów z niskich darni i muraw. Worek czerpaka powinien być uszyty z mocnego, białego płótna stylonowego, które nie tak prędko przeciera się w użyciu. Dla ochrony brzegów wlotu worka, które najszybciej ulegają przetarciu, niektórzy entomolodzy nie nawlekają go na ramę, lecz przywiązuja do niej przy pomocy kilkunastu krótkich troczków (tasiemek), przystosowanych do przetarcia. Worek czerpaka powinien być uszyty z mocnego, białego płótna stylonowego, które nie tak prędko przeciera się w użyciu. Dla ochrony brzegów wlotu worka, które najszybciej ulegają przetarciu, niektórzy entomolodzy nie nawlekają go na ramę, lecz przywiązuja do niej przy pomocy kilkunastu krótkich troczków (tasiemek), przystosowanych do przetarcia. Worek czerpaka powinien być uszyty z mocnego, białego płótna stylonowego, które nie tak prędko przeciera się w użyciu. Dla ochrony brzegów wlotu worka, które najszybciej ulegają przetarciu, niektórzy entomolodzy nie nawlekają go na ramę, lecz przywiązuja do niej przy pomocy kilkunastu krótkich troczków (tasiemek), przystosowanych do przetarcia.
się na odsiew wtórny w laboratorium, na zwykłym siatku sortowniczym o oczkach 7-8 mm. Sporządzając sito samemu lub zamawiając je w warsztacie, warto ponieść wydatek na siatkę mosiężną, gdyż siatka stalowa, nawet ocynkowana lub pobielana, pracując w warunkach wysokiej wilgotności i intensywnego ocierania twardymi cząsteczkami gleby, szybko zostaje zniszczona przez korozję.

Ekshaustor (rys. 91) najprościej wykonać z poliestrowego cylinderka, jednego lub dwóch przewierconych korków gumowych, dwóch kawałków sztywnej rurki o średnicy wewnętrznej 6-7 mm i wężyka gumowego z ustnikiem. Szcze­gleń¹ istotnym jest dostateczna długość wężyka gumowego, która musi pozwalać na sięgnięcie ekshaustorem po owada siedzącego w głębi krzewu lub ponad głową zbierającego. Rutka wlotowa ekshaustora powinna być przero­czysta, szklana lub lepiej poliestrowa, by nie przesłaniała łowionego owada i umożliwiała obserwację jego zassania do wnętrza.

Parasol entomologiczny, do którego strząsa się owady z krzewów i drzew, sporządza się ze zwykłego, dużego, raczej nie składanego parasola, przez wszycie od spodu białej podszewki osłaniającej druty i zapobiegającej wpadaniu pod nie owadów. Parasol powinien być możliwie duży i mieć zagietą rączkę, za którą wiesza się go na otrząsaną gałęzi. W braku parasola można się posłużyć rozpiętą na dwóch drążkach płachtą z płótna, cienkiej ceraty lub białej folii, o wymiarach około 100 x 100 cm. Taka płachta jest o tyle mniej wygodna od parasola, że musi ją pod otrząsaną gałęzią trzymać oburącz druga osoba i że nie służy tak jak parasol skuteczną ochroną w razie niespodziewanego deszczu.

Obfitość, a zwłaszcza skład gatunkowy materiału, zależy nie tyle od zastosowanej metody odłowu, co od znajomości środowisk bytowania i roślin żywicielskich, a także od właściwego wyboru pory roku i dnia. Szczegółowy wykaz środowisk z podaniem najwłaściwszych okresów odłowu znajduje się na stronach 16-18 w ogólnej części klucza do oznaczania chrząszczy stonkowatych Polski (Warchałowski 1971).

Najkorzystniejszym typem pogody do łowienia tych owadów są dni poch­murne, ciepłe i bezwietrzne, gdyż stonkowane żerują wówczas na szczytach ziół oraz na najbardziej zewnętrznych, łatwo dostępnych gałązkach krzewów. Zarówno słońce, jak wiatr i opady zmuszają chrząszcze do przeniesienia się na niżej położone części roślin lub pod liście odziomkowe, gdzie wyszukiwanie ich jest bardzo utrudnione. Przy zbity niskich temperaturach nie żerują, lecz kryją się w glebie, gdzie praktycznie są już nie do odszukania.

Przy łowieniu chrząszczy stonkowatych należy mieć na uwadze ich płochliwość; większość gatunków przy nieostrożnym zbliżaniu się człowieka podkurcz w nogi i spada na ziemię, a przedstawiciele podrodziny Alticinae skaczą, spadając w trawę lub w ścieśykę nieraz dość daleko od rośliny żywicielskiej. Przy upalnej, bezwietrznej pogodzie płochliwość ich jest największa i ogromnie utrudnia zwłaszcza zbiór gatunków żerujących na krzewach.

Technika łowienia larw jest o wiele bardziej zróżnicowana. Najłatwiejszymi
do zbierania są larwy egzofagiczne gatunków z podrodzin *Criocerinae*, *Chrysomelinae* i *Cassidinae*, a także części podrodziny *Galerucinae* oraz rodzaju *Altica* Fabr. Tutaj jedyną racjonalną metodą jest zbieranie larw ręką, gdyż znajomość rośliny macierzystej nie tylko ułatwia oznaczenie larwy, ale w wielu przypadkach stanowi cechę rozstrzygającą. Larwy zdejmuje się z liści, chwytać je ostronie palecami. Jeszcze lepiej jest oderwać liść i wraz z larwą włożyć do małej próbówki zatkaną tamponem z waty lub — przy krótszych wycieczkach — zwykły korkiem. Dobre usługi oddają w terenie nożyczki, którymi wycina się z blaszki liściowej wąski pasek wraz z siedzącą na nim larwą i taki pasek wsuwa do próbówki.

Larwy stosunkowo nielicznych gatunków minujących zbiera się wraz z liśćmi, a te, które drążą łodygi — wraz z łodygami do puszki botanicznej lub odpowiedniego pudełka.

Larwy gatunków z podrodziny *Donaciinae*, żyjące pod wodą, są już trudniejsze do złowienia. Większość z nich żeruje na łodygach, kłączach i podwodnych korzeniach roślin wodnych, rosnących w pewnej odległości od brzegu i stosunkowo najłatwiej zbierać je z czółna lub po wejściu do wody, wyciągając ostrożnie rośliny i przeglądając je nad powierzchnią wody. Przy czyszczeniu stawów można też wyciągać roślinność grabiami i przeglądanie na brzegu, najlepiej na rozpostartej płachcie z folii.

Najtrudniejsze jest wyszukiwanie larw żyjących w glebie i nie opracowano dotychczas żadnej skutecznej metody ich złowienia. Wykopywanie rośliny wraz z bryłą ziemi i przeglądanie systemu korzeniowego w laboratorium jest metodą żmudną i bardzo mało wydajną, a wszelkie inne sposoby (obkopywanie rośliny i przygotowywanie do złowienia) rzadko kończą się sukcesem. Wydaje się, że jedyną racjonalną metodą poznania tej grupy larw będzie hodowla roślin w laboratorium na substratach, umożliwiających kontrolę systemu korzeniowego.

Zabijanie, preparowanie, przechowywanie i etykietowanie owadów doskonale nie odbiega w niczym od metod standardowych. Krajowych chrząszczy stonkowatych, których długość nigdy nie przekracza 12 mm, nie naszpila się, lecz nakleja na kartoniki. Na te same, lub na osobne, lecz na tę samą szpilkę nabite kartoniki nakleja się po wyprzyniosieniu męskiego narządu kopulacyjnego oraz odwólk, jeżeli był on przy preparacji odjęty, obydwa brzuszną stroną ku górze. Podobnie nakleja się wyprzyniosieną z samiec spermatekę.

Do badań z zakresu morfologii porównawczej często jest konieczne sporządzanie preparatów mikroskopowych całych zesklerotyzowanych narządów (nogi, czułka, części aparatu gębowego, prącice, spermateka). Technika ich przygotowania polega najczęściej na prostym zatopieniu badanego narządu między szklićka mikroskopowe w kropli środka zamykającego (płyn Faure'a, balsam kanadyjski, caedax). Należy zadbać, by z wnętrza narządu znikły uprzednio
pęcherzyki powietrza; korzystne jest również unieruchomienie obiektu na szkiełku przedmiotowym w pozycji ułatwiającej jego badanie, np. za pomocą kropelki białka lub gumy arabskiej. Ważniejsze szczegóły techniki sporządzania preparatów totalnych z zesklerotyzowanych części ciała owadów zawiera praca Warchałowskiego (1977a).

Niewątpliwie większe egzemplarze chrząszczy stonkowatych ulegają w czasie przechowywania w zbiorze przetłuszczeniu, co powoduje sklejanie się włosówków, pociemnienie i nienaturalny wygląd okazu oraz zbrunatnienie kartonika. Ważniejsze szczegóły techniki sporządzania preparatów totalnych z zesklerotyzowanych części ciała owadów zawiera praca Warchałowskiego (1977a).

Niektóre, zwłaszcza większe egzemplarze chrząszczy stonkowatych ulegają w czasie przechowywania w zbiorze przetłuszczeniu, co powoduje sklejanie się włosówków, pociemnienie i nienaturalny wygląd okazu oraz zbrunatnienie kartonika. Takie okazy należy wraz z kartonikiem wrzucić do próbówki i załączyć kilkunastoma mililitrami chloroformu, trójchlorewęglenu („tri”) lub czterochlorewęglenu węgla i próbówkę zagrzeć w gorącej wodzie tak, by rozpuszczalnik doprowadził do słabego wrzenia (temperatura wrzenia chloroformu leży przy 61°C, trójchlorewęglenu przy 70°C, a czterochlorewęglenu węgla przy 77°C). Po paru minutach rozpuszczalnik zlewa się znad okazu, a na jego miejsce nalewa się mocnego, 95% lub lepiej bezwodnego alkoholu i ponownie przez parę minut ogrzewa. Następnie odkleja się okaz przez odmoczenie w wodzie i przenosi na świeży kartonik.

Pochodzące z hodowli lub zebrane w terenie larwy można wrzucić od razu do 70–75% alkoholu etylowego, lecz nie da się wówczas zapobiegać ich skurceniu, co utrudnia późniejsze badanie. Należy przeto zabijać larwy przez wrzucenie do wrzątku i gotować je jeszcze przez chwilę, a dopiero po tym zatapiać w alkoholu. W czasie dłuższych wycieczek, gdy nie ma możliwości gotowania larw, można je przed konserwacją w alkoholu utopić w wodzie. Śmiertelne larwy można poznać po zacieraniu — zwykle w pozycji wyprostowanej — i lekkim napęcznieniu. Zbyt długie pozostawianie w wodzie po utopieniu prowadzi do histolizy i zbytniego nabrzmiewania larw, toteż najpóźniej w 1–2 godziny po śmierci trzeba je przenieść do płynu konserwującego, najlepiej 70–75% alkoholu.

W zależności od rodzaju badań, jakie mają być nad zebranymi larwami prowadzone, sposób ich zabicia i konserwacji może być dwojakim. Metodę opisaną wyżej stosuje się do okazów przeznaczonych do badań morfologii części zesklerotyzowanych. Natomiast przy badaniu topografii i histologii narządów wewnętrznych, larw nie można ani gotować, ani topić w wodzie, lecz należy je zabić przez wrzucenie do utrwalacza, złożonego z 7 części alkoholu, 2 części kwasu octowego lodowatego i 1 części wody. W tym płynie larwy powinny przebywać 1–24 godzin, po czym przenosi się je do 70–75% alkoholu, w którym mogą już pozostać dowolnie długo.

Hodowla chrząszczy stonkowatych, wyjątki podrodziny Clytrinae i Cryptoccephalinae, związana jest zawsze z koniecznością stałego podawania im świeżej karmy bądź w postaci określonych części roślin (zwykle liści), bądź w postaci całej, żywej rośliny i ten drugi przypadek nastręcza najwięcej trudności technicznych. Warunki hodowli muszą być dostosowane do wymagań i trybu życia larw, które pod tym kątem widzenia dzieli się na 6 grup.

http://rcin.org.pl
1. Larwy wodne przedstawicieli podrodziny Donaciinae. Niektóre gatunki hodowano wraz z rośliną macierzystą w akwariach, lecz ogólna metodyka takiej hodowli oczekuje dopiero opracowania.

2. Larwy podrodziny Clytrinae wedle dotychczasowych doświadczeń można hodować tylko w sztucznych mrowiskach (formikariach). Prób takiej hodowli było bardzo niewiele i nie ma w piśmiennictwie żadnych bliższych wskazówek co do jej prowadzenia.

4. Larwy podrodziny CRYPTOCEPHALINAE hodowano również w zwykłych plastikowych pudełkach wyłożonych ligniną. Wybór pokarmów larw z tej grupy zdaje się być mniejsza niż u innych Chrysomelidae. W skądinąd dość ogólnikowych opisach hodowli spotyka się zgodne stwierdzenie, że larwy różnych gatunków rodzaju CRYPTOCEPHALUS MÜLLER żyły się w hodowli bardzo urozmaiconym pokarmem, złożonym ze świeżych i suszonych części różnych roślin, najchętniej jednak zwiédłymi liśćmi leszczyny i zeschłymi płatkami kwiatów róży. Niemniej, z żadnego opisu nie wynika jednoznacznie, by który-ś z hodowców udało się doprowadzić w niewoli cykl rozwojowy do końca, od jaja aż do owada dorosłego.

5. Larwy minujące w liściach i łodygach nie były dotychczas hodowane w niewoli ex ovo. Tutaj utrzymywanie żywych roślin w warunkach kontrolo- wanych stanowi nieuniknioną konieczność. W przypadku rodzaju ZEUGOPHORA KUNZE, którego larwy minują w liściach topól, jest do pomyślenia hodowla w woreczkach z gazy nawleczonych na gałązki drzewa.

6. Larwy żerujące w glebie, gdzie obgryzają korzenie rośliny macierzystej, nie były dotychczas hodowane. Technika utrzymania rośliny przy życiu w taki sposób, by umożliwić obserwację larw i pobieranie z nich poszczególnych oka- zów, oczekuje dopiero opracowania. Te larwy, które trzymają się bliżej szyjki korzeniowej, wnikając do nasad liści lub wgryzając się pod skórkę korzenia, dadzą się hodować bez trudu, jeżeli roślina macierzysta wytwarza dostatecznie

http://rcin.org.pl
grube korzenie, mogące przetrwać w pojemniku parę tygodni nie obumierając. Autorowi udało się w ten sposób hodować gatunek *Phyllotreta armoraciae* (Koch) przez dwa kolejne pokolenia na korzeniach chrzanu, położonych na lekko zwilżonej ligninie w niezbyt szczelnie zamkniętym, plastikowym pudełku.

Opracowanie metodyki i rozwijanie hodowli *Chrysomelidae* w warunkach laboratoryjnych jest — jak wskazuje praktyka — najpewniejszą drogą do uzyskania materiałów porównawczych i poznania szczegółów biologii stadiów przedimaginalnych chrząszczy stonkowatych, toteż wszelkie zdobyte doświadczenia są tutaj szczególnie wartościowe.
II. CZĘŚĆ SZCZEGÓŁOWA

Rodzina *Chrysomelidae* LATREILLE, 1802

Chrysomelinae LATREILLE, 1802: 220.

Phytophaga CHAPUIS, 1874: 1.

Chrząszcze stonkowate — *Chrysomelidae* mają ciało rozmaicie ukształtowane (rys. 1-12), najczęściej jednak krępe, jajowate lub nieco walcowate, długości 1-38 mm (w Polsce 1-12 mm). Głowa nie wyciągnięta w ryjek, dwa szwy gularne zawsze wyraźne. Na czole i policzkach brak zagłębień, w których owad mógłby ułożyć pierwszy człon czułków. Czułki 11-członowe; u bardzo nielicznych rodzajów liczba członów może być zredukowana do 10 lub (u rodzajów pozaeuropejskich) do 9 lub 8. Czułki nigdy nie tworzą buławki ze skróconych członów. Panewka stawowa nasady czułków jest tak zbudowana, że owad może je skierować w bok, w przód (i zaściąć pod spód głowy), lecz nie może ich skierować do tyłu i „położyć po sobie”. Krętarze zawsze obecne. Stopy pozornie czteroczłonowe, trzeci człon rozszerzony i przynajmniej po grzbietowej stronie podzielony na dwa płaty podłużnym rozcięciem, w którym osadzony jest człon pazurkowy.

Klucz do oznaczania podrodzin

Owady dorosłe

1. Ciemię leży po grzbietowej, a czoło po grzbietowej lub przedniej stronie głowy. Narządy gębowe skierowane ku przodowi (prognatyczne — rys. 27) lub w dół (hipognatyczne — rys. 28) ...
Ciemię skierowane ku przódowi, a czoło przesunięte na spodnią stronę głowy. Narządy gębowe skierowane skośnie ku tyłowi (opistognatyczne — rys. 29) .. 18.

2. Panewki stawowe nasady czułków albo zbliżone do siebie i wówczas położone poniżej linii łączącej dolne krawędzie oczu (rys. 97), albo oddalone od siebie i wówczas leżą na linii łączącej dolne krawędzie oczu (rys. 92, 98–100) lub niezbity wysoko ponad nią (rys. 93, 94) .. 3.

Panewki stawowe nasady czułków zbliżone do siebie i położone znacznie powyżej linii łączącej dolne krawędzie oczu, zwykle niemal w połowie wysokości oka (rys. 95) lub ponad nią (rys. 96) .. 17.

58

Rys. 92–96. Położenie nasady czułków u przedstawicieli różnych podrodzin (oryg.): 92 — Zeugophora scutellaris Supfr. (Zeugophorinae), 93 — Cryptocephalus sericeus (Linn.) (Cryptocephalinae), 94 — Galeruca tanaceti (Linn.) (Galerucinae), 95 — Chrysomela populi Linn. (Chrysomelinae), 96 — Psylliodes chrysocephala (Linn.) (Alticinae).

Rys. 97–100. Kształt głowy oglądanej prostopadle do powierzchni czoła oraz szerokość rozstawienia nasad czułków (oryg.): 97 — Donacia sp. (Donaciinae), 98 — Zeugophora sp. (Zeugophorinae), 99 — Smaragdina sp. (Clytrinae), 100 — Chrysolina sp. (Chrysomelinae).
pomośnicza grupa podrodzin *Eupoda*

4. Pierwszy sternit odwłoka prawie równie długi jak wszystkie pozostałe sternity mierzzone łącznie, a niekiedy nawet dłuższy (rys. 47) 5.

--- Pierwszy sternit odwłoka zawsze znacznie krótszy od pozostałych sternitów mierzonych łącznie 6.

--- Przednie biodra zbliżone do siebie, nie rozdzielone wyrostkiem przedpiersia (rys. 102). Tylne uda smukłe, zgrubiałe tylko w części środkowej lub przy końcu (maczugowate). Donaciinae (s. 66).

6. Tylne uda nie zgrubiałe, po stronie wewnętrznej gładkie. Czułki dość krótkie, zwykle ku koniec nieco zgrubiałe, nigdy nie piłkowane ... 7.

7. Pazurki nie rozdwojone i zawsze bez zęba u nasady (rys. 103). Criocerinae (s. 185).

--- Pazurki rozdwojone lub z zębem u nasady (rys. 104, 105) 8.

—— Boki przedplecza z wystającym guzkiem lub z 2–3 wyraźnymi ząbkami 9.

—— Boki przedplecza z 2–3 ostrymi ząbkami lub kolcami (rys. 108).

—— Golenie bez kolców na końcu 11.

12. Środkowe sternity nie są pośrodku skrócone lub skrócone tylko nieznacznie (rys. 110). Ogólny zarys ciała nie jest wałeczkowaty. Pokrywy z tyłu wspólnie zaokrąglone, ostatni tergit odwłoka zwykle słabo zesklerotyzowany, nie tworzy pigidium i spod pokryw wystaje jedynie u samic w okresie produkcji jaj 15.

Rys. 106–108. Zarys przedplecza (oryg.): 106 — Orsodacne cerasi (Linn.), 107 — Zeugophora subspinosa (Fabr.), 108 — Syneta betulae (Fabr.).

Rys. 109, 110. Kształt sternitów odwłoka (oryg.): 109 — Clytra quadripunctata (Linn.), 110 — Chrysolina menthastri (Suffr.)
Pomocnicza grupa podrodzin Camptosomata

- Przednie biodra półkuliste lub jajowate, nieco dosunięte od siebie (rys. 112). Czułki różnej długości, nitkowate lub nieco zgrubiałe ku końcom, nigdy nie piłkowane.

- Przedtułów ma po spodniej stronie rynienki, w których owad może ułożyć całe czułki. Czułki bardzo krótkie, nitkowate. Grzbietowa strona ciała bardzo nierówna, pokryta dołkami, guzkami i żeberkami (rys. 5). Gatunki pozaeuropejskie.

14. Szerokość przedplecza z tyłu równa lub prawie równa szerokości nasady pokryw.

- Szerokość przedplecza z tyłu znacznie mniejsza od szerokości nasady pokryw. Gatunki pozaeuropejskie.

Pomocnicza grupa podrodzin Cyclica

- Trzeci człon stóp niekiedy także po stronie spodniej dość głęboko wykrojony, lecz nigdy nie rozcięty aż do nasady (rys. 115). Przednie panewki biodrowe podłużnie owalne, położone poprzecznie względem osi ciała.

Chlamisinae.
16. Po spodniej stronie przedtulowia znajdują się rynienki, w których owad może ułożyć czułki w stanie spoczynku. Podobne rynienki do ułożenia tylnych nóg znajdują się na zatułowiu.

- Spód ciała bez rynienek do układania czułków i tylnych nóg.

17. Tylna uda nie zawierają wewnątrz aparatu Maulika i nigdy nie są wyraźnie grubsze od przednich i środkowych.

- Tylne uda zawierają wewnątrz aparat Maulika (rys. 45) i są niemal u wszystkich (w Europie u wszystkich) gatunków silnie zgrubiałe, znacznie grubsze od przednich i środkowych.

Rys. 113-115. Trzeci człon stóp (oryg.): 113 — Lamprosoma concolor Sturm, 114 — Adoxus obscurus (Linn.), 115 — Chrysolina staphylaea (Linn.).

18. Przedplecze i pokrywy bez bocznych rozszerzeń, u znacznej części gatunków (w Europie u wszystkich) pokryte długimi kolcami. Głowa od góry zawsze widoczna.

- Przedplecze i pokrywy rozszerzone na boki i zwykle silnie przypłaszczone, tworzą rodzaj tarczy, pod którą owad wciągając odnóża. U znacznej części gatunków (w Europie u wszystkich) głowa całkowicie ukryta pod przednim brzegiem przedplecza, od góry niewidoczna (rys. 12).

1. Nóg brak (rys. 73). Warga górna z łuskowatymi wyrostkami na przedniej krawędzi (rys. 357).

- Nogi dobrze rozwinięte. Warga górna bez łuskowatych wyrostków na przedniej krawędzi.

2. Ostatnia para przetchnik przekształcona w ostre, zesklerotyzowane kolce.

1 W odniesieniu do gatunków europejskich stwierdzenie obecności aparatu Maulika jest zbędne, gdyż na tym obszarze nie ma przedstawicieli podrodziny Alticinæ o nie zgrubiałych tylnych udach.

Ostatnia para przetchlinek normalnie wykształcona, nie przekształcona w kolce...4.

—. Przekształcone w kolce przetchlinki krótkie, leżą na dziewiątym segmencie odwłoka. Szwu epikranialnego brak. Larwy minują w liściach. Hispinae.

4. Warga górna, nadustek i czoło nie są oddzielone szwami, lecz tworzą jeden skleryt ... 5.

—. Warga górna, nadustek i czoło oddzielone szwami ... 8.

5. Wypukłe ciemię wyraźnie odgraniczone od płaskiego czoła wzniesioną krawędzią, tzw. listewką ciemieniową. Cryptocephalinae.

—. Ciemię i czoło tworzą wspólną wypukłość, listewki ciemieniowej brak 6.

—. Wyrostek dotykowy na końcu drugiego człona czułków smukły, stożkowaty. Goleniostopa po spodniej stronie bez grubych szczecinek o formie kolca ... 7.

—. U nasady pazurków zęba brak. Goleniostopa po spodniej stronie bez szczecinek lub ze szczecinkami zaostrożonymi na końcu. Lamprosomatinae.

—. Segmenty ciała bez długich wyrostków po bokach .. 9.

—. Przetchlinki z pojedynczym otworem. Odbyt po stronie brzusznej .. 10.

—. Nogi normalnej długości. Goleniostopa, nie licząc pazurka, wcale lub bardzo nieznacznie krótsza od uda. Żuwaczka z co najmniej dwoma zębami na krawędzi tnącej 11.

11. Pazurki z poduszczkowată przylgą (chelonium) po spodniej stronie .. 12.

—. Po każdej stronie głowy jedno oczko lub oczek brak. Czułki dwuczłonowe. Alticinae i Galerucinae.

63

— Czułki jednoczłonowe. Przedni brzeg czoła z czterema szczecinkami. Warga dolna pod spodem bez zesklerotyzowanej listewki.

Eumolpinae.

Synetinae (s. 173).

Przegląd systematyczny gatunków z podrodzin Donaciinae, Orsodacninae, Synetinae, Zeugophorinae i Criocerinae

Rodzina: **Chrysomelidae Latreille, 1802**

Podrodzina: **Donaciinae Kirby, 1837**

Rodzaj: **Macroplea Samouelle, 1819**

1. *Macroplea appendiculata* (Panzer, 1794)

2. *Macroplea mutica* (Fabricius, 1792)

Rodzaj: **Donacia Fabricius, 1775**

3. *Donacia clavipes* Fabricius, 1792

— *Donacia reticulata* Gy llenhal, 1817

4. *Donacia crassipes* Fabricius, 1775

5. *Donacia dentata* Hoppe, 1795

6. *Donacia versicolorea* (Braim, 1790)

— *Donacia polita* Kunze, 1818

7. *Donacia semicuprea* Panzer, 1796

8. *Donacia malinovskyi* Ahrens, 1810

— *Donacia fennica* Paykull, 1800

9. *Donacia sparganii* Ahrens, 1810

10. *Donacia aquatica* (Linnaeus, 1758)

11. *Donacia impressa* Paykull, 1799

— *Donacia springeri* Müller, 1916

12. *Donacia brevicornis* Ahrens, 1810

13. *Donacia marginata* Hoppe, 1795

14. *Donacia bicolora* Zschach, 1788

15. *Donacia obscura* Gy llenhal, 1813

— *Donacia aureocincta* Sahlberg, 1921

16. *Donacia antiqua* Kunze, 1818

— *Donacia brevitaris* Thomson, 1884

17. *Donacia thalassina* Germar, 1811

18. *Donacia vulgaris* Zschach, 1788

19. *Donacia simplex* Fabricius, 1775

20. *Donacia tomentosa* Ahrens, 1810

21. *Donacia cinerea* Herbst, 1784

Rodzaj: **Plateumaris Thomson, 1866**

Podrodzaj: **Plateumaris s. str.**

http://rcin.org.pl
22. Plateumaris (Plateumaris) sericea (Linnaeus, 1761) ... 148
 Podrodzaj: Juliusina Reitter, 1920 .. 153
23. Plateumaris (Plateumaris) discolor (Panzera, 1795) .. 151
24. Plateumaris (Juliusina) bracca (Scopoli, 1772) ... 154
25. Plateumaris (Juliusina) consimilis (Schrank, 1781) ... 157
26. Plateumaris (Juliusina) affinis (Kunze, 1818) ... 160
27. Plateumaris (Juliusina) rustica (Kunze, 1818) ... 162
 Podrodzina: Orsodacninae Thomson, 1866 .. 165
 Rodzaj: Orsodacne Latreille, 1802 .. 167
28. Orsodacne cerasi (Linnaeus, 1758) ... 168
29. Orsodacne lineola (Panzera, 1795) ... 171
 Podrodzina: Synetinae Edwards, 1953 ... 173
 Rodzaj: Syneta Lacordaire, 1845 ... 173
 − Syneta betulae (Fabricius, 1792) ... 174
 Podrodzina: Zeugophorinae Churö, 1952 ... 175
 Rodzaj: Zeugophora Kunze, 1818 ... 176
30. Zeugophora scutellaris Suffrian, 1840 ... 178
31. Zeugophora subspinosa (Fabricius, 1781) ... 180
32. Zeugophora turneri Power, 1863 ... 182
33. Zeugophora flavicollis (Marsham, 1802) .. 183
 Podrodzina: Criocerinae Latreille, 1807 ... 185
 Rodzaj: Lema Fabricius, 1798 ... 189
 Podrodzaj: Lema s. str. .. 190
34. Lema (Lema) cyanella (Linnaeus, 1758) ... 191
 Podrodzaj: Oulema Gozis, 1886 .. 193
35. Lema (Oulema) erichsoni Suffrian, 1841 ... 195
36. Lema (Oulema) septentrionis Weise, 1880 ... 197
 − Lema (Oulema) magistrettiorum Ruffo, 1964 ... 199
37. Lema (Oulema) gallaeciana Heyden, 1870 ... 199
38. Lema (Oulema) tristis (Herbst, 1786) .. 201
 − Lema (Oulema) hoffmannsegni Lacordaire, 1845 ... 203
39. Lema (Oulema) melanopus (Linnaeus, 1758) .. 203
 − Lema (Oulema) rufocyanea Suffrian, 1847 ... 207
 Rodzaj: Crioceris Geoffroy, 1762 ... 208
40. Crioceris duodecimpunctata (Linnaeus, 1758) .. 210
41. Crioceris quatuordecimpunctata (Scopoli, 1763) .. 214
42. Crioceris quinquepunctata (Scopoli, 1763) ... 216
 − Crioceris bicruciata (Sahlberg, 1823) ... 219
 − Crioceris paracenthesis (Linnaeus, 1767) ... 219
43. Crioceris asparagi (Linnaeus, 1758) ... 219
 − Crioceris macilentis Weise, 1880 .. 224
 Rodzaj: Lilioceris Reitter, 1912 .. 225
44. Lilioceris lilii (Scopoli, 1763) .. 227

5 — Chrysomelidae
Podrodzina **Donaciinae** Kirby, 1837 — Rzęsielnice

Donaciidae Kirby, 1837: 222.

Rodzaj typowy: *Donacia Fabricius, 1775*.

Podrodzina rzęsielnic — *Donaciinae* bardzo wyraźnie wyodrębnia się wśród chrząszczy stonkowatych, jako jedyna w tej rodzinie grupa gatunków zaadaptowanych do bytowania w środowisku wodnym, którego bądź nie opuszczają nigdy, bądź jedynie w stadium owada doskonalego. Stopień powiązania ze środowiskiem wodnym nie jest u poszczególnych rodzajów jednakowy. Najślapiej są z nim związane błotnice — *Plateumaris Thoms.*, którym do rozwoju wystarczają zespoły roślinne zalewane wodą okresowo i które składają jaja na wynurzonych częściach roślin błotnych i nadwodnych. Gatunki rodzaju *Donacia Fabr.* związane są już w większości z roślinnością wodną i trzymają się zwykle w pewnym oddaleniu od brzegu. Tylko nieliczne gatunki, jak *D. semicuprea Panz.*, *D. simplex Fabr.* lub *D. bicolora Zschach*, występują na roślinności nadbrzeżnej i błotnej; większość wymaga zbiorników o stałej głębokości powyżej 30 cm. Wszystkie gatunki rodzaju *Donacia Fabr.* składają jaja poniżej poziomu lustra wody lub przynajmniej na częściach roślin omywanych falowaniem. Wreszcie jeziornice — *Macroplea Sam.* spędzają niemal całe życie pod wodą i tam też kopulują, opuszczając zbiornik tylko w razie znacznego pogorszenia się warunków troficznych lub siedliskowych (wyschnięcie, zanieczyszczenie). Wszystkie *Donaciinae* mają dobrze rozwinięte skrzydła drugiej pary i potrafią latać, większość gatunków czyni to jednak bardzo niechętnie.

Znaczne zainteresowanie tą podrodziną, która praktycznie nie ma żadnego znaczenia gospodarczego, posiada kilka źródeł. Po pierwsze, są to owady dość duże, co nie tylko ułatwia ich obserwację w terenie, ale czyni ją wǳięcznym obiektom innych badań, np. anatomicznych lub fizjologicznych. Po wtoře, stanowią one grupę owadów bardzo zwartą w sensie ekologicznym, o intry-
gającym trybie życia, nie spotykanym w innych podrodzinach. Po trzecie, ich rozsiedlenie głównie w strefie klimatu umiarkowanego pozwoliło stosunkowo szybko uporać się z podstawowymi problemami ich systematyki i taksonomii, a to z kolei umożliwiło wczesne i obfite zgromadzenie danych faunistycznych oraz materiałów porównawczych w kolekcjach, otwierając drogę dla innych badań. Dla rozwoju prac nad nimi nie bez znaczenia była też okoliczność, że do tej właśnie podrodziny należy stosunkowo duża liczba gatunków kopalnych, których dotychczas opisano ponad trzydzieści.

Recentnych gatunków należy do podrodziny Donaciinae około 140. Są one zebrane w sześć rodzajów, z których najbogatszym (około 100 gatunków) i najszerzej rozsiedlonym jest rodzaj Donacia FABR. Rodzaj ten był wyraźnie wyodrębniony już u progu trzeciorzędu, bowiem właśnie do niego zaliczono większość najstarszych, eoceńskich szczątków Donaciinae.

Szczegóły rozwoju osobniczego rzęsielnic pozostawały nieznane stosunkowo długo. LINNEUSZ (1758) wspomina o znalezieniu poczwarki Donacia aquatica (Linn.), przyczepionej do korzeni kropidła wodnego Phellandrium aquaticum Linn. (= Oenanthe aquatica Linn.). Tę samą informację cytuje LATREILLE (1804a) dodając uwagę ogólną, że larwy rzęsielnic żerują prawdopodobnie wewnątrz łodyg roślin wodnych. Pierwszy opis larwy znajduje się u AHRENSA (1810), lecz dokładniejsze dane o stadiach przedimaginalnych Donaciinae i ich życiu zdobyto dopiero w czterdziestych i pięćdziesiątych latach zeszłego stulecia (AUBÉ 1840, KÖLLIKER 1842, MULSANT 1847, PERRIS 1848, HEEGER 1854). W ślad za obserwacjami życia i przeobrażenia rzęsielnic oraz obok wciąż jeszcze powierzchownych opisów larw i poczwarek, od drugiej połowy XIX wieku zaczynają się rozwijać badania nad mechaniką ich podwodnego oddychania (SCHMIDT-SCHWEDT 1888, 1890, DEWITZ 1888, DEIBEL 1911), anatomią szczegółową (SANDERSON 1900), embriologią (HIRSCHLER 1906, 1909) oraz symbiozą z bakteriami (STAMMER 1935a, b).

Mimo stosunkowo niewielkiej liczby należących tutaj gatunków oraz niezwykle licznych opracowań o charakterze przyczynkowym, Donaciinae nie doczekały się gruntowniejszego opracowania monograficznego w ujęciu klasyfikacyjnym, które by obejmowało ich morfologię, taksonomię, układ systematyczny i rozsiedlenie bodaj w odniesieniu do gatunków zachodniej Palearktyki. Na przestrzeni niemal dwustu lat poświęconych badaniom tej grupy powstało tylko kilka prac o charakterze syntetycznym. Należą tutaj obok monografii AHRENSA (1810) odpowiednio rozdziały w dziełach LACORDAIRE’a (1845, 1848) i WEISSEGO (1881) oraz, w odniesieniu do gatunków północnecamerykańskich, monograficzne opracowanie SCHAEFFERA (1925).

Najwybitniejszym współczesnym znawcą systematyki rzęsielnic był zmarły niedawno niemiecki specjalista Hans GOECKE. Rozpoczął on opracowanie monografii tej podrodziny, lecz zdołał zakończyć jedynie część dotyczącą form kopalnych (1943) oraz wykaz piśmiennictwa przedmiotowego (1941, 1964), obejmujący ponad 1400 pozycji. Ponadto, na podstawie istniejącego piśmienni-

Morfologia. Progynatyczne położenie narządów gębowych, dość szeroka, z tyłu przewężona głowa, wąskie, nieco cylindryczne przedplecze oraz wydłużone pokrywy o wydatnych guzach barkowych nadają rzeźbieniuem znaczne podobieństwo do niektórych chrząszczy kózkowatych — Cerambycidae. Długość ciała gatunków krajowych waha się od 4,5 mm u Macrolepia mutica (Fabr.) do 12 mm u Donacia clavipes Fabr., a bezwzględne wartości dla podrodziny zawierają się w przedziale od 3 mm u Macrolepia japana Jac. do 13 mm u orientalnych gatunków z rodzaju Sominella Jacobs.

Głowa tak szeroka jak przedplecze lub tylko nieznacznie węższa, wzdłuż czoła zawsze biegnie wyraźna, zazwyczaj głęboko nacięta brudzka środkowa, oczy okrągłe lub owalne. Czułki nitkowate lub nieco cieńsze ku końcom, pierwszy człon zawsze grubszy od pozostałych, nieco zwężony ku nasadzie, drugi człon zawsze najkrótszy. Przedplecze oglądane od góry w ogólnym zarysie czworokątne, w przedniej części po bokach guzowato uwypuklone. Krawędzi bocznych brak, krawędzie przednia i tylna zawsze obwiedzione wąską listewką. Środkiem grzbietowej strony przedplecza biegnie brudzka lub rynienka, która zwykle nie dosięga ani przedniej ani tylnej krawędzi. Tarczka dość duża, trójkątna, jedwabiście owłosiona. Pokrywy z dziesięcioma rządami punktów, jedenasty, skrócony rząd (series umbilicata) znajduje się koło tarczki. U znacznej części gatunków z rodzaju Donacia Fabr., a także u niektórych pozaeuropejskich gatunków z innych rodzajów, na powierzchni pokryw znajdują się charakterystyczne, płytkie wekis. Końce pokryw zwykle tępó obcięte lub nawet wykrojone (rys. 164, 167, 168), a u rodzaju Macrolepia Sam. wyciągnięte w ostry, nieco na zewnątrz skierowany wyrostek (rys. 137, 141). U rodzaju Plateumaris Thoms. wewnętrzna krawędź szwu w tylnej części pokryw przebiega nie w płaszczyźnie strzałkowej, a ukośnie (rys. 132) i jest widoczna od góry. Druga para skrzydeł zawsze obecna; mają one liczne cechy prymitywne (rys. 133), potwierdzające słuszność lokalizacji rzęsielnic u podstawy systemu, tuż za Sagrinae, najbardziej archaiczną ze znanych podrodzin chrząszczy stonkowatych (patrz rozdział „Budowa zewnętrzna i anatomia owadów dorosłych”, s. 9).

Przedpierście, w odróżnieniu od podrodziny Sagrinae, nie tworzy wzniesionej listwy, przejrzadzającej przednie biodra (rys. 102); śród- i zapiersie silnie zesklerotyzowane, płaskie lub słabo wypukłe. Brzuszna strona odwłoka posiada cechę spotykaną jedynie u podrodzin Sagrinae i Donaciinae. Jest nią znaczna

http://rcin.org.pl
długość trzeciego (pozornie pierwszego) sternitu, która często dorównuje, a niekiedy nawet przewyższa długość pozostałych czterech widocznych sternitów mierzonych łącznie (rys. 47). Spodnia strona ciała jest pokryta jedwabięstnym, przylegającym owłosieniem, którego obecność wiąże się ze sposobem oddychania tych owadów pod wodą (Krogh 1941). Umożliwia ono powstanie tzw. piastronu, czyli cienkiej powłoki gazowej wokół ciała owada, do której otwierają się przechinki. Nogi smukłe (Macroplea Sam., Donacia Fabr.) lub mocniejsze i krótsze (Plateumaris Thom.). Tylna uda mniej lub bardziej zgrubiałe, często opatrzane po wewnętrznej stronie jednym lub dwoma kolecami, którym mogą towarzyszyć dodatkowo drobne ząbki lub karbki; niekiedy, jak np. u gatunków Donacia crassipes Fabr. lub D. claripes Fabr. tylna uda są bardzo wydłużone, maczugowate (rys. 150). U rodzaju Macroplea Sam. trzeci człon stóp nie jest ani rozszczepiony, ani dwupłatowy (rys. 129), co stanowi jedyną wyjątk w rodzinie Chrysomelidae. Prącie u rodzajów Donacia Fabr. i Plateumaris Thom. silnie zgięte, o długiej części podstawowej, paramery po stronie grzbietowej zrośnięte (typ zupełnego narządu kopulacyjnego, por. str. 18, rys. 51). Silnie zesklerotyzowana i zwykle ciemno zabarwiona część przewodu wytryskowego (praepenis), ukryta wewnątrz tubularnej części prącia, ma u różnych gatunków rozmaity kształt i Nyholm (1950) cechę tę próbował wykorzystać do identyfikacji niektórych gatunków rodzaju Donacia.

Z narządów wewnętrznych najbardziej wyróżniającą się budowę mają u rzęsielnic cewki Malpighiego (rys. 122). Cztery z nich, dłuższe, pełnią funkcje wydalnicze, natomiast dwie pozostałe, krótsze, są przetworzone do narządu sekretorycznego, u larw produkujący substancję do budowy kokonu poczwarcowego, a u dorosłych samiec przystosowany do namazania bakterii symbiontycznych (Stammer 1935a, b). Drugą osobliwą cechą jest uwolnienie dystalnych końców cewek, które nie wrastają pod tunica propria jelita tylnego, lecz leżą swobodnie w jamie ciała. Jest to jedynie odstępstwo od kryptonefridii w rodzinie Chrysomelidae, w piśmiennictwie zgodnie interpretowane jako jedno z przystosowań rzęsielnic do wodnego trybu życia.

Namazanie bakterii symbiontycznych odbywa się już w stadium larwalnym, w specjalnych czterech wózkach wychodzących z jelitka jelita środkowego, które u dorosłej larwy osiągają pokaźne rozmiary (rys. 116). Rozwój tych wózków w okresie embrionalnym badał Hirschler (1906). Później bakterie zostają przeniesione do obydwóch zgrubiałych, sekretorycznych cewek Malpighiego, które swój ostateczny kształt (rys. 122) osiągają u samca dopiero po opuszczeniu przez nie kokonu poczwarcowego. U sameczek w stadium larwalnym wychylki jelita środkowego są niewielkie, a para sekretorycznych cewek Malpighiego nie zmienia swego wyglądu w okresie metamorfozy (rys. 123). Przekazywanie bakterii symbiontycznych potomstwu odbywa się w sposób następujący. Każde ze składanych przez samicy jaj zostaje otozone ochronną warstwą pienistej, twardniejącej w wodzie wydzielin. Wewnątrz niej, na tym biegunie jaja, przy którym znajdzie się głowa przyszłej larwy,
już w trakcie formowania otoczki zostaje zatopiona porcja bakterii, którą na świeżo złożonym jaju można zwykle dostrzec jako rozmytą, ciemniejszą plamkę. Wychodząca z jaja larwa w tym właśnie miejscu przegryza się przez warstwę ochronną i w ten sposób bakterie dostają się do jej przewodu pokarmowego, by w uchyłkach jelita środkowego od nowa rozpocząć cykl namnażania.

Larwy białe lub białawe, odbiegające kształtem od typu kampodealnego wskutek skrócenia odnóży tułowiowych i małych — w porównaniu do reszty ciała — wymiarów głowy (rys. 124). Przetchlinek jest dziewięć par, znajdują się one na przedtułowiu oraz na pierwszych ośmiu segmentach odwłoka. Ostatnia para przetchlinek jest przekształcona w dwa charakterystyczne kolce, zwane niekiedy pazurkami oddechowymi (rys. 125, 126), które larwa wbija w tkankę rośliny i w ten sposób czerpie tlen z jej przewodów powietrznych. Pozostałe przetchlinki są okrągłe, o prostej budowie.

Mimo znacznego podobieństwa zewnętrznego, larwy różnych gatunków Donaciinae różnią się wystarzającą wyraźnie między sobą szczegółami budowy aparatu gębowego oraz chetotaksją tułowia i odwłoka. Do najważniejszych cech diagnostycznych należą: kształt żuwaczki, położenie i liczba szczecinek brzeżnych na wardze górnej oraz położenie i wygląd pól szczecionośnych na tergitach (rzadziej na sternitach) tułowia i odwłoka.

Integument larw Donaciinae na powierzchni segmentów tułowia i odwłoka nie wytwarza wyraźnych, szczecionośnych sklerytów, lecz pola pokryte mikrochetami. W porównaniu do larw Galerucinae i Alticinae (rys. 80) chetotaksja larw Donaciinae jest bardzo uproszczona. Po stronie grzbietowej, na poszczegól-nych tergitach tułowia i odwłoka szczecinki układają się w dwie poprzeczne smugi: przednią — pretergalną i tylną — posttergalną; na zewnątrz od nich, po bokach, leżą zwykle dwie grupy szczecinek: jedna położona nad przetchlinką — supraspirakularna i jedna pod przetchlinką — subspirakularna (rys 127). Po stronie brzusznej pola szczecionośne leżące pośrodku sternitów tułowia,
między wzgórkami biodrowymi, noszą nazwę pól interkalarnych, a leżące pośrodku sternitów odwłoka — pól sternalnych; wreszcie pola szczecionośne leżące po bokach strony brzusznnej noszą nazwę pól pleuralnych.

Bionomia. Jaja, zwykle owalne, bladożółte lub bursztynowe, zostają złożone do pochew liściowych lub na inne części roślin; samica często wygryza uprzednio żuwaczkami odpowiednią bruzdę, wewnątrz której dopiero przytwierdza jaja. Jaja w złożu rozmieszczone są najczęściej linearnie (rys. 119), niekiedy w dwóch rzędach (rys. 120). Okres inkubacji w większości obserwanych przypadków wynosi 10–14 dni.

Larwa, okryta śluzowatą otoczką, prowadzi tryb życia bardzo nieruchawy. Usadawia się ona na korzeniu, klaczu lub podwodnej części łodygi rośliny żywicielskiej, wbija obydwa pazurki oddechowe w głąb tkanek rośliny oraz wygryza otwór, który szczególnie zatyka głową. W tej pozycji (rys. 118) żeruje, wysysając soki i nie rusza się z miejsca, dopóki jej własne wymiary, rosnąc, nie zaczą stanowić przeszkody w dogodnym pobieraniu pokarmu. Wówczas przesuwa się na inne miejsce lub na inny, grubszy korzeń, gdzie pozostaje znów przez dłuższy czas. Po opuszczeniu przez larwę miejsca żerowania na roślinie pozostaje charakterystyczny ślad (rys. 121). Liczba linii nie została bezpośrednio ustalona, lecz proporcje wymiarów ciała stwierdzane u badanych gatunków każą domniemywać się istnienia trzech stadiów wzrostowych, jak u większości chrząszczy stonkowatych.

Problem podwodnego oddychania larw frapuje badaczy od dawna, lecz nie jest do końca wyjaśniony; zwłaszcza niejasna rola pierwszych ośmiu par przetocznik. Pazurki oddechowe uważane były pierwotnie za narząd czepny (Mulsant 1847). Właściwe ich przeznaczenie odkrył Siebold (1858) i temat ten był później przedmiotem wielu jeszcze badań, z których należy wymienić prace Dewitza (1888), Schmidt-Schwedta (1890), Egego (1926) oraz Valey (1939); nówże, bardziej szczegółowe opisy można znaleźć u Bertrand (1954).

Dorosła larwa sporządza sobie cienki, zwykle brunatny, jak gdyby pergaminowy kokon, wykorzystując do jego budowy wydzielinę pochodzącą ze wspomnianych już wyspecjalizowanych cewek Malpighiego, przekształconych

http://rcin.org.pl

Hodowlę rzęsielic w akwarium jest możliwa (Walter 1902), lecz dotychczas ani nie opracowano ogólnej metodyki postępowania z żywymi rzęsielicami w warunkach laboratoryjnych, ani też nie prowadzono żadnych planowych badań opartych o hodowlę tych owadów.

Rozsiedlenie. Podrodzina Donaciinae ma rozsiedlenie dość osobliwe (rys. 128), nie wykryto ich bowiem w Ameryce Południowej ani w Australii, jeśli nie liczyć dwóch gatunków z Queensland, które prawdopodobnie przedostały się tam z Archipelagu Sundajskiego (Donacia australasiae Blackb. i D. inopi-nata Goecke). Jest to grupa głównie holarktyczna, dość równomiernie rozsied-
lona w strefie klimatu umiarkowanego i chłodnego Eurazji oraz Ameryki Północnej. Ku południowi liczba gatunków maleje i równocześnie pojawiają się rodzaje reprezentowane głównie lub wyłącznie w obszarze międzyzwrotnikowym. Trzeba tu jednak mieć na uwadze, że fauna słodkowodna lądu afrykańskiego jest słabo zbadana i że zaznaczone na rys. 128 zasięgi rozsiedlenia rodzajów Donaciasta FAIRM. i Donaciocrioceris PIC mogą ulec jeszcze znacznym korekturom. W Polsce żyje 27 gatunków należących do tej podrodziny. Gatunek Macroplea mutica (FABR.) znany jest wyłącznie z pobrzeża Bałtyku, a areał rozsiedlenia pozostałych 26 gatunków obejmuje cały obszar kraju, jakkolwiek w wielu przypadkach to rozsiedlenie ma charakter zwarty tylko w dzielnicach północnych. Antropogeniczne przemiany w krajobrazie Polski szczególnie niekorzystnie wpływają na stan fauny rzęsielnic, coraz mniej bowiem jest czystych, stojących lub wolno płynących wód powierzchniowych, będących właściwym biotopem dla większości należących tutaj gatunków.

Klucz do oznaczania rodzajów

owady dorosłe

1. Ostatni (czwarty) człon stóp dłuższy od pozostałych trzech mierzonych łącznie. Trzeci człon mały, na końcu nie wykrojony (rys. 129). Zewnętrzny brzeg pokryw na końcu wyciągnięty w długi wyrostek (rys. 137, 141).

Macroplea (s. 75).

—. Ostatni (czwarty) człon stóp krótszy od pozostałych trzech mierzonych łącznie. Trzeci człon rozszerzony i po stronie grzbietowej głęboko wykrojony; w wycięciu mieści się nasada członu czwartego (rys. 130). Zewnętrzny brzeg pokryw często tworzy wyraźny kąt przy zbiegu z krawędzią tylną, ale nigdy nie bywa wyciągnięty w długi wyrostek.
2. Krawędzie stykowe szwu pokryw leżą na całej swej długości w płaszczyźnie sagitальной i bez rozechylenia pokryw nigdzie nie są widoczne (rys. 131). Ciało nieco przyplaszczone, nogi wysmukłe.

Donacia (s. 81).

— Krawędzie stykowe szwu pokryw przed końcem na krótkim odcinku położone ukośnie i w tym miejscu widać je od góry bez rozechylania pokryw (rys. 132). Ciało nieco walcowato wypukłe, nogi mocne, dość krótkie.

Plateumaris (s. 146).

larwy

1. Czoło wydłużone, jego długość wyraźnie większa od szerokości (rys. 313).

Plateumaris (s. 146).

— Czoło szerokie, jego długość mniejsza lub w przybliżeniu równa szerokości (rys. 144, 201–203).

2. Na wardze górnej zewnętrzna szczecinka brzeżna leży w połowie odległości między szczecinką kątową a najbliższą z brzeżnych, lub nieco bliżej szczecinki kątowej (rys. 145, 197).

— Na wardze górnej zewnętrzna szczecinka brzeżna jest od szczecinki kątowej bardziej oddalona, niż od najbliższej brzeżnej.

Donacia (s. 81).

Donacia crassipes (s. 98).

— Zewnętrzne szczecinki brzeżne wargi górnej krótsze od kątowych (rys. 145). Mikrochety pokrywające ciało dłuższe, w formie włosków.

Macroplea (s. 75).

Rodzaj Macroplea SAMOUELLE, 1819 — Jeziornica

Macroplea SAMOUELLE, 1819: 211.
Haemonia DEJEAN, 1821: 114.

Pochodzenie nazwy: gr. makrós — wielki i hoplé, hoples — pazur; aluzja do budowy stóp.

Gatunek typowy: Donacia zosterae FABRICIUS, 1801: 127.

nicza tych owadów w zakresie ubarwienia była przyczyną, że poszczególne odmiany opisywano jako samodzielne gatunki; synonimikę w obrębie rodzaju ustalono jednak stosunkowo wcześnie (KRAATZ 1876a, b).

Należą tutaj najmniejsze formy w podrodzinie, o niemal całkowicie podwodnym trybie życia. Owady dorosłe chodzą po dnie, a żerując niezwykle silnie obejmują nogami łodygi roślin żywicielskich. Sporadycznie napotyka się je także na nadwodnych częściach roślin, a nawet łowiono je w locie.

Klucz do oznaczania gatunków

 owady dorosłe

 ... M. appendiculata (s. 77).

 ... M. mutica (s. 79).

 larwy

1. Szczecinki posttergalne na środkowych tergitach odwłoka\(^1\) ułożone w 2–2,5 nierówne rzędy (rys. 147).

 ... M. mutica (s. 79).

 — Szczecinki posttergalne na środkowych tergitach odwłoka ułożone w 3–4 nierówne rzędy (rys. 146).

 ... M. appendiculata (s. 77).

Macrolea appendiculata (Panzer, 1794)

Donacia appendiculata Panzer, 1794, 24, nr 17.
Donacia micronata Hoppe, 1795: 47.
Donacia equisect Fabrictius, 1798: 128.
Haemonia mosellae Bedel, 1869: 6.

Pochodzenie nazwy: łac. appendiculatus – opatrzony wyrostkiem; dotyczy wyrostka przy końcu pokryw.

Terra typica: okolice Erlangen (Frankonia).

\(^1\) Larwa podgatunku nominatywnego nie jest znana; wymieniona cecha została stwierdzona u podgatunku M. mutica lapponica Hell., występującego na pobrzeżach Morza Barentsa.

Zmiennosc osobnicza przejawia się głównie w ubarwieniu wierzchu ciała.

Opisano odmiany:

3. Przedplecze z czarnymi plamami. Na pokrywach punkty leżą na czarnym tle, zlewa­
ym się w 10 podłużnych, czarnych smug. Szerokość tych smug niewiele większa od średnicy punktów .. forma typowa.

Intrygujący tryb życia tych owadów był przyczyną, że obserwacjom nad *M. appendiculata* poświęcono co najmniej kilkudziesiąt wzmianek i osobnych

http://rcin.org.pl

W Polsce występuje zapewne w całym kraju, lecz w ostatnim czterdziestoleciu nie był łowiony. Przyczyną tego są znaczne trudności techniczne, jakie towarzyszą łowieniu jeziornic, a można przypuszczać, że także wyniszczenie wielu populacji wskutek wzrastającego zanieczyszczenia zbiorników powierzchniowych.

Macrolea mutica (Fabricius, 1792)

Donacia mutica Fabricius, 1792: 306.
Donacia sosterae Fabricius, 1801: 127.

Pochodzenie nazwy: łac. muticus — tępo obcięty; aluzja do tępo obciętego wyrostka przy końcu pokryw, w odróżnieniu od ostrego wyrostka u sąsiedniego gatunku *M. appendiculata* (Panz.).

Terra typica: Szwecja.

Długość 4,5–7 mm. Ubarwienie ciała oraz kształt desenia strony grzbietowej podobne jak u *M. appendiculata*, lecz ogólnie ciemniejsze. Skośne plamy na przedpleczu są prawie zawsze obecne i często rozszerzają się, zajmując całą jego powierzchnię aż po brzegi; podobnie czarna barwa na pokrywach ma tendencję do wkraczania na zagoniki. Brak jest natomiast czarnej obwodki na końcach ud, także i stopy bywają niekiedy całe jasne.

Dymorfizm płciowy manifestuje się podobnie jak u gatunku poprzedniego, prącie jak na rys. 142, 143.

Zmienność morfologiczna w obrębie gatunku jest znaczna i po części skorelowana z bardzo dysjunktynym rozsiedleniem poszczególnych populacji. Wsku-

się w oczy jest kształt końca pokryw, które tuż przy szwie mogą być łagodnie stęplone jak u *M. appendiculata* (rys. 136) lub wyciągnięte ku tyłowi i nieco wykrojone (rys. 140). W Finlandii żyje odmiana znana pod nazwą var. *incisa* SAHLB. 1870: 67, u której samice odznaczają się szczególnie głębokimi wcięciami na tylnej goleni oraz dużymi wymiarami ciała, którego długość przekracza 7,5 mm. Spośród znanych odmian barwnych w środkowej Europie występują:

Larwę oraz kokony larwalne i poczwarcze opisał TULLGRE (1916). Także i na tym gatunku THORPE i CRISP (1949) prowadzili badania nad podwodnym oddychaniem *Donacionae*.

Jako roślina żywicielska podawana jest niemal wyłącznie rupia morska — *Ruppia maritima* L., także w odniesieniu do larw (OGŁOBLIN i MIEDWIEDEW 1971); podgatunek *M. mutica balatonica* był natomiast stwierdzony wyłącznie na wywłóczniku kłosowym — *Myriophyllum spicatum* L.

Gatunek ten zasiedla pobrzeża mórz: Północnego, Bałtyckiego (ULRICH 1923), Śródziemnego i Kaspijskiego, jezior Balaton, Balta Alba w Rumunii, Issyk-Kuł oraz część dorzecza Syr-Darii. Stosunkowo niedawne wykrycie jego na wybrzeżach Cypryli każe brać pod uwagę możliwość, że doniesienia o zło-wieniu *M. appendiculata* u wybrzeży Algierii (JOLIVET 1968b) odnoszą się w rze czywistości do *M. mutica*.

W Polsce znany jedynie z pobrzeża Bałtyku, dotychczas napotkany na Pomorzu Zachodnim i w okolicach Gdańska (okazy dowodowe znajdują się w zbiorze STIERLINA).

Rodzaj *Donacia* FABRICIUS, 1775 — Rzęsielnica

Donacia FABRICIUS, 1775: 195.

Pochodzenie nazwy: gr. dónaks, dónakos — trzciny, szuwary; od typu siedliska, gdzie rzęsielnice spotyka się najczęściej.

Ciało smukłe, po stronie grzbietowej przypłaszczone, tułów masywny i silnie zesklerotyzowany, odwłok stosunkowo płaski. Spód ciała oraz czułki i nogi

http://rcin.org.pl
pokryte gęstym, drobnym, przylegającym owłosieniem, co jest związane ze sposobem oddychania tych owadów pod wodą (patrz s. 69).

Głowa z trzema podłużnymi bruzdkami na czole. Środkowa jest prosta, zwykle wąska i bardzo głęboko nacięta; boczne okrążą oczy i są o wiele szerzej, a wskutek tego pozornie płytsze od środkowej. Żuwaczki szerokie i krótkie,

niemal całkowicie skryte pod wargą górną. Oczy duże, w zarysie krótko owalne lub prawie okrągłe, mocno wypukłe. Czułki nitkowate.

Przedplecze w ogólnym zarysie walcowate, po stronie grzbietowej spłaszczone, w przedniej części po bokach z płaskim guzem, który u niektórych gatunków spoza Europy środkowej może być mocno wypukły, a nawet zaostrzone (rys. 155). Wzdłuż środka przedplecza biegnie bruzdka, zwykle dość głęboko nacięta, która wszakże nie dosięga ani przedniej, ani tylnej krawędzi.

Pokrywy wydłużone, ich długość dwa do trzech razy większa od łącznej szerokości mierzonej w barkach, ku końcom zwężone i na tylnej krawędzi z reguły tępo ucięte. U większości gatunków na powierzchni pokryw znajdują się przypłaszczenia lub płytkie zagłębienia (wciski), których liczba i położenie są w obrębie gatunku stałe. Schemat rozmieszczenia tych wcisków przedstawiony jest na rys. 149. Guzy barkowe zawsze wyraźne. Tylne skrzydła nigdy nie ulegają zanikowi ani skróceniu, użyłkowanie typowe dla przedstawicieli podrodzin grupy *Eupoda* (rys. 37).

Nogi smukłe i stosunkowo długie. Uda często pośrodku długości lub bliżej dystального końca (maczugowato) zgrubiałe. Tylne uda zazwyczaj dłuższe i grubsze od pozostałych; ich spodnia powierzchnia albo równomiernie wypukła, albo opatrzona krawędzią, która w bliskości końca uda może się wznowić tworząc guzki lub ząbki (zwykle jeden, rzadziej dodatkowo także kilka drobniejszych).
Oprócz tego, po wewnętrznej stronie tylnego uda może występować ząbek aksesoryczny, tak położony, że gdy owad ułoży golen wzdłuż uda, to ząbki skutecznie stabilizują jej położenie (rys. 185). Stopy duże, często niewiele tylko krótsze od goleni, trzeci człon po grzbietowej stronie bardzo głęboko wycięty (rys. 130).

Dymorfizm płciowy przejawia się w urzeźbieniu powierzchni pokryw i przedplecza, które u samców są słabiej punktowane, następnie w kształcie ostatniego segmentu odwłoka, opatrzonego u samec przy tylniej krawędzi trójkątnym wciskiem lub półkolistym dołeczkami, wreszcie w budowie tylnych ud, które u samec są silniej zgrubiałe, a zęby na nich większe i ostrzejsze. U samców mniejszych, niedozwolnych w okresie larwalnym, dymorfizm płciowy w budowie tylnych ud bywa zaznaczony słabiej, a może nawet nie manifestować się wcale. Sameczki aparatu kopulacyjnego typu zupełnego (por. s. 18).

Różnice wewnętrznej budowie praca między poszczególnymi gatunkami są stosunkowo niewielkie, toż samo cecha determinacyjna służy niekiedy kształtowi wewnętrznemu, lecz po prześwietleniu dobrze widocznemu końcowemu odcinku przewodu wytryskowego (Nyholm 1950). Żeńskie narządy rozrodcze rzędnie nie były dotychczas przedmiotem badań porównawczych.

Rodzaj Donacia jest w zakresie morfologii grupą bardzo jednolitą; próbowano tutaj wyodrębnić podrodzaj, lecz utrzymał się z nich tylko podrodzaj Cyphogaster GoecKE, 1934: 215, obejmujący osiem gatunków orientalnych i australijskich. W katalogach i kluczach bywa ponadto wyróżniany podrodzaj Donaciella REITTEr, 1920: 38, obejmujący gatunki o owłosionych pokrywach; utrzymuje się on w piśmiennictwie niezależnie od gatunku Podrozdzie Donaciomima dla jednego z gatunków wschodnioazjatyckich. Cechy diagnostyczne są tutaj równe wątłe jak u reitterowskiej Donaciella i należy przypuszczać, że takson Donaciomima jako samodzielna jednostka systematyczna nie utrzyma się zbyt długo.

Klucz do oznaczania gatunków

Owady dorosłe

1. Pokrywy nieowłosione, tylna uda często z jednym lub dwoma zębami . . 2.
 =. Pokrywy gęsto owłosione, tylna uda zawsze bez zęba 25.

2. Pokrywy wydłużone, na końcu bardzo silnie zwężone, każda wyciągnięta w wąski, ostry, krótki szpic (rys. 163). Przedplecze w środkowej części

http://rcin.org.pl
silnie przewężone, przednie guzy duże i ostre, przednie kąty zaostrzone i skierowane w przód (rys. 155).

... D. reticulata (s. 96).

— Pokrywy na końcu tępo obcięte lub zaokrąglone. Przedplecze w środkowej części nie przewężone lub przewężone słabo, przednie guzy często wydatne, lecz nie zaostrzone, przednie kąty stępione lub opatrzone małym ząbkiem skierowanym w bok ...

3. Czułki i nogi przynajmniej miejscami jasnobrązowe lub czerwonawe1 4.

— Czułki i nogi całe czarne lub o ubarwieniu metalicznym ...

4. Powierzchnia pokryw bez wcisków ...

— Powierzchnia pokryw ze skośnymi lub podłużnymi wciskami wzdłuż szwu, a ponadto niekiedy także wzdłuż krawędzi bocznych (rys. 149) ...

1 Tendencję do ciemnienia mają przede wszystkim grzbietowo powierzchnie odnóży, owada należy przeto oglądać od spodu.

http://rcin.org.pl
5. Tylne uda długie (rys. 150), u samców sięgają co najmniej do końca pokryw, u samiec nieco krótsze, sięgają zwykle do połowy piątego sternitu odwłoka. Tylne uda normalnej długości, u samców sięgają najwyżej do nasady piątego sternitu odwłoka, u samiec są jeszcze krótsze i zwykle nie osiągają połowy długości czwartego sternitu (rys. 151).

6. Wierzch ciała jasnobrązowy, bez metalicznego połysku. _D. fennica_ (s. 112).

7. Wierzch ciała o ubarwieniu metalicznym lub, w bardzo rzadkich przypadkach, czarny. _D. crassipes_ (s. 98).

10. Trzeci człon czułków tylko bardzo nieznacznie dłuższy od drugiego. Przedplecze na całej powierzchni gęsto pokryte wyraźnym punktowaniem. Wierzch ciała zawsze o metalicznym ubarwieniu.

Należą tu okazy _D. semicuprea_ nie mające wcisków na powierzchni pokryw. _D. semicuprea_ (s. 106).

10. Trzeci człon czułków tylko bardzo nieznacznie dłuższy od drugiego. Przedplecze na całej powierzchni gęsto pokryte wyraźnym punktowaniem. Wierzch ciała zawsze o metalicznym ubarwieniu.

Należą tu okazy _D. semicuprea_ nie mające wcisków na powierzchni pokryw. _D. semicuprea_ (s. 106).

10. Trzeci człon czułków tylko bardzo nieznacznie dłuższy od drugiego. Przedplecze na całej powierzchni gęsto pokryte wyraźnym punktowaniem. Wierzch ciała zawsze o metalicznym ubarwieniu.

Należą tu okazy _D. semicuprea_ nie mające wcisków na powierzchni pokryw. _D. semicuprea_ (s. 106).

http://rcin.org.pl
katnych zmarszczek, wierzch ciała całkowicie lub częściowo pozbawiony metalicznego połysku.

D. malinovskyi (s. 110).

11. Tylne uda z jednym lub dwoma wyraźnymi ząbkami. Urzeźbienie wierzchu ciała płytkie, tło wygładzone, przedplecze i pokrywy z bardzo mocnym,

niekiedy nawet lustrzanym, metalicznym połyskiem, wyraźnie gładsze niż u innych gatunków rzęsielnic.

D. polita (s. 105).

—. Tylne uda bez ząbków ... 12.

12. Powierzchnia pokryw między rządami punktów silnie błyszcząca, poprzeczne zmarszczki duże i głębokie. Wciski na pokrywach bardzo płytkie i niewyraźne.

D. semicuprea (s. 106).

—. Powierzchnia pokryw między rządami punktów jedwabista lub prawie matowa, poprzeczne zmarszczki drobne. Wciski na pokrywach zawsze wyraźne ... 13.

D. vulgaris (s. 137).

—. Pokrywy na końcu tępo obcięte i zaokrąglone (rys. 169). Punktowanie pokryw ku tyłowi staje się coraz mniej wyraźne i wreszcie prawie całkowicie niknie wśród zmarszczek.

D. simplex (s. 139).

—. Trzeci człon czułków znacznie krótszy od pierwszego 16.
15. Przedplecze niewyraźnie punktowane, pokryte zmarszczkami na całej powierzchni. Tylna uda z dwoma (niekiedy z trzema) zębami. Przestrzeń między szwem pokryw a pierwszym rzędem punktów dwukrotnie węższa od sąsiedniego zagonika. Na każdej pokrywie dwa jednakowo wyraźne weiski.

\[D. \text{ sparganii} \ (s. \ 113)\].

16. Ząb na tylnych udach mały i tępy, często niewyraźny \[17\].

\[D. \text{ aquatic}a \ (s. \ 115)\].

17. Zmarszczki pokrywające przestrzeń między szwem pokryw a pierwszym rzędem punktów biegną równolegle do szwu lub nieco ukośnie.

\[D. \text{ impressa} \ (s. \ 117)\].

\[D. \text{ brevicornis} \ (s. \ 121)\].

19. Na każdej pokrywie, prócz wspólnego weisku przy tarczce, 5 lub 6 weisków; cztery z nich wzdłuż szwu (ostatni niekiedy zanika), a pozostałe w pobliżu krawędzi bocznej (rys. 149).

\[D. \text{ bicolora} \ (s. \ 125)\].

20. Trzeci człon stóp sięga tylko do połowy długości czwartego (rys. 152). Epipleury pokryw na wysokości trzeciego sternitu odwłoka dwukrotnie węższe od sąsiadującego z nimi zewnętrznego zagonika

\[D. \text{ thalassina} \ (s. \ 134)\].

21. Przednie kąty przedplecza tworzą wyraźny żąbek (rys. 177–179)

\[D. \text{ springer}i \ (s. \ 120)\].

22. Przednie kąty przedplecza tworzą żąbek wystający w bok dalej, niż silnie spłaszczone guzy przednie (rys. 177)
Przednie kąty przedplecza tworzą ząbek, który nie wystaje w bok dalej, niż zaokrąglone i wypukłe guzy przednie (rys. 178, 179) 24.

23. Na przednim brzegu pokryw, między tarczką a guzami barkowymi znajdują się liczne, bardzo gęsto i nieregularnie ułożone punkty, które często zlewają się po kilka ze sobą. Stopie dość smukłe, długość drugiego człona wyraźnie większa od szerokości. Wierzch ciała o połysku ciemnospinyowym, znacznie rzadziej zielonym lub błękitym.

\[\text{D. obscura (s. 128).} \]

- Na przednim brzegu pokryw, między tarczką a guzami barkowymi punkty ułożone mniej gęsto i nie zlewające się po kilka ze sobą. Stopie mniej smukłe, długość drugiego człona nie większa od szerokości. Wierzch ciała o połysku purpurowym.

\[\text{D. aureocincta (s. 130).} \]

\[\text{D. antiqua (s. 131).} \]

- Punktowanie pokryw mocne, rządki nie przekształcają się ku tyłowi w bruzdki, lecz gubią się przy końcu wśród urzeźbienia wtórnego. Pokrywy i przed-
plecze zazwyczaj po stronie grzbietowej mosiężne lub miedziste, wzdłuż boków natomiast z wyraźnym zielonawym połyskiem. Wewnętrzna struktura prącia jak na rys. 276.

\[D. \text{ brevitarsis} \text{ (s. 133).} \]

\[D. \text{ tomentosa} \text{ (s. 142).} \]

- Trzeci człon czułków tylko nieznacznie dłuższy od drugiego. Przednie guzy przedplecza wydatne, zaokrąglone (rys. 184).

\[D. \text{ cinerea} \text{ (s. 144).} \]

larwy

1. Pretergalne szczecinki śród- i zaplecza nieliczne, posttergalne ułożone pośrodku w jeden lub dwa nierówne, poprzeczne rzędy (rys. 186–188) . 2.

- Pretergalne szczecinki śród- i zaplecza liczniesze, posttergalne ułożone pośrodku w trzy lub cztery nierówne, poprzeczne rzędy (rys. 189) . 7.

2. Posttergalne szczecinki śród- i zaplecza tworzą pośrodku jeden, nierówny, miejscami podwojony rzadek (rys. 188). Na wewnętrznej krawędzi żuwaczek, poniżej dwóch dużych zębów szczycowych, występują zwykle dobrze widoczne, małe ząbki w liczbie 1–3 (rys. 205–208) . 3.

\[D. \text{ clavipes} \text{ (s. 93).} \]

\[D. \text{ semicuprea} \text{ (s. 106).} \]

- Szczecinki brzegowe wargi górnej nierównej długości; zewnętrzne są co najmniej dwukrotnie dłuższe od pozostałych, a nikiędy dorównują długością szczecinkom kątowym . 4.

\[D. \text{ versicolor} \text{ (s. 103).} \]

- Długość zewnętrznych szczecinek brzegowych wargi górnej prawie dwukrotnie mniejsza od długości szczecinek kątowych (rys. 195, 196). Na wewnętrznej krawędzi żuwaczek, poniżej dwóch dużych zębów szczycowych, dwa mniejsze jednakowe ząbki dodatkowe (rys. 207, 208) . 5.

5. Szerokość czoła nieznacznie (najwyżej o \(1/4\)) większa od długości (rys. 201). Dwa duże zęby szczycowe żuwaczek wąskie, wewnętrzna krawędź żuwaczki poniżej dodatkowych drobnych ząbków lekko wykrojona (rys. 207). Na korzeniach strzałki wodnej – Sagittaria sagittifolia L.

\[D. \text{ dentata} \text{ (s. 100).} \]

- Szerokość czoła wyraźnie (mniej więcej o \(1/4\)) większa od długości (rys. 202). Dwa duże zęby szczycowe żuwaczek szerokie i zaokrąglone, wewnętrzna...
krawędź żuwaczki poniżej dodatkowych ząbków prosta lub nieco wypukła (rys. 208). Na korzeniach trzciny pospolitej — *Phragmites communis* Trin. i na mannach — *Glyceria Brown*.

..

D. crassipes (s. 98).

7. Na wargi górnej zewnętrzna szczecinka brzeżna może być nieco oddalonej od środkowych, lecz nie aż tak, by leżeć w pobliżu połowy odległości między nimi a szczecinką kątową (rys. 198–200).

\textit{D. cinerea} (s. 144).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{192-200.png}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{201-203.png}
\caption{Czoło larwy (wg Bövinga 1906): 201 — \textit{Donacia dentata}, 202 — \textit{D. fennica}, 203 — \textit{D. bicolora}.}
\end{figure}
Szczecinki interkalarne na śród- i zapiersiu zebrane w dwie grupy, zajmujące dość duży obszar (rys. 190, 191); między nimi można niekiedy dopatrzyć się słabo zaznaczonej, trzeciej grupy. Na sternitach odwłoka szczecinki w grupach sternalnych ułożone w 2–3 rzędy 8.

8. Na wewnętrznej krawędzi żuwaczek, poniżej dwóch dużych zębów szczytowych nie ma wyraźnych dodatkowych, drobnych ząbków, najwyżej

nieznaczne nierówności lub garbki (rys. 210, 211) 9.

—. Na wewnętrznej krawędzi żuwaczek, poniżej dwóch dużych zębów szczytowych znajdują się dwa lub trzy małe ząbki dodatkowe, jak na rys. 206, 208 10.

D. simplex (s. 139).

—. Na zapiersiu, w pobliżu środka jego przedniej krawędzi, nie ma grupy szczecinek (rys. 191). Na korzeniach turzyc — Carex L., jeżogłówek — Sparganium L. i pałek — Typha L.

D. vulgaris (s. 137).

D. aquatica (s. 115).
—. Pretergalne szczecinki śród- i zaplecza zebrane w trzy oddzielne grupy: wewnętrzną i dwie boczne, które łączą się ze smugą posttergalną jak na rys. 189

—. Zewnętrzne szczecinki brzegowe wargi górnej prawie trzykrotnie dłuższe od pozostałych. Szerokość i długość czoła w przybliżeniu jednakowe. Na korzeniach turzyc — Carex L. .. D. marginata (s. 123).

Donacia clavipes Fabricius, 1792

Donacia clavipes Fabricius, 1792: 117.
Donacia menyanthidis Gyllenhal, 1813: 662.
Donacia glabrata Solsky, 1872: 421.

Pochodzenie nazwy: łac. clava, clavae — maczuga i pes, pedis — noga; od maczuga-wartotną kształtu tylnych ud.

Terra typica: kraje niemieckie w granicach z końca XVIII wieku.

Długość ciała 7-12 mm. Czulki i nogi zwykle całe jasne, żółtobrązowe lub jasnożółte. Tylne uda po grzbietowej stronie oraz kilka nasadowych członów czułków zwykle ciemniejsze, brunatne; u niektórych okazów mogą być czulki i nogi całe przyciemnione, a u bardzo rzadkich odmian melanotycznych zupełnie czarne, lecz zawsze bez metalicznego połysku. Wierzch ciała o jedwabistym metalicznym połysku, ubarwienie dość zmienne, najczęściej złotozielone, lecz trafią się odmiany o przewadze barwy miedzistej, złotej, zielonej, a nawet{id}zielonawoblękitej. Głowa drobno, gęsto punktowana, wszystkie trzy bruzdy czołowe bardzo szerokie, czułki sięgają poza połowę długości ciała. Przedplecze (rys. 154) o zarysie trapezoidalnym; przednie kąty stępio, boczne guzy nie-wielkie, lecz wydatne, powierzchnia błyszcząca, skąpo, drobno punktowana; bruzdka środkowa z przodu lekko zarysowana, ku tyłowi coraz głębsza i wyraźniejsza. Pokrywy bez wyraźnych wcisków, z tyłu poprzecznie obcięte, lecz z zaokrąglonymi kątami (rys. 162); punkty w rzadkach głębokie, od każdego z nich rozbiegają się promieniście drobne bruzdki, marszczące powierzchnię zagoników (rys. 217). Schemat użytkowania skrzydeł tylnych jak na rys. 212. Nogi długie i smukle, stopy dłuższe niż u innych gatunków rodzaju Donacia, zwykle nieznacznie, a często wcale nie krótsze od goleni. Pazurki u nasady tworzą zgrubienie o kształcie szerokiego żebra (rys. 218).

Dymorfizm płciowy ograniczony do różnicy w długości czułków oraz w kształcie ostatniego sternitu odwłoka, który u samca jest na tylnej krawędzi opatrzony wgłębeniem, a u samicy równomiernie, słabo wypukły. Prącie jak na rys. 213, 214.

Zmienność osobnicza przejawia się przede wszystkim w ubarwieniu wierzchu ciała; poszczególnymi odmianom barwnych osobnych nazw nie nadawano.
We wschodniej Syberii oraz w północno-wschodnich Chinach żyje odmiana opisana pod nazwą *D. clavipes* var. *glabrata* Solsky, 1872, odznaczająca się mniejszymi wymiarami ciała, słabszym urzeźbieniem powierzchni przedplecza i pokryw oraz nieco krótszym przedplecзем. Nie była ona wyodrębniana w osobny podgatunek, gdyż rzekomo występuje sympatrycznie z formą typową; jej rangę taksonomiczną wymaga jeszcze ustalenia.

Pierwszy obszerny opis bionomii i stadiów przedimaginalnych tego gatunku sporządził HEEGER (1854), lecz podane przez niego opisy larw nie pozwalają na ich identyfikację do gatunku, a nawet do rodzaju. Przydatniejszy opis larwy i poczwarki podali GOURY i GUIGNON (1905), lecz cechy taksonomiczne larw ustalił dopiero BOVING (1906); zostały one wykorzystane w kluczu OGLOBLINA i MIEDWIEDIEWA (1971). Same kokony poczwarcze były znane i opisane o wiele wcześniej (AHRENS 1810). Fenologię pojawu postaci imaginalnej badał i wyjaśnił GOECKE (1933).

Zwarty obszar rozsiedlenia (rys. 220) obejmuje znaczną część Europy i Azji, ku północy sięgając niemal po wybrzeża Morza Białego, a w Azji głęboko w strefę tundry. Jego granica południowa biegnie w Europie przez Pireneje,

Alpy i Beskid Zachodni, a dalej prawdopodobnie wzdłuż północnych krańców Płyny Podolskiej i północnej granicy lasostepu. Na południe od tej linii znane są tu i ówdzie stałe miejsca pojawu, jeszcze stosunkowo liczne w krajach alpej­skich i na Węgrzech, a bardziej ku południowi coraz rzadsze. Mimo to omawiany gatunek znany jest ze środkowej Hiszpanii (Bagueña 1960), a także z Pół-
wyspu Bałkańskiego (APFELBECK 1916), południowego Zadnieprza (ŁOPATIN 1960) i gór Bulghar-Dag w Azji Mniejszej (WEISE 1901). Na terytorium Azji granice rozsiedlenia jeszcze niejasne; łowiono D. clavipes nad jeziorami Bałchasz, Zajsan i Issyk-Kul, na Syberii oraz w dorzeczach Amuru i Ussuri.

D. clavipes jest szczególnie obficie reprezentowana w czwartorzędowych materiałach kopalnych. Szczątki jej znajdowano w Anglii (WHITEHEAD i GOODCHILD 1909, WHITEHEAD 1920, BELL 1922, PEARSON 1962), północnej Francji (LORETET i CHANTRE 1876, LESNE 1918, 1925), Dani (HENRIKSEN 1914, 1933, JESSEN 1920, 1923), Meklemburgii (CHAMISO 1824), południowej Szwecji (ANDERSSON 1889) i Finlandii (POPIUS 1911).

W Polsce występuje na obszarze całego kraju, lecz niezbyt często i łowiona bywa zwykle w nielicznych okazach. Mozga i trzcina są u nas wprawdzie bardzo pospolite i porastają znaczne obszary wód powierzchniowych, lecz prawdopodobnie okresowe wahania poziomu lustra wody D. clavipes znosi znacznie gorzej, aniżeli wymienione rośliny.

Donacia reticulata GYLLENHAL, 1817

Donacia appendiculata Ahrens, 1810: 34, nec PANZER, 1794, 24, nr 17.

Donacia reticulata Gyllenhal, 1817: 37.

Pochodzenie nazwy: łac. reticulatus — siateczkowany; od urzeźbienia tła pokryw.

Terra typica: Węgry (w granicach Królestwa Węgierskiego z r. 1810).

Długość 7,5-11 mm. Czułki czarne lub brunatne, powierzchnie stawowe poszczególnych członów czerwonawe. Nogi czarne, o metalicznym, zwykle spiożowym połysku. Golenie i stopy dość często bywają rdzawoczerwone, bez metalicznego połysku, rzadziej czerwona barwa obejmuje także i nasadę ud. Ubarwienie przedplecza i pokryw stosunkowo mało zmienne, najczęściej ciemnomiedziste z zielonawym odcieniem, niekiedy zielone, lub — w znacznie rzadszych przypadkach — czarnofioletowe. Spód ciała delikatnie, jedwabiście, lecz przy tym gęsto owłosiony. Głowa nadzwyczaj gęsto punktowana, przestrzenie między punktami przeważnie zredukowane do wąskich listewek; bruzdy czołowe wąskie, środkowa nacjęta szczególnie głęboko. Czułki bardzo długie i smukłe. Przedplecze (rys. 155) z przodu najszersze, tylne kąty wystają na zewnątrz; guzy boczne ostre, wystające na boki; powierzchnia mocno, lecz niezbyt gęsto punktowana i dość skąpo pokryta zmarszczkami. Pokrywy z dwoma wciskami przy szwie (wciski b i c, rys. 149), które u niektórych okazów zanikają zupełnie; końce pokryw zwężone i wydłużone w stopniu nie spotykanym u innych rzęsielnic europejskich (rys. 163). Nogi smukłe, pazurki u nasady rozszerzone, przy oglądaniu z boku rozszerzenie to ma kształt zaokrąglonego (nie zastrzzonego) zęba.

Dymorfizm płciowy. U samca czułki bardzo długie, sięgają prawie do końca pokryw. Ostatni sternit odwłoka z weiskiem, tylna krawędź tępo ucięta i o-

Bionomia i stadia przedimaginalne nie były badane.

Jako roślinę żywicielską większość źródeł wskazuje jeżogłówkę gałęzistą — *Sparganium ramosum* HUDS., informacje te jednakże nie są zupełnie pewne.

Obszar rozsiedlenia (rys. 221) obejmuje Europę południowo-zachodnią i część wybrzeży Algierii. Wschodnia granica tego areału biegnie od Holandii przez Bawarię i Górna Austrię po Istrię. Stosunkowo niedawno wykryto ten gatunek na dwóch stanowiskach w południowych Czechach i w południowych Morawach (Bechyné 1945). Brak materiałów dowodowych z obszaru Dolnej

Rys. 221. Rozsiedlenie *Donacia reticulata* (oryg.).
Austrii i Węgier nie pozwala jednakże rozstrzygnąć, czy stanowiska czechosłowackie leżą wewnątrz arealu rozsiedlenia zwanego, czy też mają charakter wyspowy.

D. reticulata była wykazywana z czwartorzędowych materiałów z Alp Zachodnich (Benassi 1896) oraz z Alp Lombardzkich (Malfatti 1881), poprawność oznaczeń była jednak kwestionowana (Goecke 1943).

W Polsce nie występuje.

Donacia crassipes Fabricius, 1775

Donacia crassipes Fabricius, 1775: 195.
Donacia micans Hoppe, 1795: 39.

Pochodzenie nazwy: łac. *crassus* — gruby i *pes* — noga; od zgrubiałych tyłnych ud.

Terra typica: nie podana.

Długość 9–12 mm. Ciało krępe, szerokie, mocno przypłaszczone, strona grzbietowa o ubarwieniu metalicznym, najczęściej czarnomiedziystym lub purpurowofioletowym. Rządziej spotyka się odmiany o ubarwieniu mniejżym, czarnozielonym lub granatowym. Czułki czarne ze słabym metalicznym połyskiem, poszczególne człony w okolicy powierzchni stawowych czerwone. Nogi czerwonobrunatne, grzbietowa strona ud, a niekiedy i część gołenia ze słabym, metalicznym, zwykle zielonym połyskiem. Głowa delikatnie, biało owłosiona i drobno punktowana, wszystkie trzy brzusze czołowe głębokie, środkowa nacięta szczególnie mocno. Przedplecze (rys. 156) krótkie, jego szerokość prawie sieńtorakrotne większa od długości mierzonej wzdłuż środka; brzuzka środowa w tylnej części wglębiona, tworzy rodzaj podłużnego dołeczka; guzy boczne małe, okrągłe, mocno wypukłe; powierzchnia gęsto pokryta nadzwyczaj drobnymi zmarztkami, jedwabiście połyskująca, ku bokom laszczki stają się grubsze i są mniej gęsto ułożone. Pokrywy z tytu prosto obcięte lub nieco wykojone; zagoniki wewnętrznie prawie gładkie, zewnętrzne pokryte delikatnymi, poprzecznymi zmarztkami.

Dymorfizm płciowy. U samca ostatni sternit odwłoka lekko, płatkowato wyciągnięty ku tyłowi i opatrzony płytkim wglębiением; tylne uda bardzo długie, z dwoma dużymi zębami; jeden z nich leży po wewnętrznej stronie w pobliżu środka zgrubiałej części uda, drugi na krawędzi spodniej, w pobliżu stawu kolanowego. Pracie jak na rys. 223, 224. U samicy ostatni sternit odwłoka smukły, wydłużony ku tyłowi, bez wglębień. Tylne uda znacznie słabiej zgrubiałe niż u samca i opatrzone tylko jednym zębem.

Zmienność osobnicza przejawia się głównie w istnieniu różnych form barwnych, którym nie nadawano osobnych nazw; jedyny wyjątek stanowią okazy o szczególnie słabym połysku metalicznym, prawie matowe, czarne lub granatowe, wyodrębnione w odmianę o nazwie ab. *anthracina* Everts, 1903: 399.
D. crassipes była parokrotnie obiektem szczegółowych badań z zakresu fizjologii i bionomii rzęsielnie, m. in. klasycznych prac Schmidta-Schwedta (1888, 1890) nad podwodnym oddychaniem larw i poczwarek oraz prac Stammera (1935b) nad symbiozą owadów z bakteriami. Kokony poczwarcze znalazł Aubé (1840) na korzeniach *Nymphaea alba* L. i obserwacja ta została później potwierdzona przez Bellevoye (1870a). Sanderson (1900) podał pierwszy szczegółowy opis larwy, wykorzystany później częściowo przez Bovinge (1906), a uzupełniony przez Bovinge i Craigheada (1931).

Rys. 222. Rozsiedlenie *Donacia crassipes* (oryg.).

Spektrum pokarmowe ograniczone do rodziny grzybieniowatych — *Nymphaeae*. Larwy żerują na korzeniach i podwodnych kłączach, a owady dorosłe na pływających liściach tych roślin. *D. crassipes* obdarzona jest zdolnością bardzo szybkiego, choć mało wytrwałego lotu. Owady wzbijają się w powietrze nagle, przelatują kilka lub kilkanaście metrów i równie niespodziewanie siadają na pływające liście roślin wodnych. W pełnym słońcu przypomina to lot większych much lub trzyszczów (*Cicindela* L.); przy słońcu zakrytym latają niechętnie i bardziej ociężale.
Obszar rozsiedlenia (rys. 222) obejmuje leśną strefę Obszaru Palearktycznego od Irlandii po wschodnią Syberię; z Chin, Korei i Japonii nie był dotychczas meldowany. W Europie północna granica tego arealu przekracza kolo polarną, południowa biegnie wzdłuż Pirenejów, Alp, Karpat Południowych i południowej krawędzi Płyty Podolskiej. Na południe od tej linii znane są miejsca występowania *D. crassipes* w północnych Apeninach (Ravizza 1973b), w Toskanii (Müller 1953), Bułgarii (Warchałowski 1974) i na południowym Zadnieprzu (Lopatin 1960).

D. crassipes była napotykan a w materiałach kopalnych z plejstocenu i holocenu w Anglii (Bell 1888, 1922), północnej Francji (Fliche 1876), Danii (Henniken 1914, 1933, Jessen 1920) i Finlandii (Poppius 1911).

W Polsce w całym kraju na stanowiskach grzybienia białego — *Nymphaea alba* L. i grążela żółtego — *Nuphar luteum* L., w czerwcu i lipcu nieradka.

Donacia dentata Hoppe, 1795

Donacia dentata Hoppe, 1795: 40.

Donacia phellandrii Sahlberg, 1839: 271.

Pochodzenie nazwy: łac. dentatus — zębaty; od ząbków na tylnych udach.

Terra typica: okolice Erlangen (Frankonia).

Dymorfizm płciowy. U samca czarna barwa zajmuje zwykle tylko apikalną połowę poszczególnych członów czułków. Na pierwszym sternicie odwłoka

http://rcin.org.pl

Zmienność osobnicza dość znaczna i częściowo obejmuje cechy decydujące o istnieniu dymorfizmu płciowego.

Odmiany w zakresie dymorfizmu płciowego:
Opis larwy podał Boving (1906). *D. dentata* była również obiektem badań Stammera (1935a) nad symbiozą z bakteriami.

Żyje na strzałce wodnej — *Sagittaria sagittifolia* L. i żabieńcu babce wodnej — *Alisma plantago-aquatica* L. Dane o występowaniu na grzybieniowatych — *Nymphaceae* (Carpentier i Delaby 1908) polegają z pewnością na pomyłce.

Obszar rozsiedlenia zwartego (ryc. 231) obejmuje Europę środkową oraz część północnej i południowej. Jego północna granica biegnie od południowej...

D. dentata była znajdowana w czwartorzędowych materiałach kopalnych z Danii (Henriksen 1914, 1933, Jessen 1920).

W Polsce na całym obszarze kraju, na przybrzeżnych płyciznach wód stojących i wolno płynących, a także na mniejszych zbiornikach i ciekach, dość pospolita.

Donacia versicolorea (Brahm, 1790)

Donacia versicolorea Brahm, 1790: LXX, nomen nudum.

Leptura versicolorea Brahm, 1790: 135.

Donacia bidens Olivier, 1791: 291.

Donacia cincta Gerner, 1810: 15.

Pochodzenie nazwy: łac. versicoloreus — różnobarwny; od zmienności ubarwienia. Terra typica: nie podana.

Długość ciała 5,5-10 mm. Ciało stosunkowo małe, przypłaszczone i krępe, nogi mocne o grubych udach. Ubarwienie pokryw i przedplecza cienkie, zwykle czarne z zielonawym lub miedzistym, rzadziej purpurowo-fioletowym, metalicznym połyskiem. Wzdłuż krawędzi bocznej pokryw biegnie żywiej zabarwiona, złotawa, fioletowa lub purpurowa smuga. Nogi czerwonawe lub brunatnordzawe, zgrubienia ud o metalicznym połysku, zwykle fioletowe. Spód ciała popielato lub srebrzyście, a głowa białawo owłosiona. Głowa drobno, gęsto punktowana, bruzdy czołowe wąskie, lecz głęboko nacięte. Przedplecze (rys. 158) z tyłu nieco przewężone, bruzdka środkowa wyraźnie zarysowana, z dołeczkami w tylniej części; powierzchnia punktowana niezbyt gęsto, po bokach pomarszczona, guzy boczne mocno uwodatkowane, lecz przypłaszczone. Pokrywy z dwoma słabymi weiskami przy szwie (weiski b i c na rys. 149), z tyłu obcięte, zewnętrzny kąt zaokrąglony, wewnętrzny (przyszwowy) zaostrzony (rys. 165); punktowanie w rządach głębokie, zagoniki płaskie, lekko, poprzecznie zmarszczone. Użyłkowanie skrzydeł tylnych jak na rys. 230.

Dymorfizm płciowy. U samca tylna uda z dwoma zębami, tylna golenia po wewnętrznej stronie z kilkoma tęczowymi guzkami. Prącie jak na rys. 227, 228. U samicy tylna uda z jednym zębem, który może ulegać daleko idącej redukcji, a nawet zanikać zupełnie; guzki na tylnych goleniach występują rzadko i są zawsze mniej wyraźne niż u samca.

Larwę opisał Boving (1906), kokony poczwarcze znane były już wcześniej (Bellevoye 1870b).
Zmienność osobnicza stosunkowo niewielka i ograniczona głównie do barwy wierzchu ciała. Opisano odmiany:

1. Ubarwienie jak w przytoczonym opisie — forma typowa.
2. Wierzch granatowy lub czarny z wyraźnym połyskiem, kontrast między czarnym tłem a jasnozłotymi brzegami pokryw znaczny — ab. suffríaní Westhoff, 1882: 257.
3. Wierzch ciała matowo czarny, kontrast między czarnym tłem a czarnożółtawymi brzegami pokryw niewielki — ab. lusática Häsel, 1911: 125.

Żyje na rdestnicy pływającej — Potamogeton natans L. Podane przez Suffríana (1845) i Rosenhauerę (1856), a powtarzane później w literaturze doniesienia o żerowaniu na innych gatunkach roślin okazały się mylne.

Rys. 232. Rozsiedlenie Donacia versicolorea (oryg.).

Obszar rozsiedlenia (rys. 232) obejmuje znaczną część Europy po Kazań (Leriediew 1906) i Małmyż (Jakowlew 1902), znane są też okazy z zachodniej Syberii (Barnaul) i znad jeziora Zajsan we wschodnim Kazachstanie (Jacobson 1892), czego jednakże najnowsze opracowania nie potwierdzają (Lopatin 1977). Północna granica tego arcału przebiega w Europie w pobliżu koła

http://rcin.org.pl
podbiegunowego, południowa przez Avilę, Walencję (Baguena 1960), Toskanię (Müller 1953), Serbię i Chorwację (Koča 1905) oraz przedgórza Karpat Południowych; dalszy jej przebieg ku wschodowi niejasny, omija ona zapewne strefę stepów czarnomorskich i nadkaspijskich od północy.

D. versicolora była znajdowana w czwartorzędkowych materiałach kopalnych ze Skanii (Andersson 1889) i Jutlandii (Henriksen 1933).

W Polsce pospolity w całym kraju w pełni lata na stawach i jeziorach, lecz złowienie go wymaga zwykle wejścia do wody lub użycia czółna.

Rys. 233. Rozsiedlenie Donacia polita (oryg.).

Donacia polita Kunze, 1818

Donacia polita Kunze, 1818: 29.

Pochodzenie nazwy: łac. politus — wygładzony, wypolerowany; od mocnego polysku wierzchu ciała.

Terra typica: nie podana.

Długość 7–9 mm. Ciało smukłe, wierzch złotozielony, mosiężny lub miedzisty, spód nieco ciemniejszy, gęsto pokryty srebrzystobiałymi włoskami, nogi ciemnoczerwone, grzbie-
towa strona ud czarniawa ze słabym, metalicznym, zwykle fioletowym połyskiem; czułki czarne lub czarnobrunatne, środkowe człony zwykle przy nasadzie czerwonawe. Głowa gęsto, drobno punktowana, wszystkie trzy brzuzdy czołowe mocne i głębokie. Przedplecze (rys. 159) z przodu rozszerzone, jego długość większa od szerokości, guzy boczne duże, wystające, dobrze odgraniczone, przednie kąty tepe, nigdy nie tworzą ząbka, bruzdka środkowa bardzo delikatnie zarysowana, często zredukowana do dwóch podłużnych dołeczków, powierzchnia niezbyt gęsto, lecz mocno punktowana, to między punktami gładkie i błyszczące. Pokrywy z tyłu tepe ucięte, grzbietowe rządki punktów delikatne, boczne mocne, zagoniki przez całą szerokość połączone poprzecznie biegnącymi bruzdkami, tło pokryte płytkim, bardzo drobnym punktowaniem wtórnym, widocznym dobrze pod powiększeniem około 50 x. Nogi długie i mocne.

Dymorfizm płciowy. U samca tylne uda z dwoma ząbkami; przedni leży po stronie wewnętrznej tuż za połową długości uda, tynki na krawędzi spodniej, w pobliżu stawu kolanowego. Ostatni sternit odwłoka tynki, z płytkim wcięciem na tylnym krawędzi, przedniego brak zupełnie. Ostatni sternit odwłoka na tylnej krawędzi zaokrąglony.

Zmiennność osobnicza stosunkowo nieznaczna; u okazów ze wschodniej części areału rozsiedlenia punktowanie przedplecza ma tendencję do zbiegania się w poprzeczne zmarszczki. Nogi na tylnej krawędzi zaokrąglone.

Dopinna semicuprea Donacia, 1796

Donacia semicuprea Panzer, 1796

Donacia semicuprea Panzer, 1796b, 29, nr 14.
Donacia iris Westhoff, 1882: 259.

Długość 5-8,5 mm. Ubarwienie wierzchniej strony ciała bardzo zmienne, najczęściej złocistozielone z szeroką, odmiennie ubarwioną smugą, biegnącą wzdłuż szwu pokryw i zajmującą ponad połowę ich szerokości. Smuga ta jest zazwyczaj miedzista, może być jednako purpurowa lub mosiężna; gdy ubarwienie przedplecza i boków pokryw jest zielonawoniebieskie, smuga ta bywa prawie czarna. Spód ciała zwykle miedzisty, srebrziste owłosiony. Nogi czarnobrunatne z metalicznym, najczęściej miedzistym połyskiem, nasada ud i końce goleni brunatnoczerwone; barwa czerwona może się rozprzestrzeniać zajmując całą powierzchnię ud i goleni z wyjątkiem ciemniejszej, brunatnej smugi bieg-
nacej po wewnętrznej stronie tylnych ud i przyciemnionej, zewnętrznej kra-
wędzi goleni. Czułki czarnobrunatne, poszczególne człony przy nasadzie często
zerwone lub czerwono przeświecające. U okazów słabo pigmentowanych
cale czułki mogą być brunatnoczerwone. Głowa gęsto, drobno punktowana
i delikatnie owłosiona, bruzdy czolewe wąskie i płytke, boczne często ledwie

Rys. 234-240. (236, 237 i 240 wg WARCHAŁOWSKIEGO 1971, pozostałe oryg.):
234 — Donacia semicuprea, udo tylnie samca, 235 — to samo u samicy,
236 — D. semicuprea, pracie od strony grzbietowej, 237 — z boku, 238 —
D. malinovskyi, pracie od strony grzbietowej, 239 — z boku, 240 — D. ma-
linovskiyi, koniec odwłoka samicy z boku.

zaznaczone. Przedplecze wąskie, jego długość zawsze większa od szerokości
(rys. 160), ku tyłowi lekko zwężone, środkowa bruzdka bardzo zmienna, bądź
szeroka i głęboko nacięta, bądź płytka i słabo widoczna, zawsze o wiele płytsza
pośrodku niż na końcach i często wykształcona w postaci dwóch podłużnych
dołeczków leżących w linii środkowej przedplecza. Pokrywy na końcu zwężone
i wspólnie tępo ucięte (rys. 166), rzadki punktów przed końcem zupełnie zmą-
czone; punktowanie w rządach drobne, lecz głębokie, zagoniki kilkakrotnie
szersze od średnicy punktu, pokryte głębokimi, poprzecznymi bruzdkami, które mogą leżeć nieco skośnie, lecz zwykle biegną w poprzek całej szerokości zagonika, łącząc odpowiadające sobie punkty i w środkowej części tworzą wraz z rządka dosyć regularną kratę o prostokątnych oczkach. Schemat użytkowania skrzydeł tylnych podał KEMPERS (1923). Nogi dość długie, tylne golenie lekko, esowato wygięte.

Dymorfizm płciowy. Samiec z reguły znacznie mniejszy (5–6,5 mm) i śmieklejszy, ostatni sternit odwłoka z dużym, lecz płytkim, podłużnym wciskiem. Tylne uda przy końcu nagle zwężone, przez co na spodniej stronie powstaje załamanie, przypominające stępiony ząbek lub guzek (rys. 234). Prącie na rys. 236, 237. Samica zwykle większa (6–8,5 mm), bardziej krępą, tylna uda bez załamania (rys. 235).
Zmienność osobnicza. Licznym odmianom, różniciącym się między sobą kolorem tła pokryw i przedplecza oraz kombinacjami między barwą tła i smugi przyszwowej, odrębnych nazw nie nadawano. Istniejące nazwy odnoszą się więc do całych grup odmian barwnych:

1. Pokrywy dwubarwne; ubarwienie wierzchu ciała szczególnie żywe, metaliczny połysk mocny ... ab. iris WESTHOFF, 1882: 259.
2. Pokrywy dwubarwne; ubarwienie wierzchu ciała żywe, metaliczny połysk nieco przygaszony, jedwabiisty ... forma typowa.
3. Pokrywy dwubarwne; ubarwienie wierzchu ciała ciemne, zwykle czarnospiszowe, metaliczny połysk słaby ab. tenebrans WESTHOFF, 1882: 259.
4. Pokrywy jednobarwne lub prawie jednobarwne, odmiennie ubarwiona smuga wzdłuż szwu widoczna słabo lub brak jej zupełnie ... ab. concolor WESTHOFF, 1882: 259.

Opis larwy podał BOVING (1906). D. semicuprea była przedmiotem badań M.MERA (1935a) nad symbiozą owadów z bakteriami, a także badań VARLEYA (9) oraz THORPE’a i CRISPA (1949) nad oddychaniem pod wodą. DELAHON (1) opisał okazy bardzo odbiegające od normalnego fenotypu, prawdopodobnie teratologiczne, a LEVITT i SPETT (1927) anomalie budowy spermateki.

http://rcin.org.pl
Żyje na mannie mielec — Glyceria aquatica L. (= G. spectabilis MERT. et KOC); powtarzane za SUPFRIENEM (1845) oraz za katalogiem CARPENTERA i DELABY’ego (1908) doniesienia o żerowaniu na turzyczach — Carex L., są zapewne mylne. Owady dorosłe żerują na spodniej stronie liści, wyjazdając miękką wzdłuż kilku sąsiednich nerwów i pozostawiając zwykle nienaruszoną skórę wierzchnią. Ślady żerowania widoczne są w postaci białych, paracentymetrowej długości smug, które biegną wzdłuż liści i pozwalają rozpoznać obecność D. semicuprea w siedlisku ze znacznej odległości. Omawiany gatunek znosi dobrze zanieczyszczenia chemiczne oraz wahania poziomu wody w zbiorniku, a okresowo nawet mazistą konstancję podłoża przy zupełnym zamku lustra wody.

Obszar rozsiedlenia (rys. 242) obejmuje środkową część kontynentu europejskiego; ponadto znane jest stanowisko z południowego Zadnieprza (ŁOPATIN 1960).

D. semicuprea była znajdowana w czwartorządowych materiałach kopalnych z Anglii (BELL 1922) i Danii (HENRIKSEN 1933).

W Polsce w całym kraju, łatwa do napotkania na stanowiskach rośliny żywicielskiej, od maja do sierpnia. Najpospolitszy i najliczniej występujący gatunek krajowy z rodzaju Donacia.

Donacia malinovskyi AHERNS, 1810

Donacia Malinovskyi AHERNS, 1810: 39.

Donacia arundinis AHERNS, 1810: 41.

Pochodzenie nazwy: zlatynizowana forma nazwiska entomologa, kapitana von Malinovskiy’ego z Magdeburga, autora popularnego podręcznika entomologii „Elementar-buch der Insektenkunde” (1816).

Terra typica: nie podana.

Długość 7–10 mm. Ciało smukłe; ubarwienie wierzchu ciała ciemne, czarnozielone, granatowe lub czarnofioletowe, boki pokryw o żywym metalicznym połysku, zwykle złociste z zielonawym odcieniem; spód ciała czarny ze słabym spiżowym połyskiem, pokryty gęstym, grubym owłosieniem. Nogi i czułki ciemno czerwonobrunatne; grzbietowa część ud, część goleni, a zwykle także końce poszczególnych członów czułków czarniawe. U częściej spotykanych odmian ab. arundinis AHR. i ab. caroli THIERR. przedplecze i pokrywy są brunatne lub jasnoorzechowe, bez metalicznego połysku.

Głowa delikatnie, jedwabiście owłosiona, brunatne wyraźne i głębokie. Przedplecze (rys. 161) prawie prostokątne lub (u samców) trapezoidalne; jego długość nieznacznie lub weca nie większa od szerokości, boczne guzy bardzo przy景德zone, brudzka środkowa krótsza. Pokrywy mocno, aż do końca regularnie punktowane, w rzędach grzbietowych odstęp między punktami niewiele mniejsze od szerokości zagoników. Końce pokryw zwężone i te spod obciąte. Nogi smukłe, tylne uda przy nasadzie mocno zagięte. Przednia kra-
wędź trzeciego członu tylnych stóp sięga zaledwie do połowy długości członu czwartego, podobnie jak u D. obscura (rys. 152).

Dymorfizm płciowy. U sameca przedplecze z tyłu wyraźnie zwężone, ostatni sternit odwłoka zwykle dłuższy, podobnie jak u D. obscura (ryg. 152).

Zmienność osobnicza w zakresie ubarwienia znaczna. Opisano odmiany:

1. Przedplecze i pokrywy na całej powierzchni ubarwione metalicznie . . . forma typowa.

2. Wierzch ciała brunatny, zwykle z bardzo słabym, metalicznym połyskiem, wzdłuż środka każdej pokrywy biegnie czarnofioletowa smuga, pośrodku przedplecza czarnofioletowa plama ab. ladonensis Thierriat, 1946: 22.

6. Cały wierzch ciała jasnobrunatny, bez plamy, jedynie szew pokryw i punktowanie pierwotne zwykle ciemno podbarwione ab. arundinis Ahrens, 1810: 41.

Granice obszaru rozsiedlenia (rys. 243) nie są ostatecznie ustalone i dodatkowo zaciemnione wskutek długo powtarzanego błędu, polegającego na omijaniu ab. arundinis Ahr. jako D. fennica (Payk.). Większość sprawdzonych doniesień pochodzi z północnej Francji (Thierriat 1946), północnych części RFN i NRD, Czechosłowacji (Horion 1951), z Basenu Karpackiego (Roubaul 1941, Kaszab 1962a) oraz z Polski północno-zachodniej i zachodniej (Gerhardt 1910, Krzemieński 1966). Obecność tego gatunku stwierdzono także w zachodniej części Ukraińskiej SRR (Łomnicki 1886) oraz w Dniepropetrowsku (Iljin 1926a). Jest to więc zapewne gatunek środkowoeuropejski o areale rozsiedlenia poszerzonym o Płytę Podolską i dorzecze Dniepru. Nie był wykazywany ani z Fennoskandii (Hellén 1939), ani z Wysp Brytyjskich (Kloet i Hincks 1977), ani z Litewskiej SRR (Pileckis 1976).
W Polsce zapewne w całym kraju, być może z wyjątkiem dzielnic północno-wschodnich, łowiony lokalnie i rzadko. Prawdopodobnie ma na to wpływ okoliczność, że *D. malinovskyi* jest nadzwyczaj płochliwa: na odgłos zbliżającego się człowieka lub czółna natychmiast skrywa się pod wodą.

Rys. 243. Rozsiedlenie Donacia malinovskyi (oryg.).

Donacia fennica *(Paykull, 1800)*

Rhagium fennicum Paykull, 1800: 70.

Pochożenie nazwy: łac. fennicus – fiński; od obszaru występowania pierwszych opisanych okazów.

Terra typica: Finlandia.

Długość 6,5–8,5 mm. Ubarwienie przedplecza i pokryw od jasnoorzechowego do kasztanowego, zawsze bez metalicznego połysku. Głowa, spód ciała oraz uda całe lub tylko po stronie grzbietowej, końce goleni i nasadowy człon czułków ciemniejsze, czarnobrunatne.

Żyje na trzcinach — Phragmites Adans i mannach — Glyceria Brown.

Opis larwy podał Boving (1906).

Donacia sparganii Ahrens, 1810

Donacia sparganii Ahrens, 1810: 20.

* Terra typica: nie podana.

Długość 7–9 mm. Wierzch ciała czarnomiedzisty z fioletowym połyskiem, rzadziej zielony lub miedzisty, pokrywy wzdłuż bocznych krawędzi zwykle żywiej ubarwione, metalicznie zielone lub złociste. Spód ciała, nogi i czułki czarne, ze słabym, zielonawym, metalicznym połyskiem. Spód ciała gęsto, szarożółto, jedwabiście owłosiony. Głowa o zmiennym urzeźbieniu powierzchni; bruzdy czołowe bardzo głębokie, środkowa głębsza i szersza od bocznych. Przedplecze (rys. 171) w przybliżeniu kwadratowe, guzy boczne mało wydatne, brunzka biegnąca wzdłuż środka delikatna; powierzchnia prawie matowa, drobno, gęsto punktowana i pokryta poprzecznymi zmarszczkami. Pokrywy przy końcu zwężone i prosto, poprzecznie obcięte podobnie jak u *D. semicypraea* (rys. 166); wzdłuż szwu da się wyróżnić cztery płytkie zagłębiania (rys. 149 a, b, c, d). Punkty w rządach drobne i niezbyt gęste, odstęp między

8 — Chrysoinellidae

http://rcin.org.pl

Zmienność osobnicza obejmuje budowę tylnych ud oraz ubarwienie wierzchu ciała. Opisano odmiany:

1. Wierzch ciała miedzisty, złocisty, złotozielony lub zielony forma typowa.
2. Wierzch ciała niebieski, granatowy lub fioletowy ab. coelestis WIESE, 1893: 1117.

Bionomia i stadia przedimaginalne nie były dotychczas przedmiotem badań. Obszar rozsiedlenia (rys. 249) obejmuje Europę północną i środkową. Jego północna granica biegnie przez Morze Północne i dalej wzdłuż północnych wybrzeży Skagerraku, okolice Filipstad i Zatoki Botnicką po środkową Finlandię; południowa od doliny Sekwany przez Wogezy, Bawarię i południowe przedgórza Sudetów i Karpat. Dalej ku wschodowi przebieg granic areału niejasny; doniesienia o występowaniu we wschodniej Syberii (JACOBSON 1892) wymagają nowych potwierdzeń.

Donacia sparganii była znajdowana wśród czwartorzędowych materiałów kopalnych z Danii (HENRIKSEN 1914, 1933, JESSEN 1920, 1923).
W Polsce w całym kraju w pełni lata, napotykana rzadko i tylko w niewielu okazach.

Donacia sparganii

Pochodzenie nazwy: łac. aquaticus — wodny; od zasiedlanego biotopu.

Terra typica: nie podana.

Długość 6–10 mm. Przedplecze i pokrywy złocistozielone, wzdłuż każdej pokrywy biegnie szeroka, purpurowa smuga, zajmująca zagoniki od drugiego do szóstego. Smuga ta jest po bokach złoto obrębiona, pośrodku zaś często fioletowa lub czarna; niekiedy bywa ona węższa, ograniczona tylko do 2–3 środkowych zagoników, całkowity jej zanik jest zjawiskiem wyjątkowym. Nogi i czułki czarne, z metalicznym, mosiężnozielonym połyskiem. Spód ciała

Donacia aquatica (Linnaeus, 1758)

Leptura aquatica Linnaeus, 1758: 397.
Donacia coccineofasciata Harrer, 1784: 226.
Donacia dentipes Fabricius, 1792: 116.

Pochodzenie nazwy: łac. aquaticus — wodny; od zasiedlanego biotopu.
Terra typica: nie podana.

Długość 6–10 mm. Przedplecze i pokrywy złocistozielone, wzdłuż każdej pokrywy biegnie szeroka, purpurowa smuga, zajmująca zagoniki od drugiego do szóstego. Smuga ta jest po bokach złoto obrębiona, pośrodku zaś często fioletowa lub czarna; niekiedy bywa ona węższa, ograniczona tylko do 2–3 środkowych zagoników, całkowity jej zanik jest zjawiskiem wyjątkowym. Nogi i czułki czarne, z metalicznym, mosiężnozielonym połyskiem. Spód ciała

http://rcin.org.pl
jedwabiście, złotowo owłosiony. Głowa gęsto i dość mocno punktowana, również złotowo owłosiona; środkowa bruzda czołowa wąska, lecz głęboko nacięta, bruzdy boczne płetkawe i mało wyraźne. Przedplecze (rys. 172) pośrodku długości wyraźnie zwężone, jego długość nieco większa od szerokości, powierzchnia gęsto, dość mocno punktowana, boki pokryte poprzecznymi zmarszczkami. Bruzdka środkowa z przodu i z tyłu mocniej wgłębiona, tworzy zwykle dwa podłużne, głębokie dolcezki. Pokrywy z podłużnym zagłębianiem, które rozpoczyna się przy wewnętrznym brzegu guza barkowego, kieruje się w stronę szwu i osiągnąwszy na obszarze wsisłu b (rys. 149) drugi zagonik biegnie wzdłuż niego prawie do końca pokryw; rządki punktów dość płetkowe, zagoniki bardzo gęsto, drobno zmarszczone i wtórnie, drobno, nieregularnie punktowane. Negi smukłe, tylne uda po spodniej stronie opatrzone dużym, ostrym zębem.

Dymorfizm płciowy słabo wyrażony i ograniczony do różnic w budowie ostatniego sternitu odwłoka, który u sameca jest ucięty i opatrzony wsisłem, a u samicy zaokrąglony i równomiernie wypukły. Przeście jak na rys. 251, 252.

Zmiennność osobnicza dotyczy głównie ubarwienia wierzchu ciała. Opisano odmiany:

1. Przedplecze i pokrywy złocistozielone, smuga na każdej pokrywie purpurowa ...
2. Ubarwienie pokryw jak u formy typowej, przedplecze bliżsienne ...
3. Pokrywy i przedplecze granatowe, wąska smuga wzdłuż szwu oraz boki pokryw złocistozielone ...
4. Wierzch ciała stalowoniebieski, smuga na pokrywach czarnopurpurowa lub czarno-fioletowa ...
5. Punktowanie w rządkach na pokrywach regularniejsze, a przedplecze nieco krótsze niż u formy typowej. Odmiana opisana z Hiszpanii, gdzie występuje sympatycznie z formą typową ...

Larwę, poczwarkę i bionomię opisał po raz pierwszy XAMBEAU (1890, 1893); cechy diagnostyczne larw podał BÖVING (1906).

D. aquatica była znajdowana wśród czwartorzędowych materiałów kopal­nych w Anglii (Pearson 1962), w Danii (Henriksen 1933) oraz w holocen­skich, raczej subfosylnych szczątkach w Finlandii (Poppius 1911).
W Polsce pospolita w całym kraju na brzegach wód, wiosną i wczesnym latem.

Rys. 250. Rozsiedlenie Donacia aquatica (oryg.).

Donacia impressa (Paykull, 1799)

Rhagium impressum Paykull, 1799: 193.

Pochodzenie nazwy: łac. impressus — wgnieciony; od wcisków na pokrywach. Terra typica: Szwecja.

Długość 6–9,5 mm. Wierzch ciała błyszczący, miedzisty lub ciemnomosierny, bez wyróżniających się, inaczej ubarwionych stref. Istnieją odmiany prawie czarne i granatowozielone, spotyka się je jednakże bardzo rzadko. Spód ciała pokryty gęstym, złotawym owłosieniem. Czułki i nogi czarne; pięć nasadowych członów czułków i część powierzchni nóg z zielonym, zielonomosiernym lub

http://rcin.org.pl
miedzistym, metalicznym połyskiem. Głowa drobno punktowana. Środkowa bruźda czołowa głęboka, boczne płytkie i szerokie. Przedplecze prawie kwadratowe, ku tyловi słabo, równomiernie zwężone, przednie kąty wystają na boki (rys. 173); powierzchnia drobno, gęsto punktowana, błyszcząca, prawie nie pomarszczona, bruźdka środkowa ku tyłowi coraz głębsza i zakończona mocnym wgłębieniem, urywa się dość daleko od tylnej krawędzi przedplecza.

Pokrywy z czterema zagłębieniami wzdłuż szwu, ostatnie z nich mało wyraźne, a niekiedy zgoła go brak. Punkty w rządkach dość drobne, lecz głęboko naklucie; pierwszy rząd w przedniej części pokryw dość dłuzny, niski, a niekiedy zgoła go brak. Punkty w rządkach dość drobne, lecz głęboko naklucie; pierwszy rząd w przedniej części pokryw rynienkowato zagłębiony; zagońiki poprzecznie zmarszczone, zmarszczki płytkie i niezbyt gęste. Kogi smukłe, tylnie golenie silnie wygięte, ząbek na tyłnych udach bardzo mały, często zredukowany do postaci małego, zalostrzonego guzka, niekiedy brak go zupełnie. Dymorfizm płciowy przejawia się w budowie ostatniego sternitu odwłoka. U samec jest on opatrzony przy tylnej krawędzi płytkim wgłębieniem, z tyłu łukowato zaokrąglony. Prącie jak na rys. 253, 254. U samicy ostatni sternit odwłoka równomiernie wypukły, jego tylne krawędź tworzy zarys trójkąta.

Zmienność osobnicza niewielka, odmianom barwnym osobnych nazw nie nadawano. Na podstawie jednego sameca pochodzącego z okolic Moskwy opisano odmianę (monstrositas?):

Bionomia i stadia przedimaginalne nie były opisywane. D. impressa była obiektem badań STAMMERA (1935b) nad symbiozą owadów z bakteriami.
Żyje na turzycowatych — *Cyperaceae*, zwłaszcza na turzycy błotnej — *Carex acutiformis* EHRH. (WEISE 1881), a także na oczerecie jeziornym — *Schoenoplectus lacustris* L. (GEOEKE 1943, MÜLLER 1953). Owady dorosłe żywią się głównie pyłkiem wymienionych roślin, lecz obserwowano również żerowanie na liściach turzyc (GEHRIG 1961).

Rys. 256. Rozsiedlenie Donacia impressa (oryg.).

(https://rcin.org.pl)

D. impressa znana jest z czwartorzędowych materiałów kopalnych ze Skanii (Andersson 1889) i z Jutlandii (Henriksen 1933).

W Polsce należy do najpospolitszych gatunków rzęsielnic i bywa spotykana nad wodami całego kraju od kwietnia do sierpnia.

Donacia springeri Müller, 1916

Donacia Springeri Müller, 1916: 95.

Pochodzenie nazwy: od nazwiska dra Hansa Springera, który zebrał serię typową.

Locus typicus: Monfalcone (Trieste, Włochy).

Dymorfizm płciowy ograniczony do różnic w budowie ostatniego sternitu odwłoka, który u samicy jest lekko wyciągnięty ku tyłowi i na tylnej krawędzi zaokrąglony, a u samea ucięty i opatrzony płytkim wgłębieniem. Prącie jak na rys. 255.

Zmiienność osobnicza niewielka, odmian nie opisywano.

Gatunek słabo zbadany, stadia przedimaginalne i szczegóły biologii nieznane.

Owady dorosłe są pyłkożerne. Łowiono je na oczerecie jeziornym — Schoenoplectus lacustris L. oraz na turzycy pospolitej — Carex fusca Bell. et All. (Kippenberg 1967).

Rozsiedlenie niejasne. Poza Monfalcone łowiono D. springeri tylko na południowych przedgórach Alp w Bolzano (Goecke 1951), w północnych Apeninach (Ravizza 1973a), w okolicach Bad Tölz w Bawarii (Bollow 1940), na Wyżynie Czesko-Morawskiej w miejscowości Přibyslav (Bechyně 1945) oraz w południowej Szwecji (Nyholm 1950).

W Polsce gatunek dotychczas nie napotkany.
Donacia brevicornis Ahrens, 1810

Donacia platysterna Thomson, 1866: 118.

Pochodzenie nazwy: łac. brevis — krótki i cornus — róg; od stosunkowo krótkich czułków.

Terra typica: nie podana.

Długość 8–10 mm. Wierzch ciała ciemnomiedzisty lub czarnomosiężny, spód pokryty żółtawym owłosieniem. Czułki krótkie, nie sięgają do połowy długości ciała, czarne, czlony 1–5 przynajmniej na końcach metalicznie połyskujące. Nogi czarnomosiężne, okolice stawów kolanowych metalicznie fioletowe lub purpurowe. Głowa gęsto pokryta krótkimi zmarszczkami, wszystkie trzy brzuzdy czołowe głębokie. Przedplecze w przybliżeniu kwadratowe, w środku długie i przed tylnymi kątami lekko, lecz wyraźnie przewężone; guzy boczne mało wydatne, brudzka środkowa płytka, często niewyraźna; powierzchnia bardzo gęsto, dość mocno punktowana, tło między punktami matowe, pokryte drobnymi zmarszczkami i mikroskopijnym punktowaniem wtórnym. Pokrywy z czterema wciskami wzdłuż szwu (rys. 149, a, b, c, d + e), z tyłu silnie zwężone, na końcu tępo ucięte; punktowanie w rządach mocne; wszystkie zago­niki pokryte gęstymi, poprzecznie biegnącymi zmarszczkami, które łączą punkty sąsiednich rządków. Nogi długie i smukłe, tylne uda z maleńkim ząb­kiem na spodniej krawędzi.

Dymorfizm płciowy przejawia się w budowie ostatniego sternitu odwłoka. U samca jest on tępo zaokrąglony z bardzo płytkim wciskiem pośrodku tylnej krawędzi. Prącie jak na rys. 258–260. U samicy ostatni sternit odwłoka równo­miernie wypukły, na tylnej krawędzi zaokrąglony.

Zmienność osobnicza poznana słabo, a dla jej scharakteryzowania byłaby potrzebna weryfikacja oznaczeń muzealnych okazów tego gatunku, często mylonego z D. impressa i D. thalassina. Opisano jedną odmianę:

Niewielu autorzy (Reitter 1920) podejmowali, że jest to tylko błędnie oznaczona D. thalassina ab. porphyrogenita WESTH. (patrz s. 135). HÄNEL (1940) podtrzymało jednak swoją opinię. GECKE (1960a), wobec zaginęcia okazu typowego, utrzymał odrębność obydwóch wymienionych odmian i opisywał problem oczekuje jeszcze na rozstrzygnięcie.

i zagadnienie spektrum pokarmowego *D. brevicornis* wymaga jeszcze dalszych badań.

Granic areału rozsiedlenia (rys. 257) tego gatunku na podstawie istniejącej dokumentacji jednoznacznie wytyczyć się nie da. *D. brevicornis* występuje w Europie północnej i środkowej; północna granica zasięgu przecina Fennoskan- dię prawdopodobnie równoleżnikowo poza kręgiem polarnym, lecz z Norwegii dotychczas o złowieniu tego gatunku nie donoszono. Znane są liczne miejsca występowania ze Szwecji, Finlandii (Hellen 1939), krajów bałtyckich (Pi-}

![Rys. 257. Rozsiedlenie Donacia brevicornis (oryg.).](http://rcin.org.pl)

Joëlle (1968b, 1970) o występowaniu tego gatunku w Algierii są z pewnoścą mylne, tym bardziej, że w dołączonej diagnozie wymieniony autor podkreśla brak ząbków na udach.

**D. brevicornis** była znaleziona w holoceńskich materiałach kopalnych w Finlandii (Poppius 1911).

W Polsce w całym kraju, lecz napotykana rzadko, a ponadto mylona z _D. impressa_ i _D. thalassina_; w ostatnich latach łowiono ją w dorzeczu Brdy (Krzemiński 1966).

Donacia marginata Hoppe, 1795

Donacia marginata Hoppe, 1795: 42.

Donacia limbata Panzer, 1796b, 29, nr 12.

Donacia lemnæe Fabricius, 1801: 128.

Pochodzenie nazwy: łac. marginatus — obrzeżony; od odmiennie ubarwionego obrzęzenia pokryw.

Terra typica: okolice Erlangan (Frankonia).

Długość 8-11 mm. Ciało szerokie i przypłaszczone, przypominające nieco _D. crassipes_, lecz smuklejsze. Wierzch ciemnomiedzisty lub czarny z mosiężnym połyskiem. Wzdłuż każdej pokrywy ciągnie się na całą szerokość ósmego i dziewiątego zagonika purpurowo-fioletowa smuga, której u niektórych okazów brak. Czułki czarne, w nasadowej połowinie z metalicznym połyskiem. Nogi czarne z metalicznym połyskiem, spód ciała gęsto owłosiony szarawo lub złotawo. Głowa gęsto punktowana, wielkość punktów niejednakowa, największe grupują się na ciemieniu; bruzdy czołowe wyraźne, środkowa wąska i głęboka, bożne płytka i szerokie. Przedplecze (rys. 175) w ogólnym zarysie kwadratowe, ku tyłowi lekko, równomiernie zwężone. Strona grzbietowa pokryta mocnym, niezbyt gęstym punktowaniem, tło między punktami tworzy gładkie i błyszczące wypukłości; boki głębko punktowane i pokryte zmarszczkami; bruzdka środkowa zazwyczaj wąska, z przodu i z tyłu wąska. Pokrywy z pięcioma wciskami (rys. 149, wciski b, c, d, g, h), na końcu równo, nieco ukośnie obcięte; punkty w rządach w przedniej części więcej, ku tyłowi coraz drobniejsze i płyszcze, przy końcu pokryw stają się niewyraźne i często giną wśród urzeźbienia wtórnego. Regularność rządów miejscami zaburzona przez punkty nadliczbowe. Zagoniki dwakroć szersze od rządów, pokryte delikatnym marszczeniem, które znacznie osłabia ich połysk. Nogi długo i smukłe, tylna uda przy końcu opatrzone po spodniej stronie małym, tępym ząbkem lub guzkiem, który u samca bywa niewyraźny lub zanika całkowicie.

Zmienność osobnicza dość znaczna; opisano odmiany:

Rozwój i stadia przedimaginalne były, dość powierzchownie, opisywane już w połowie XIX stulecia (Guérin-Méneville 1846, Mulsant 1847). Szczegóły budowy larwy podali Boving i Craighead (1930), a Ogłoblin i Miedwiediew (1971) pomieścili w swym kluczu dodatkowe cechy pozwalające odróżnić larwy *D. marginata* od innych znanych larw Donaciinae. Również i na tym gatunku Stammer (1935b) badał zjawisko symbiozy z bakteriami.

Jako rośliny żywicielskie piśmiennictwo zgodnie wymienia różne gatunki jeżogłówek — *Sparganium* L., najczęściej jeżogłówkę gałęzistą — *S. ramosum* Huds.

Obszar rozsiedlenia (rys. 263) obejmuje większą część zachodniej Palearktiki od Wysp Brytyjskich i Maroka po Azję Środkową i Ałtaj (Łopatin 1977). W Europie północna granica tego areału biegnie od Ulsteru przez Cumberland, Skagerrak, Västmanland i okolice Sztokholmu, Wyspy Alandzkie oraz najbardziej południową część Finlandii (Hellén 1939) po dorzecze górnej Kamy. Południowa prowadzi od Atlasu Średniego (Kocher 1958) przez Algierię, Peloponez, Rodos i górną Mezopotamię po północne prowincje Iranu oraz Uzbecką SRR.
D. marginata znana jest z czwartorzędowych materiałów kopalnych z Anglii (Bell 1922) oraz z Polski, z okolic Bełchatowa (Kuśka i in. in litt.).

W Polsce na obszarze całego kraju wczesnym latem na brzegach wód stojących, dość pospolita.

Rys. 263. Rozsiedlenie Donacia marginata (oryg.).

Donacia bicolora ZSCHACH, 1788

Donacia bicolora Zschach, 1788: 27.
Donacia sagittarieae Fabricius, 1792: 117.
Donacia aurea Ioppe, 1795: 43.
Donacia collaris Panzer, 1795: 216.

Pochodzenie nazwy: łac. bicolor – dwubarwny; od ubarwienia ciała.
Terra typica: Europa.

Długość 8,5–11 mm. Wierzch ciała o jedwabistym połysku, zwykle żywo ubarwiony, najczęściej złotozielony, rzadziej złocisty lub miedzisty, niekiedy dwubarwny o głowie i przedpleczu metalicznie niebieskich, kontrastujących
ze złotozielonymi pokrywami. Spód ciała pokryty bardzo gęstym, złocistym owłosieniem. Nogi i czułki z metalicznym, zwykle złotozielonym połyskiem, który na czułkach nie obejmuje końcowych 5–6 członów. Stopy po stronie grzbietowej zwykle niebieskie lub srebrzystoniebieskie. Głowa gęsto, drobno punktowana, wszystkie trzy bruzdy czołowe głębokie. Przedplecze prawie kwadratowe (rys. 176), jego szerokość nieznacznie większa od długości; po­wierzchnia mocno i bardzo gęsto punktowana, środkowa brudzka wąska i płytką; guzy boczne przypłaszczone. Pokrywy mają na powierzchni po sześć wcisków (rys. 149 a, b + f, c, d + e, g, h); rządki niezupełnie regularne, ich odcinki biegnące przez obszar wcisków złożone z punktów dużych i głębokich, a poza wciskami że znacznie mniejszych. Zagoniki gęsto i regularnie pokryte drobnymi zmarszczkami. Użyłkowanie skrzydeł tylnych jak na rys. 267. Nogi średniej długości, dość moene, tylne uda z wyraźnym, ostrym ząbkiem po stronie spodniej.

Dymorfizm płciowy słabo wyrażony, ograniczony niemal wyłącznie do budowy ostatniego sternitu odwłoka, opartego u samca wciskiem, a wypu­klego i lekko wyciągniętego ku tyłowi u samicy. Prącie jak na rys. 265, 266.

Zmiennność osobnicza stosunkowo nieznaczna, przejawia się w ubarwieniu ciała, oscylującym między barwą miedzistą a złotozieloną. Odmiany o jedno­licie ubarwionym wierzchu ciała nie noszą odrębnych nazw, opisano jedynie odmianę dwubarwną:

Bardzo szczegółowy opis larwy i poczwarki wraz z rysunkami podał P e r r i s (1848). Dalsze szczegóły dotyczące morfologii stadiów przedimaginalnych znaj­dują się u B o v i n g a (1906) oraz u O g o b l i n i n i M i e d w i e d w e w a (1971). D. bico­lor a była przedmiotem badań S t a m m e r a (1935b) nad symbiozą owadów z bak­teriami. Nienormalnie rozwinięty, jednooki, teratologiczny egzemplarz tego gatunku napotkał i opisał K r a a t z (1877).

Jako rośliny żywicielskie podawane są różne gatunki jeżogłówek — S p a r g a n i u m L., głównie jeżogłówka gałęzista — S. r a m o s u m H u d s. Niektóre źródła (W e i s e 1881, K a s z a r 1962a) podają i inne rośliny, jak strzałki — S a g i t a r i a L., turzyce — C a r e x L. i manny — G l y c e r i a B r o w n ; są to zapewne znaleziska przypadkowe, nie można jednak wykluczyć, że omawiany gatunek żywi się pyłkiem tych roślin, na co pośrednio mogłyby wskazywać obserwacje poczynione przez R u f f o (1964).

A r e a ł rozsiedlenia (rys. 264) obejmuje większą część Europy, Azję Środkową i część Syberii. W Europie jego północna granica biegnie przez południowo­wschodnią część Norwegii, południową Szwecję i dalej ku wschodowi w przybliżeniu wzdłuż równoleżnika 61°. Granica południowa obejmuje północno­zachodnią część Półwyspu Iberyjskiego, prawie cały Półwysep Apeniński oraz północną część Półwyspu Bałkańskiego od Albanii przez Heregoginę po dolinę Dunaju, a także południowe Zadnieprze (Ł o p a t i n 1960). Istnieją doniesienia
z Azji Mniejszej — Erciyas-Dagi (PENTHER i ZEDERBAUER 1905), z Izraela (RUFFO 1964) i Kaukazu (SZAWROW 1948) oraz z Azji Środkowej: Iran (BERTI i RAPILLY 1976), Altaj, Kazachstan, Uzbekistan (LOPATIN 1977), Kirgizia (ZAJCEW 1930). Przebieg granic rozsiedlenia ku wschodowi niejasny; z obszarów Chin, Mongolii, Korei i Japonii o występowaniu D. bicolora dotychczas nie donoszono. Południową część Półwyspu Apenińskiego zasiedla odrębna rasa, D. bicolora meridionalis WEISE, 1886: 250, o mniejszych wymiarach, ciemno-

mosięznym ubarwieniu ciała i bardzo małym, lecz ostrym ząbku na tylnych udach.

D. bicolora została znaleziona w czwartorzędowych szczątkach kopalnych w Anglii (PEARSON 1962).

W Polsce pospolita w całym kraju na brzegach stawów i jezior, a także nad rowami melioracyjnymi i innymi małymi ciekami, przez cały okres wegetacyjny.
Donacia obscura Gyllenhal, 1813

Donacia obscura Gyllenhal, 1813: 654.

Pochodzenie nazwy: łac. obscurus — ciemny; od ubarwienia ciała.
Terra typica: nie podana.

Długość 8,5–10,5 mm. Przedplecze i pokrywy czarne, z niezbyt mocnym, spiżowym lub miedzistym, znacznie rzadziej czarnozielonym lub czarnoniebieskim, metalicznym połyskiem; spód ciała pokryty złotawoburym owłosieniem; czułki i nogi czarne, ze słabym, metalicznym, czerwonawym lub fioletowym połyskiem, który na czułkach występuje zwykle tylko na członie nasadowym. Głowa drobno, bardzo gęsto punktowana, środkowa bruzda czołowa wąska i głęboka, boczne szersze i płytkie. Przedplecze (rys. 177) w przybliżeniu kwadratowe, ku tyłowi bardzo lekko zwężone, boki prawie proste, guzy boczne zupełnie spłaszczone; bruzdka środkowa lekko zarysowana, powierzchnia bardzo gęsto pokryta mocnymi, nieforemnymi punktami; przestrzenie między nimi łączą się tu i ówde w poprzeczne zmarszczki, zwłaszcza w tylnej części; przednie kąty tworzą wyraźny, odgęty na zewnątrz, ostry

ząbek. Pokrywy matowe, powierzchnia zagoników nadzwyczaj delikatnie, nieregularnie pomarszczona, na powierzchni wcisków zmarszczki przebiegają w najrozmaitszych kierunkach, tworząc zawyły labirynt, na pozostałej części powierzchni biegną przeważnie w poprzek zagoników; punktowanie w rządach drobne i gęste, rzadki aż do końca pokryw regularne i dopiero przy tymnej krawędzi zmącone; powierzchnia pokryw nierówna, wzdłuż każdej biegną dwa podłużne wgłębienia, obejmujące odpowiednio wciski f, b, c i g, h (rys. 149). Nogi smukłe, człon pazurkowy krótki, głęboko osadzony (rys. 152); tymne

uda u obu płci opatrzone na spodniej krawędzi dużym, ostrym, nieco ku tyłowi skierowanym żebem.

Zmienność osobnicza ograniczona niemal wyłącznie do odmian barwnych, różniących się między sobą odcieniem metalicznego połysku, którym osobnych

Rys. 271. Rozsiedlenie Donacia obscura (oryg.).

9 — Chrysomelidae
nazw nie nadawano. Opisano natomiast jedną odmianę napotkaną w okolicach Leningradu, różniącą się od formy typowej mniejszymi wymiarami ciała i urzeźbieniem:

1. Długość 8-8,5 mm. Pokrywy o dość mocnym połysku, zmarszczki na całej grzbietowej stronie ciała mocniejsze. Przypomina *D. antiqua*, lecz łatwo ją od niej odróżnić po ostrych przednich kątach przedplecza ab. *barovskiy* *Jacobson*, 1922: 54.

Bionomia i stadia przedimaginalne nie były badane.

Żyje na turyczach — *Carex L.*, zwłaszcza na turyczyci dzióbkowatej — *C. rostrata* *Stokes*. Owady dorosłe nie żerują na liściach, lecz żywą się pyłkiem wymienionej rośliny. Jako rośliny żywicielskie różne źródła podają także niektóre gatunki sitowia — *Scirpus* *L.* (*Weise* 1881) oraz oczeretu — *Schoenoplectus* *Reich.* (*Kasza* 1962a).

Obszar rozsiedlenia (rys. 271) ciągnie się od Wysp Brytyjskich przez Francję, Europę środkową i północną oraz Syberię i Mongolię po Japonię (Hokkaido). W Europie północna granica zasięgu dochodzi do wybrzeży Morza Barentsa, południowa biegnie przez środkową Francję, Alpy i Nizinę Węgierską; jej dalszy przebieg ku wschodowi nie jest jeszcze jasny.

W Polsce występuje w całym kraju na bagnach i brzegach wód w okresie kwitnienia turycz, tj. zwykle od końca maja do połowy lipca. Gatunek u nas raczej rzadki i łowiony w nielicznych okazach.

Donacia aureocincta *Sahlberg*, 1921

Donacia aureocincta *Sahlberg*, 1921: 36.

Pochodzenie nazwy: łac. aureocinctus — złociście obrzeżony; od ubarwienia pokryw.

Terra typica: Finlandia.

Długość 8,5-9,5 mm. Zewnętrznie, a także pod względem budowy prącia, bardzo podobna do *D. obscura*. Od wymienionego gatunku można ją odróżnić według cech podanych w kluczu do oznaczania gatunków, przy porównaniu z seriami poprawnie oznaczonych okazów, a w razie wątpliwości dzięki różnicom w kształcie wewnętrznych sklerotyzacji prącia, (*Nyholm* 1950).

Stadia przedimaginalne, szczegóły rozwoju i roślina żywicielska nieznane.

Dotychczas stwierdzony obszar rozsiedlenia obejmuje środkową i północną Szwecję oraz Finlandię po wybrzeża Zatoki Fińskiej. Należy oczekiwać dalej ku wschodowi położonych miejsc występowania w strefie tajgi, a być może również na stanowiskach reliktowych w północnej części strefy lasów mieszanych Europy wschodniej.

Z Polski nie była wykazywana.
Donacia antiqua Kunze, 1818

Donacia gracilis Suffkia, 1845: 366.
Donacia simplícifrons Lacordaire, 1845: 135.

Pochodzenie nazwy: lac. antiquus — starodawny; od ubarwienia wierzchu ciała, przypominającego pociemniały ze starości spiż.
Terra typica: nie podana.

Długość 7–9 mm. Ciało krępe i dość wypukłe, przypominające w pewnej mierze przedstawicieli rodzaju Plateumaris. Podobieństwo to dodatkowo zwiększają grube i mocne nogi. Przedplecze i pokrywy metalicznie brunatne lub ciemnomiedziste, nogi i czułki czarne, spód ciała pokryty żółtawym lub złotawym, gęstym, jedwabistym owłosieniem. Głowę ubarwiona podobnie jak przedplecze, lecz o słabszym połysku, czoło płaskie, bez guzków między oczami, bruzda środkowa wąska, lecz ostro zarysowana, bruzdy boczne zanikłe. Przedplecze (rys. 178) trapezoidalne, ku tyłowi zwężone, guzy boczne bardzo przy-

Rys. 272. Rozsiedlenie Donacia antiqua (oryg.).

http://rcin.org.pl
płaszczone, brudzka środkowa wąska i płytką, powierzchnia niemal całkowicie pokryta zbiegającymi się ku środkowi zmarszczkami. Pokrywy delikatnie punktowane, zagoniki niezbyt gęsto pokryte drobnym, poprzecznym marszczением; na każdej pokrywie cztery wciski leżące wzdłuż szwu (rys. 149 a, b, c, d), wciski boczne słabo widoczne. Nogi mocne, o grubych udach, na tylnych udach u obu płci znajduje się duży, zaostrzony, trójkątny ząb, skierowany ku tyłowi.

Dymorfizm płciowy. Samiec. Przedplecze smuklejsze, jego długość wyraźnie większa od szerokości. Ostatni sternit odwłoka tępo ucięty, przy tylnej kra-

Zmiennyność osobnicza niewielka; odmian nie opisywano.

Bionomia i stadia przedimaginalne nieznane.

Jest to prawdopodobnie gatunek pyłkożerny, brak jednak udokumentowanych obserwacji, które by pozwoliły potwierdzić to przypuszczenie lub określić spektrum pokarmowe. Jako rośliny żywicielskie większość starszych źródeł (WEISE 1881) podaje turzyce — Carex L., a GEHRIG (1961), który łowił D. antiqua na turzyce kwitnącej, nie podaje, czy owady znajdowały się na kwiatostanach, czy na innej części rośliny.

Obszar rozsiedlenia (rys. 272) obejmuje Europę północną i środkową; jego południowa granica biegnie przez Masyw Centralny, Alpy i Nizinę Węgierską; znane są stanowiska z okolic Lwowa i Kazania. Nie napotkano dotychczas D. antiqua na Wyspach Brytyjskich (KLOET i HINCKS 1977), a dawne doniesienia o występowaniu tego gatunku na terenie Włoch (PORTA 1911, 1934)
nie znalazły później potwierdzenia (MÜLLER 1953, RUFFO 1964). Jest to owad napotykany rzadko i tylko w pojedynczych okazach, nieco częściej bywa łowiony tylko w niektórych częściach Fennoskandii.

W Polsce znany dotychczas z dzielnic zachodnich, występuje jednak zapewne na całym obszarze kraju.

Donacia brevitarsis THOMSON, 1884

Donacia brevitarsis THOMSON, 1884: 149.

Pochodzenie nazwy: łac. brevis — krótki i tarsus, tarsi — stopa; od stosunkowo krótkich stóp.

Terra typica: nie podana.

Długość 9–10 mm. Ciało krępe i szerokie, pokrojem przypominające gatunki z rodzaju *Plateumaris*. Wierzch ciała o silnym, mosiężnym połysku, który na brzegach przedplecza i pokryw przybiera wyraźny zielonawy odcień. Głowa drobno punktowana, bruzdy czołowe głębokie, czułki, zwłaszcza u samicy,

Rys. 277. Rozsiedlenie *Donacia brevitarsis* (oryg.).
krótkie, nieznacznie tylko sięgające poza tylne kąty przedplecza. Przedplecze (rys. 179) mocno punktowane, boczne guzy mocno wypukłe, bruzdka środkowa słabo zarysowana. Pokrywy z bardzo płytkimi weiskami, punkty w rżądkach duże i głębokie, zagoniki szczególnie mocno zmarszczone, wtórne punktowanie tła źle widoczne. Prącie jak na rys. 276, 278 i 279.

Bionomia i stadia przedimaginalne nie były badane.

Roślina żywicielska nieznana; istnieje jedno tylko doniesienie o złowieniu D. brevitarsis na turzycach — Carex L. (Nyholm 1950).

W Polsce nie był łowiony; gdyby potwierdziły się dane o występowaniu D. brevitarsis w górach Włoch, można by było oczekiwać reliktowych stanowisk tego gatunku także i w Europie środkowej.

Donacia thalassina GERMAR, 1811

Donacia thalassina Germar, 1811: 29.

Pochodzenie nazwy: gr. thalassinos — kolor morskiej wody; od ubarwienia wierzchu ciała niektórych odmian.

Terra typica: Czechy.

Długość 7-9 mm. Ciało smukłe, wypukłe, wierzch połyskujący jedwabiście, niebieskawozielony, złotoziclony, mosiężny, miedzisty lub purpurowy. Spód ciała złotowo owłosiony. Nogi i czułki czarne, uda oraz pierwszy człon czułków, a często i kilka następnych, z metalicznym, spiożowym lub nieco tęczującym połyskiem. Głowa gęsto pokryta drobnym, ziarnistym urzeźbieniem, zbierającym się koncentrycznie w zmarszczki oraz długimi, żółtawymi, również ku środkowi zaczęszanymi włoskami; wszystkie trzy bruzdy czołowe głębokie. Przedplecze (rys. 180) trapezoidalne, ku tyłowi zwężone, powierzchnia pokryta bardzo gęstym, mocnym punktowaniem, bruzdka środkowa płytką, często niewyraźną. Pokrywy z dwoma weiskami (rys. 149 b, c) na każdej, pozostałe weiski bardzo słabe, zwykle nie wgłębione, lecz tylko zaznaczone przez słabszy połysk, wywołany zmęceniem urzeźbienia wtórnego; zagoniki gęsto pokryte wąskimi, poprzecznymi zmarszczkami; końce pokryw poprzecznie ucięte. Nogi smukle, tylne uda u obu płci opatrzone niezbyt długim, lecz bardzo ostrym, ku tyłow i skierowanym zębem.

1. Wierzch ciała złotozielony, miedzisty lub mosiężny .. forma typowa*
2. Wierzch ciała zielony lub zielony z niebieskawym odcieniem ... ab. viridis ŚAVROV, 1948: 51.
5. Poszczególne człony czułków w nasadowej połowie jasne, czerwone lub czerwonoobrąź- natne, wierzch ciała zielony, mosiężny lub miedzisty ... ab. rufovariegata JACOBSON, 1900: 105.
6. Ubarwienie czułków jak u ab. rufovariegata, wierzch ciała metalicznie błękitny ab. coerulea JACOBSON, 1900: 105.

Odmiany rufovariegata i coerulea znane są wyłącznie z Azji Środkowej.

Żyje na ponikle błotnym — Heleocharis palustris L., owady zjadają pyłek kwiatowy rośliny żywicielskiej (MÜLLER 1953); doniesienia RADEGO (1876) o żerowaniu na turzycach — Carex L., powtarzane przez późniejszych autorów.
(Weise 1881) oraz na innych rodzajach roślin (Krzemiński 1966, Warchałowski 1971) wymagają jeszcze sprawdzenia.

Bionomia i stadia przedimaginalne nie były dotychczas badane.

Obszar rozsiedlenia (rys. 285) obejmuje większą część Obszaru Palearktycznego od Wysp Brytyjskich po Japonię. Północna granica tego arealu przebiega w Europie od Kristiansundu przez środkowe prowincje Szwecji i północne wybrzeża Zatoki Botnickiej po Karelską ASRR. Południowa biegnie przez Pireneje i Alpy oraz przecina Półwysep Bałkański i południowe Zadnieprze; dalszy jej przebieg niejasny, prawdopodobnie omija od północy basen Morza Kaspijskiego oraz pustynie Takla-Makan i Gobi, znane są bowiem okazy z Sinkiang, Mongolii, dorzecza Amuru, Korei i Japonii.

Donacia thalassina była znajdowana w czwartorzędowych materiałach kopalnych z Anglii (Pearson 1962), Walii (Coope i Brophy 1972), ze Skanii (Andersson 1889, Kurk 1917), Danii (Henriksen 1933) i z południowej Finlandii (Poppius 1911).
W Polsce należy do gatunków pospolitych; spotyka się ją w czerwcu i lipcu na brzegach jezior i stawów, rzadziej nad rowami melioracyjnymi oraz na trwale podmokłych łąkach.

Donacia vulgaris Zschach, 1788

Donacia vulgaris Zschach, 1788: 27.

Donacia typhae Ahrens, 1810: 37.

Pochodzenie nazwy: łac. vulgaris — pospolity.

Terra typica: Europa.

Długość 6–9 mm. Ciało bardzo smukłe. Wierzch metalicznie zielony, złotozielony lub ciemnomiedzisty, znacznie rzadziej purpurowy lub zielononiebieski. Część powierzchni pokryw leżąca między pierwszym a szóstym rzędziem punktów zwykle odmiennie ubarwiona, mosiężna lub miedzista, wzdłuż jej środka u niektórych okazów biegnie ciemna smuga o fioletowym lub granatowym odcieniu, zwykle purpurowo obwiedziona. Czułki czarne, nasady poszczególnych członów często czerwonawe. Nogi niezbyt długie, smukłe, uda metalicznie zielone, po grzbietowej stronie w pobliżu stawu kolanowego z purpurowym lub fioletowym połyskiem, w części nasadowej jasnokremowe. Golenie częściowo czerwone, ich końce z metalicznym, zwykle zielonawym połyskiem. Spód ciała srebrze owłosiony. Głowa gęsto, drobno punktowana, bruzda czołowa głęboko nacięta. Przedplecze (rys. 181) stosunkowo wąskie, pośrodku przewężone, guzy boczne wydatne; powierzchnia mocno, gęsto punktowana, przestrzenie między punktami tu i ówdzie zlewają się w poprzeczne zmarszczki; bruzdka środkowa bardzo płytko i zwykle dostrzegalna tylko w przedniej części. Pokrywy na końcu łukowato wykrojone (rys. 168), kąty przyszwowe w przybliżeniu proste; po każdej stronie szwu widoczne dwa wciski (rys. 149 b, c); punkty w rzędach duże i głębokie, zagoniki pokryte drobnym, niezbyt regularnym marszczением, które nadaje im jedwabisty połysk.

Zmienność osobnicza prowadzi do wytwarzania rozmaitych odmian barwnych, odrębne nazwy nadano jednakże tylko dwu odmianom o wierzchu ciała ubarwionym jednolicie, bez smugi na pokrywach:

1. Wierzch ciała zielony ... ab. viridula Sahlberg, 1871: 438.

Ponadto z Azji Środkowej opisano odmianę:

3. Czułki i nogi w przeważającej części ubarwione jasno, rdzawo lub żółtobrunatno ab. issykensis Jacobson, 1900: 105.
Odmiana ta była stawiana na szczeblu podgatunku (Szawrow 1948, Łopatin 1967), lecz niektórzy autorzy w ostatnich latach przywracają jej poprzedni status (Berti i Rapiły 1976).

Obszar rozsiedlenia (rys. 286) obejmuje znaczną część Eurazji. W Europie jego północna granica biegnie od Szkocji przez środkową część Norwegii i północną Szwecję (Lappmarken) po Półwysep Kolski. Południowa prowadzi wzdłuż Pirenejów, obejmuje od południa Sycylię, dalszy jej przebieg niejasny;

D. vulgaris została znaleziona w czwartorzędowych materiałach kopalnych w Anglii (WHITEHEAD i GOODCHILD 1909, WHITEHEAD 1920, BELL 1922) i w Danii (HENRIKSEN 1933).

W Polsce w całym kraju na pobrzeżach wód stojących i wolno płynących, lecz spotykana nieczęsto i w małej liczbie okazów.

Donacia simplex Fabricius, 1775

Donacia simplex Fabricius, 1775: 195.
Donacia linearis Hoppe, 1795: 46.

Pochodzenie nazwy: łac. simplex — prosty, zwyczajny; od słabego połysku i jednolitego ubarwienia wierzchu ciała.

Terra typica: Anglia.

Zmienność osobnicza przejawia się głównie w istnieniu odmian barwnych, których, wraz z formą typową, opisano sześć:
1. Wiersz ciała mosiężny z brunatnym lub zielonawym odcieniem . . . forma typowa.
2. Wiersz ciała mosiężny z brunatną podosobą . . . ab. aurichalcea WESTHOF, 1882: 259.
3. Wiersz ciała zielonawy ab. aeruginosa WESTHOF, 1882: 259.

http://rcin.org.pl

Omawiany gatunek był od dawna obiektem różnych badań, przeprowadzanych zarówno na owadach dorosłych, jak i na larwach. Anatomię narządów wewnętrznych dorosłego owada opisał po raz pierwszy Dufour (1824), a przebieg kopulacji Gadeau de Kerville (1900). Symbiozę z bakteriami badał

Rys. 297. Rozsiedlenie Donacia simplex (oryg.).

Owady dorosłe spotyka się najczęściej na jeżogłówkach — Sparganium L., a ponadto na różnych gatunkach manny — Glyceria Brown i turzycach — Carex L., stwierdzonych także jako rośliny żywicielskie larw tego gatunku (Ogłoblin i Miedwiediew 1971).

Z wrogów naturalnych D. simplex zidentyfikowano pasożyta rozwijającego się w jej jajach, kruszynka Trichogramma evanescent Westw. (Hymenoptera, Chalcidoidea) (Jolivet 1950).

Obszar rozsiedlenia (rys. 297) obejmuje znaczną część Palearktiki od Wysp Brytyjskich po Syberię Wschodnią i Mongolię. Powtarzana w większości kata-

http://rcin.org.pl
logów informacja o występowaniu tego gatunku w Japonii (Harold 1878) odnosi się do *D. vulgaris* (Chujo i Kimoto 1961). Północna granica arealu rozsiedlenia sięga w Europie niemal po kraj polarny, południowa przeciwa obszar Afryki północno-zachodniej oraz Azję Mniejszą, dalej biegnąc prawdopodobnie wzdłuż granicy lasostepu i omijając od północy obszary stepowe Azji Środkowej.

D. simplex była znajdowana w kopalnych materiałach czwartorzędowych z Anglii i Irlandii (Bell 1922, Blair 1924, Pearson 1962) oraz ze Skanii (Kurk 1917). Istnieją ponadto niepewne oznaczenia okazów ze szczątków plioceńskich z Anglii (Bell i Bell 1872, Reid 1890) oraz z czwartorzędowych złóż węgla brunatnego w Lombardii (Sordelli 1882).

W Polsce, zwłaszcza na brzegach jezior i starorzeczy, pospolity w całym kraju od wczesnej wiosny po południe lata.

Donacia tomentosa Ahrens, 1810

Donacia tomentosa Ahrens, 1810: 42.

Pochodzenie nazwy: łac. tomentosus — pokryty kutnerem; od gęsto owłosionych pokryw.

Terra typica: nie podana.

Długość 7–9,5 mm. Ciało smukłe, przypłaszczone, wierzch czarnomosiężny lub czarnozielony, gęsto pokryty zielonawosrebrzistym lub zielonawozłotym owłosieniem. Stwierdzana makroskopowo barwa wierzchu ciała najczęściej zielonawa, istnieją jednak odmiany purpurowe, miedziste, ciemnozielone i — bardzo rzadkie — chabrowoniebieskie. Nasadowe części poszczególnych członów czułków oraz znaczna część powierzchni nog czteronawowe, pozostałe części odnóży, tzn. zgrubienia ud, końce goleni i końce poszczególnych członów stop czarne, z zielonawym, metalicznym połyskiem. Śpód ciała pokryty jedwabiistym, jasnopopielatym, gęstym owłosieniem. Głowa gęsto punktowana, brzuszańe gęste wyraźnie i głębokie. Przedplecze (rys. 183) w tylnej części zwężone, boki pośrodku charakterystycznie wcięte, zamiast bruzdki środkowej wzdłuż środka przedplecza biegną rozszczepione w przod i w tylu wglądem. Pokrywy w tylnej części zwężone i w osobna stęponde lub zaokrąglone na końcu; ureżbiezenie powierzchni w znacznej mierze zakryte owłosieniem.

Zmienność osobnicza przejawia się w istnieniu wymienionych już odmian barwnych wierzchu ciała. Znacznym wahaniom może ulegać rozmieszczenie czerwonej barwy na nogach, która najczęściej obejmuję nasadową powłokę ud oraz część przykołanową i wewnętrzną powierzchnię goleni; pozostałe części są czarne z metalicznym, zwykle zielonym połyskiem. U odmian nogi mogą

http://rcin.org.pl
być bądź to całe metalicznie zielone z czerwoną nasadą ud i krótkim, przykolanowym odcinkiem goleni, bądź też całe czerwone z wąską, metalicznie zieloną smugą, biegnącą po grzbietowej stronie ud i wzdłuż tylnej krawędzi goleni. Żadnej z odmian barwnych odrębnych nazw nie nadawano, jakkolwiek Ahrens (1810) już w opisie oryginalnym wymienił znanych mu osiem aberracji barwnych i oznaczył je kolejnymi literami alfabetu łacińskiego.

Bionomia i stadia przedimaginalne nie były badane. Anomalie budowy spermateki opisali Levitt i Spett (1927).

Rośliną żywicielską tego gatunku jest łączeń baldaszkowy – Butomus umbellatus L.

Rys. 298. Rozsiedlenie Donacia tomentosa (oryg.).

Obszar rozsiedlenia (rys. 298) obejmuje Europę środkową i niewielką część Europy północnej, kraje kaukaskie, zachodnią Syberię oraz część środkowość azjatyckich republik ZSRR po Ałtaj. W Europie północna i zachodnia granica zasięgu występowania biegnie od zachodnich wybrzeży kontynentu przez okolice Kilonii, Kattegat, Goteborg i Wyżynę Gotlandzką po Norrköping.
oraz od Helsinek po Varkaus; dalszy jej przebieg ku wschodowi niejasny. Południowa biegnie od Prowansji przez Alpy, północne przedgórza Gór Dynarskich i Karpaty Południowe po deltę Dunaju, a na terytorium Azji wzdłuż południowych przedgórzy Kaukazu.

Donacia tomentosa znana jest z czwartorzędowych stanowisk kopalnych z Danii (Hennrikse 1914) i z południowej Szwecji (Kurk 1917).

W Polsce na bagnach i moczarah w całej niżowej części kraju, dość pospolity.

Donacia cinerea Herbst, 1784

Donacia cinerea Herbst, 1784: 100.
Donacia tarsata Panzer, 1796b, nr 16.
Donacia hydrochaeridis Fabricius, 1801: 129.

Pochodzenie nazwy: łac. cinereus — popielaty; od barwy wierzchu ciała.

Terra typica: Pomorze.

Zmienność osobnicza ograniczona do ubarwienia wierzchu ciała, a także do ubarwienia nóg, na których czerwona barwa może się w określonych granicach rozprzestrzeniać lub częściowo zanikać. Istniejącym odmianom odrębnych nazw nie nadawano.

Szczegóły budowy larw podali Bøving (1906), a także Kryger i Sonderup (1945); cechy te zostały częściowo wykorzystane w kluczu Ogłoblina i Miedwiediewa (1971) do oznaczania larw. *D. cinerea* była obiektem badań anatomiczno-porównawczych nad narządami rozrodczymi samców (Spett i Le-
Przebieg hibernacji owadów doroślanych tego gatunku zbadał i opisał Goecke (1933).

Rys. 299. Rozsiedlenie Donacia cinerea (oryg.).

Obszar rozsiedlenia (rys. 299) obejmuje znaczną część zachodniej Palearktyki, sięgając od Wysp Brytyjskich po góry Azji Środkowej. Północna granica rozsiedlenia biegnie od zachodnich wybrzeży Irlandii przez Northumberland, okolice Oslo, jezioro Wener, Uppsalię i południową Finlandię; południowa przez południową Francję, Toskanię, Grecję, Iran i środkowoazjatyckie republiki ZSRR po Altaj. Nie stwierdzono występowania *D. cinerea* w Azji Mniejszej, lecz zapewne można oczekiwać jej odnalezienia i na tym terytorium.
D. cinerea była znajdowana w czwartorzędowych materiałach kopalnych z południowej Szwecji (Andersson 1889) i z Danii (Henriksen 1933). W Polsce na całym obszarze kraju, zwłaszcza na stanowiskach pałki wąskolistnej, w czerwcu i lipcu nieradki.

Rodzaj Plateumaris Thomson, 1866 — Błotnica

Plateumaris Thomson, 1866: 121.

Pochodzenie nazwy: gr. platys — płaski i eumares — ruchliwy¹.
Gatunek typowy: Leptura sericea Linnaeus, 1761.

Kształt ciała podobny jak u przedstawicieli rodzaju Donacia, lecz krótsze i mocniejsze nogi oraz bardziej wypukłe, z tułu wspólnie zaokrąglone pokrywy nadają błotnicom nieco masywniejszy wygląd. Wierzch ciała z metalicznym połyskiem o różnorodnych odciennych; ubarwienie pokryw zawsze jednolite, miejscami tęczające, lecz bez wyodrębnionych, odmiennie ubarwionych smug. Metaliczny połysk bywa niekiedy słabo widoczny, a u rzadkich odmian może nawet zanikać całkowicie; pokrywy przybierają wówczas barwę czarną lub smolistobrunatną.

Głowa delikatnie owłosiona, na ciele brudza środkowa wyraźna i głęboko nacięta, bruzdy przyoczne bardzo płytkie i szerokie, zwykle słabo zaznaczone lub brak ich zupełnie. Przedplecze o kształcie typowym dla podrodziny Donaciinae, bruzdka środkowa zawsze wąska, wyraźnie nacięta. Pokrywy dość równomiernie wypukłe, z tułu zaokrąglone lub nieznacznie stępione, nigdy nie bywają na końcu poprzecznie lub skośnie obcięte. Powierzchnie stykowe szwu pokryw podobne jak u rodzaju Donacia, złożone z regularnych rządów mocnych punktów oraz z poprzecznego marszczenia pokrywającego zagoniki. Wciski na pokrywach wyraźniej występują tylko u niektórych okazów P. sericea i P. discolor; są to wciśki przytarczokowy oraz dwa przednie wciśki przyszczawne (rys. 149 a, b, c). Nogi mocne i stosunkowo krótkie. Spód ciała pokryty owłosieniem. Pierwszy widoczny sternit odwoluta nieco krótszy niż u rzeźnicy, jego długość nie przekracza długości czterech pozostałych sternitów nierzadnych.

¹ Nazwa wybrana przez Thomiona dość niefortunnie, gdyż przedstawiciele rodzaju Plateumaris odznaczają się zarówno bardziej wypukłym ciałem, jak i mniejszą ruchliwością, w porównaniu z większością gatunków rodzaju Donacia.
Błotnice są związane z roślinnością błotną i nadwodną, toteż spotyka się je głównie na podmokłych łąkach i torfowiskach oraz na pobrzeżach wód powierzchniowych. Owady dorosłe żywią się pyłkiem różnych roślin nadwodnych, głównie jednoliściennych. Larwy rozwijają się na korzeniach i kłączach roślin błotnych, dobrze znosząc mazistą konsystencję podłoża i nie wymagając dla swego rozwoju całkowitego pokrycia terenu wodą.

Trafiące się w piśmiennictwie doniesienia o zachorowaniach lub padnięciach bydła karmionego sianem z tzw. kwaśnych łąk, bądź wypasanego na terenach podmokłych (Osterloff 1884) dotyczą głównie zatruć błotnicami, które swe toksyczne właściwości zachowują także po wysuszeniu.

Klucz do oznaczania podrodzajów

<table>
<thead>
<tr>
<th>Plateumaris s. str. (s. 147)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plateumaris s. str.</td>
</tr>
</tbody>
</table>

1. Wzdłuż podgiętych pod spód boków przedplecza biegnie skrócona, płytka bruzdka, zwykle widoczna tylko w pobliżu przednich kątów (rys. 301). Przedplecze delikatnie owłosione.

<table>
<thead>
<tr>
<th>Juliusina (s. 153)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juliusina</td>
</tr>
</tbody>
</table>

Podrodzaj *Plateumaris* s. str.

Należą tutaj gatunki wyróżniające się obecnością długiej bruzdki biegnącej wzdłuż epipleur przedplecza, brakiem owłosienia przedplecza oraz obecnością ostrego kolca na tylnych udach u obydwóch płci. Larwy nie były opisywane. Do podrodzaju *Plateumaris* s. str. zaliczono 24 gatunki, tzn. wszystkie błotnice amerykańskie oraz 8 palearktycznych; do fauny europejskiej należą tylko dwa gatunki, występujące i w Polsce. Ich wzajemny stosunek nie jest do końca wyjaśniony, spotyka się bowiem formy, które trudno zdecydowanie zaliczyć do jednego lub drugiego gatunku (Heyden 1883). Niektórzy autorzy (Goecke 1943) kwestionowali nawet odrębność tych dwóch gatunków.
Klucz do oznaczania gatunków

1. Zarówno trzeci, jak i czwarty człon czułków tylko nieznacznie dłuższy od drugiego.

.................. P. discolor (s. 151).
—. Trzeci człon czułków o połowę, a czwarty dwukrotnie dłuższy od drugiego.

.................. P. sericea (s. 148).

Plateumaris (Plateumaris) sericea (Linnaeus, 1761)

Leptura sericea Linnaeus, 1761: 196.
Donacia asiatica Faldermann, 1837: 322.

Pochodzenie nazwy: łac. sericeus — jedwabisty; od jedwabistego połysku wierzchu ciała, pokrytego drobnymi zmarszczkami.

Terra typica: nie podana.

Długość 7–10,5 mm. Wierzch ciała o zmiennym, lecz zwykle dość mocnym, metalicznym połysku, najczęściej jednobarwny, w rozmaitych odcieniach od czerwonego poprzez miedzisty, złoty, złotozielony, zielony, błękityny i fioletowy do purpurowego, w znacznie rzadzych przypadkach przedplecze może być ubarwione odmieniem niż pokrywy. U rzadkich odmian metaliczny połysk może zanikać, wierzch ciała staje się wówczas jednolicie czarny. Nogi i czułki czarne, kilka nasadowych członów czułków oraz grzbietowa strona ud z metalicznym, zwykle zielonym lub mosiężnym, nie zawsze wyraźnym połyskiem. Końcowe człony czułków, nasada goleni oraz częściowo stopy mogą być u niektórych odmian czerwonobrunatne, podobne ubarwienie kończyn spotyka się też u okazów niezupełnie zesklerotyzowanych przez jakiś czas po opuszczeniu kokonu poczwarczego. Głowa gęsto punktowana, bruzda czołowa wąska i głęboko nacięta. Przedplecze (rys. 302) stosunkowo wąskie, jego długość większa od szerokości, guzy boczne mocne, zwykle bardziej błyszczące od reszty powierzchni przedplecza, przednie kąty zaostrzone i skierowane na zewnątrz; wzdłuż bruzdki grzbietowej skupia się mocne punktowanie i skośne zmarszczki. Pokrywy z lekkim wgłębieniem wokół tarczki oraz dwoma nie zawsze wyraźnymi weiskami przy szwie (rys. 149 b, c). Nogi mocne, tylne uda z dużym zębem po spodniej stronie.

Zmienność osobnicza bardzo duża, szczególnie w zakresie ubarwienia. Doprowadziło to do opisania blisko dwudziestu form, wśród których dostatecznie wyraźnie da się wyróżnić dziesięć:

1. Wierzch ciała zielony z mocnym połyskiem metalicznym forma typowa*
2. Wierzch ciała błękityny do błękitnofioletowego ab. festucae Fabricius, 1792: 116.
 (= ab. viridis Csiki, 1953: 120).
6. Wierzch ciała ciemnomosiężny ... ab. armata Paykull, 1798: 194.
7. Wierzch ciała czarniawy ze słabym, lecz wyraźnym połyskiem metalicznym ... ab. tenebricosa Westhoff, 1882: 256.

8. Wierzch ciała czarny, z trudno dostrzegalnym polyskiem metalicznym lub zupełnie bez polysku ... ab. luctuosa Westhoff, 1882: 256.
9. Wierzch ciała fioletowy, zmarszczki na zagonikach pokryw bardzo płtokie i słabo zary- sowane .. ab. violacea Hoppe, 1795: 44.
 (= ab. laevigata Csiki, 1953: 120).

Ponadto Paulcke (1892) opisał okazy nienormalne, ubarwione asymetrycznie.
Stadia przedimaginalne nieznane; obserwacje Węgrzeckiego (in litteris) dotyczące rozwoju larw tego gatunku w łodygach i na liściach kosaćca zół-

http://rcin.org.pl
tego — Iris pseudoacorus L., wspomniane w pierwszym zeszycie „Kluczy” (Warchałowski 1971: 29), nie potwierdzają się i polegały, być może, na pomyłce.

Właściwą rośliną żywicielską tego gatunku jest prawdopodobnie kosaciec żółty (Goecke 1943), jakkolwiek piśmiennictwo podaje także różne inne rodzaje roślin błotnych, jak turzyce — Carex L., jeżogłówki — Sparganium L. (Rou-

Rys. 307. Rozsiedlenie Plateumaris sericea (oryg.).

Obszar rozsiedlenia (rys. 307) obejmuje znaczną część Palearktiki, od Wysp Brytyjskich po Sachalin, Kuryle i Japonię. Jego północna granica biegnie
od północnych wybrzeży Irlandii przez Szkocję, Morze Północne, Laponię i dalej ku wschodowi przez europejską strefę tundry. Przebieg granicy południowej niejasny, prawdopodobnie ciągnie się ona od północnej Hiszpanii (Baguena 1960) przez Lombardię (Ruffo 1964) i Rodopy (Angelow, Tomow i Gruev 1965) po zakaukaskie republiki ZSRR, omijając jednak Azję Mniejszą. Doniesienia o występowaniu tego gatunku w środkowych i południowych Wło­szech (Lugion 1929) dotyczą prawdopodobnie oderwanych populacji lokal­nych, znajdujących się już poza zasięgiem obszaru rozsiedlenia zwartego. Dawne doniesienia z Azji Środkowej (Lacordaire 1845, Jacobson 1892) nie zostały w nowszych czasach potwierdzone (Lopatin 1977), brak również dotychczas doniesień z Mongolii, Chin i Półwyspu Koreańskiego (Gressit i Kimoto 1961).

P. sericea znana jest z bardzo licznych czwartorzędowych znalezisk kopal­nych z Anglii (Bell 1888, Reid 1890, Whitehead 1920, Blair 1924), Wysp Fryzyskich (Jessen 1923), Belgii (Lapouge 1902), Danii (Hartz 1909, Henriksen 1914, 1933, Jessen 1920), południowej Szwecji (Anderson 1889, Holst 1906, 1908, Kurk 1917, Kolbe 1933), okolic Hamburga (Beyle 1931, Gripp i Beyle 1937), ze Szwajcarii (Heim i Gams 1918) oraz z Polski, z okolic Bełchatowa (Kuśka i inni in litt.). Szczątki _P. sericea_ znajdowano ponadto w wyrobach z torfu, a mianowicie w prasowanych płytach izolacyjnych, używanych również do wykładania pudeł entomologicznych (Scholz 1934).

W Polsce w całym kraju na brzegach wód, torfowiskach i podmokłych lądach, pospolita. Owady dorosłe spotyka się najliczniej od początku maja do końca lipca.

Plateumaris (Plateumaris) discolor (Panzer, 1795)

Donacia discolor Panzer, 1795: 216.
Donacia palustris Schilling, 1838: 104.
Donacia comari Suffrian, 1846: 84.
Donacia geniculata Thomson, 1866: 123.

Pochodzenie nazwy: łac. discolor — różnobarwny; od zmienności ubarwienia wierzchu ciała.

Terra typica: nie podana.

Długość 6,5—9 mm. Ubarwienie i urzeźbienie wierzchu ciała, a także jego ogólny pokrój bardzo podobne jak u gatunku poprzedniego i mieszczą się całkowicie wewnątrz spektrum zmienności opisanej przy _P. sericea_. Nie dotyczy to jedynie budowy czułków, kształtu prącia oraz długości ciała, która nigdy nie osiąga wartości powyżej 9 mm, często spotykanych zwłaszcza u samiec _P. sericea_.

Zmienność osobnicza bardzo znaczna, tak w zakresie ubarwienia, jak owło­sienia, urzeźbienia i wielkości ciała, a ponadto w zakresie kształtu i wielkości

1. Wierzch ciała zielony ..forma typowa.
2. Wierzch ciała złocisty ..ab. isolacordairei BECHYNÉ, 1945: 89.
3. Wierzch ciała miedzisty ...ab. cupraria BECHYNÉ, 1945: 89.
 (= isocupraria BECHYNÉ, 1945: 89).
4. Wierzch ciała purpurowy ...ab. purpuricena BECHYNÉ, 1945: 89.
 (= isopurpuricena BECHYNÉ, 1945: 89).
5. Wierzch ciała fioletowy ...ab. pseudoviolacea BECHYNÉ, 1945: 89.
 (= isoviolacea BECHYNÉ, 1945: 89).
6. Wierzch ciała błękitny ...ab. coelicolor BECHYNÉ, 1945: 89.
 (= isocoelicolor BECHYNÉ, 1945: 89).
7. Wierzch ciała granatowoczarny, prawie bez połysku metalicznegoab. nigrita SCHILSKY, 1908: 603.
8. Wierzch ciała dwubarwny: przedplecze purpurowe, pokrywy błękitnofioletoweab. tatrica BALTHASAR, 1934: 130.

Obszar rozsiedlenia (rys. 308) obejmuje prawdopodobnie całą zachodnią część Obszaru Palearktycznego, jednakże wskutek częstego mylenia P. discolor z bardzo podobną P. sericea należy się liczyć z możliwością poważnych korektur danych faunistycznych dotyczących jej występowania zwłaszcza poza obszarem Europy. W Europie północna granica areału rozsiedlenia biegnie podobnie jak u P. sericea, południowa od południowo-zachodnich wybrzeży Francji (SAINTE-CLAIRE-DEVILLE 1937) przez Alpy, Chorwację (KOČA 1905) i Siedmiogród (BIELZ 1887); dalej ku wschodowi przebieg granicy niejasny, najdalej na wschód położonym miejscem znalezienia P. discolor jest Minusińsk w górnym biegu Jeniseju (JAKOBSON 1902). Natomiast dotychczasowe doniesienia z Półwyspu Iberyjskiego dotyczą P. lacordairei PERR. (BAGUENA 1960).

P. discolor była znajdowana wśród kopalnych, czwartzędowych szczątków w Danii (HENRIKSEN 1933), w basenie Rodanu (LORTET i CHANTRE 1876) oraz w połodowcowych, subfosylnych szczątkach w Finlandii (POPIUS 1911). Ponadto MEUNIER (1900) donosił o znalezieniu szcząteków P. discolor w torfi.
z okolic Lauenburga (Niederlausitz), zastrzegając jednak, że oznaczenie nie jest pewne.

W Polsce bardzo pospolita w całym kraju na torfowiskach i pobrzeżach bagien, w czerwcu i lipcu.

Rys. 308. Rozsiedlenie Plateumaris discolor (oryg.).

Podrodzaj Juliusina Reitter, 1920

Pochodzenie nazwy: od imienia entomologa Juliusza Weisego (1844-1925).
Gatunek typowy: Prionus braccatus Scopoli, 1772.

Bruzdka po spodniej stronie przedplecza płytka i skrócona (rys. 301). Nogi mocne, wzdłuż każdej goleni biegną trzy listewki, z nich jedna po krawędzi zewnętrznej, a dwie pozostałe po bokach. U sameców tylne uda opatrzone ostrym zębem, u samiec jest on tępy lub zredukowany do niewielkiego zgrubienia. Należy tutaj 11 gatunków, wyłącznie palearktycznych, w tym sześć europejskich. Cztery z nich należą do fauny Polski.
Klucz do oznaczania gatunków owady dorosłe

1. Przedplecze o bokach zaokrąglonych, z przodu wyraźnie rozszerzone (rys. 309, 310) .. 2.

- Przedplecze o bokach prostych, ku przodowi tylko nieznacznie rozszerzone (rys. 311, 312) .. 3.

2. Długość pokryw przeszło dwukrotnie większa od ich łącznej szerokości mierzonej w najszerszym miejscu. ... P. braccata (s. 154).

- Długość pokryw mniej niż dwukrotnie większa od ich łącznej szerokości mierzonej w najszerszym miejscu. ... P. consimilis (s. 157).

larwy

- Zewnętrzna pretergalna grupa mikrochet na tergitach odwłoka okrągła (rys. 317). Na korzeniach osoki aloesowatej — Stratiotes aloides L. ... P. affinis (s. 160).

Plateumaris (Juliusina) braccata (Scopoli, 1772)

Prionus braccatus Scopoli, 1772: 100.
Leptura violacea Pallas, 1773: 724.
Donacia palustris Herbst, 1784: 100.
Donacia nigra Fabricius, 1792: 117.
Pochodzenie nazwy: łac. braccatus — ubrany w spodnie; od zgrubiałych ud.
Terra typica: Dalmacija.

Długość 9–11 mm. Wierzch ciała czarny. Metaliczny połysk zawsze bardzo słaby; na powierzchni pokryw ma on odcień od ciemnomosiężnego po fioletowy, na przedpleczu zwykle zielony lub błękity, rzadziej purpurowy lub tęczujący. Niekiedy u samiec występuje nieco mocniej połyskująca smuga wzdłuż dziewiątego zagonika pokryw. Czułki i nogi brunatnoczerwone, stopy ciemniejsze, zwykle brunatne; spód ciała czarny, cztery ostatnie sternity odwłoka jaśniejsze, brunatne lub nawet rdzawoczerwone. U okazów melanotycznych czułki, nogi i cały odwłok mogą być czarne; metaliczny połysk wierzchu ciała bywa wówczas mocniejszy. Głowa gęsto i drobno punktowana; długa i głęboka bruzda czołowa przecina całe ciemię, sięgając prawie do przewężenia szyjnego. Czułki długie, u samiec sięgają do 1/3, u samców do połowy długości pokryw; trzeci człon dwukrotnie dłuższy od drugiego i tylko nieznacznie krótszy od czwartego. Przedplecze (rys. 309) ku tyłowi dość silnie zwężone, zarówno przednie, jak i tylne guzy boczne wypukłe i wyraźnie wyodrębnione, przednie kąty nie tworzą wyraźnego ząbka. Pokrywy równoległe, o tłustym połysku, punkty w rzadzkach w przedniej części duże, z tyłu znacznie drobniejsze, zagoniki pokryte gęstym i zwykle głębokim marszcze- niem. Schemat użytkowania skrzydeł tylnych podany na rysunku 322. Nogi krępe i mocne.

Zmienność osobnicza stosunkowo niewielka. Opisano jedną odmianę:
1. Przedplecze z wyraźnym, metalicznym polyskiem, znacznie mocniejszym, niż na pokrywach.

Opis szczegółów budowy ciała larwy podają BÖVING i CRAIGHEAD (1931); dalsze uzupełnienia u OGOŁBLINA i MIEDWIEDIEWA (1971). Badania nad morphologią narządów rozrodczych prowadzili SPETT i LEVITT (1928) oraz IABLOKOFF-KHNZORIAN (1966), a nad użytkowaniem skrzydeł tylnych KEMPERS (1923) i JOLIVET (1957).

Jako roślinę żywicielską większość źródeł podaje trzcinę pospolitą — Phragmites communis TRIN. oraz turzyce — Carex L. i istotnie, na korzeniach tych roślin znaleziono larwy omawianego gatunku (OGOŁBLIN i MIEDWIEDIEW 1971).

Rys. 319. Rozsiedlenie Plateumaris braccata (oryg.).
Ponadto znajdowano *P. braccata* na kwiatostanach klöci wiechowatej — *Cladium mariscus* L. (Roubal 1941).

P. braccata jest znana z czwartorzędowych znalezisk kopalnych ze Skanii (Andersson 1889), Danii (Jessen 1920, Henriksen 1933) oraz z Wyżyny Małopolskiej i okolic Belchatowa (Kuśka i inni in litt.).

W Polsce w całym kraju na moczarach i brzegach wód; lokalnie napotyka się pojawy bardzo obfite. Owady dorosłe występują najliczniej w pierwszej połowie czerwca, żerując chętnie wewnątrz młodych, nie rozwiniętych jeszcze liści trzciny oraz kryjąc się pod pochwy liściowe liści starszych.

Plateurnaris (Juliusina) consimilis (Schrank, 1781)

Leptura consimilis Schrank, 1781: 155.

Donacia rufipes Olivier, 1791: 292.

Pochodzenie nazwy: łac. consimilis — bardzo podobny; dla podobieństwa z gatunkami pokrewnymi.

Terra typica: nie podana.

Długość 6–8 mm. Wierzch ciała mosiężnozielony, ciemnomosiężny lub ciemnomiedzisty, niekiedy z fioletowym połyskiem. Czułki, nogi oraz tylne krawędzi sternitów odwłoka rdzawoczerwone, u okazów silniej pigmentowanych ciemnieją końce poszczególnych członów czułków, uda i stopy, a w rzadkich przypadkach skrajnych rdzawoczerwona barwa całkowicie ustępuje miejsca czarnej; u takich okazów pojawia się metaliczny, zwykle zielonawy połysk na grzbietowej powierzchni ud, stóp i nasadowych członów czułków. U okazów słabiej pigmentowanych lub jeszcze niecałkowicie zesklerotyzowanych ostatnie cztery sternity odwłoka mogą być całe rdzawoczerwone. Głowa drobno i gęsto punktowana, bruzda czołowa długa, lecz delikatnie nacięta; czułki mocne i stosunkowo krótkie, u samca sięgają do 1/3 pokryw, u samicy niewiele poza guz barkowy. Przedplecze (rys. 310) o zarysie podobnym jak u *P. braccata*, lecz tylne guzy znacznie mniej wypukłe i słabiej wyodrębnione, powierzchnia pokryta silnie punktowana, przede wszystkim na grzbietowej powierzchni, u samicy głębiej zarysowane. Użyłkowanie skrzydeł jak na rys. 323.

http://rcin.org.pl
ciała zwykle mocniejsza, czułki krótokie, ostatni sternit odwłoka bez wgłębień, ząb na tylnych udach stępiony lub przekształcony w guzek.

Zmienna osobnica wyraża się w różnych odcieniach metalicznego połysku wierzchu ciała; ponieważ jednak sam połysk jest u tego gatunku dość słaby, więc i różnorodność jego odcieni nie bardzo rzuca się w oczy. Wyraźniejsze różnice występują w pigmentacji spodu ciała. U odmian słabo pigmentowanych uda oraz ostatnie cztery sternity odwłoka są u sameów zawsze całkowicie,

a u samiec częściowo czerwonoawe; natomiast u odmian silnie pigmentowanych cały spód ciała i tylne uda mogą być zupełnie (u samiec) lub częściowo (u sameków) czarne. Opisano odmianny:

1. Przednie kąty przedplecza zaostrzone (rys. 137), długość ciała 6,5–8 mm forma typowa
2. Przednie kąty przedplecza stępione, długość ciała 6–7 mm ... ab. variabilis KUNZE, 1818: 39
3. Metaliczny połysk wierzchu ciała miedzisty lub mosiężny ... ab. aerea BECHYNÉ, 1942: 236
4. Metaliczny połysk wierzchu ciała zielony ... ab. viridis BECHYNÉ, 1942: 236
5. Metaliczny połysk wierzchu ciała błękityny ... ab. coerulea BECHYNÉ, 1942: 236
6. Metaliczny połysk wierzchu ciała purpurowy lub fioletowy ... ab. violacea BECHYNÉ, 1942: 236

Forma variabilis napotykana bywa głównie w półudniowej części areału rozsiedlenia, po południowej stronie luku sudecko-karpackiego. Opisy odmian podane przez BECHYNÉGO (1942) dotyczą formy variabilis; można jednak odnieść je również do formy typowej, która wytwarza podobne fenotypy, jakkolwiek o wiele rzadziej, niż variabilis.

Rozwój i stadia przedimaginalne nieznane. Żyje na turzycach — Carex L., zwłaszcza na turzyce zaostrzonej — C. gracilis CURT. (Krzemiński 1966), była podawana też z kniec błotnej — Caltha palustris L. FOCARILE (1957)łowił ją na sicie członowanym — Juncus articulatus L.

Obszar rozsiedlenia (rys. 326) prawdopodobnie obejmuje większą część Obszaru Palearktycznego od zachodnich wybrzeży Europy po Japonię (Hokkaido). Z Kraju Nadmorskiego opisano odrębny podgatunek P. consimilis orientalis ŠAVROV 1948: 49, odznaczający się szczególnie skąpym urzeźbieniem

Rys. 326. Rozsiedlenie Plateumaris consimilis (oryg.).
tła przedplecza i pokryw. Zarówno stosunek tego podgatunku do podgatunku nominatywnego, jak i sprawa rozsiedlenia *P. consimilis* na terytorium Azji wymagają wyjaśnień. Omawiany gatunek był podawany w ubiegłym stuleciu z Japonii (Jacob 1885), ponadto istnieją dość niepewne doniesienia z Irkucka i Uralu (Jacobson 1892). Kołossow (1930) wszystkie te dane zakwestionował i sprawa granic obszaru występowania tego gatunku w Azji oraz w europejskiej części ZSRR pozostaje otwarta. W Europie północna granica zasięgu biegnie od wybrzeży Atlantyku przez Skagerrak, Västergötland i Litewską SRR; południowa przecina północną Hiszpanię, północne Włochy, Góry Dynarskie i północną część Niziny Trackie. Nie był dotychczas podawany z Wysp Brytyjskich (Kloet i Hincks 1977).

P. consimilis znana jest z czwartorzędnym materiałów kopalnych z okolice Hamburga (Beyle 1926) oraz z Utznach w Szwajcarii (Heer 1883).

W Polsce na obszarze całego kraju, zwłaszcza jednak w dzielnicach zachodnich, na podmokłych łąkach i nad strumieniami wiosną i w pierwszej połowie lata; nierządka.

Plateumaris (Juliusina) affinis (Kunze, 1818)

Donacia affinis Kunze, 1818: 37.

Pochodzenie nazwy: łac. affinis — pokrewny; dla podkreślania podobieństwa z równocześnie opisaną *P. rustica*.

Terra typica: nie podana.

Pochodzenie nazwy: łac. affinis — pokrewny; dla podkreślania podobieństwa z równocześnie opisaną *P. rustica*.

Terra typica: nie podana.

Pochodzenie nazwy: łac. affinis — pokrewny; dla podkreślania podobieństwa z równocześnie opisaną *P. rustica*.

Terra typica: nie podana.

Obszar rozsiedlenia (rys. 328) obejmuje większą część Europy i zachodnią część Syberii. Północna granica zasięgu biegnie od Wysp Brytyjskich w przybliżeniu wzdłuż równoleżnika 60° przez okolice Oslo, szwedzką prowincję Västergötland po południową część Karelskiej ASRR. Przebieg granicy południowej niejasny. W Europie biegnie ona przez Pireneje i Alpy, północne przedgórza Góry Dynarskich oraz przez Karpaty Południowe. Dalej ku wschodowi nane są jeszcze stanowiska z Dniepropetrowska (Iljin 1926a), pokrywa się więc zapewne z południową granicą strefy lasów mieszanych i liściastych.
Ponadto *P. affinis* jest znana z Algierii; bliższych badań nad algierskimi błocznicami nie prowadzano i nie da się wykluczyć, że jest to odrębny gatunek.

P. affinis znana jest z czwartorzędowych znalezisk kopalnych z Dani (HARTZ 1909, JESSEN 1920, HENRIKSEN 1933).

W Polsce w całym kraju na brzegach wód i na podmokłych łąkach, niezwykle rzadka.

Plateumaris (Juliusina) rustica (KUNZE, 1818)

Donacia rustica KUNZE, 1818: 31.

Pochodzenie nazwy: łac. rusticus — wiejski; nazwa wybrana dowolnie.

Terra typica: nie podana.

Długość 7–9 mm. Wierzch ciała czarny ze słabym, metalicznym połyskiem. Pierwszy człon czułków oraz nasadowe części członów pozostałych, nogi, a często także ostatnie cztery sternity odwłoka rdzawoczerwone.

Głowa bez wyróżniających szczegółów, czułki u samea sięgają nieco po połowę długości ciała, u samicy nieco poza guzy barkowe. Przedplecze (rys. 312)

Zmiennność osobnicza niewielka. Opisano odmiany:

1. Metaliczny połysk wierzchu ciała w odcieniach od mosiężnozielonego poprzez mosiężny po ciemnospiżowy.. forma typowa.

2. Metaliczny połysk wierzchu ciała ciemnoniebieski lub granatowy ..

Jako rośliny żywicielskie przez większość źródeł podawane są różne gatunki turzyc — *Carex* L. KRZEMIŃSKI (1966) łowił *P. rustica* głównie na turzycy zaostrzonej — *C. gracilis* CURT., a także na mannie mielec — *Glyceria aquatica* L. i na trzcinie pospolitej — *Phragmites communis* TRIN. Natomiast FOCARILE (1957) łowił ten gatunek w Piemoncie na siecie członowanym — *Juncus articulatus* L.

Areal rozsiedlenia (rys. 334) obejmuje Europę środkową i wschodnią. Północna granica tego obszaru biegnie od Bretanii przez południowe wybrzeża Morza Północnego i Zelandię po Estońską SRR, a dalej w przybliżeniu wzdłuż równoleżnika 58° po okolice Świdnicy. Granica południowa prowadzi od północno-zachodnich departamentów Francji przez okolice Lyonu (SAINTE-CLAI-
Podrodzina *Orsodacninae* THOMSON, 1866

Orsodachnidae THOMSON, 1866: 130.

1 Odmienna pisownia (Orsodacne – Orsodachne) powstała nie pomyłkowo, lecz wskutek zastosowania przez THOMSONA odmiennnej transkrypcji greckiej litery „kappa” przy latynizacji arystotelesowskiej nazwy Orsodakne.
cech diagnostycznych. Głowną trudność sprawia brak skorelowanych zespołów cech wyraźnie plezo- lub apotypowych, co można prześledzić na następujących przykładach.

Rozdział Orsodacne wyróżnia się najprymitywniejszym typem męskiego aparatu kopulacyjnego spośród wszystkich Chrysomelidae (tegm en po grzbietowej stronie zrośnięty i dwupłatowy), co było jednym z powodów umieszczania tego rodzaju wewnątrz podrodziny Sagrinae (Weise 1881). Równie prymitywną cechą byłby tryb życia larw, drążących pędy rośliny macierzystej, o ile potwierdzą się dotychczasowe, niepewne informacje w tym przedmiocie. Równocześnie użytkowanie skrzydeł tylnych (rys. 336) jest wśród wszystkich Eupoda najbardziej apotypowe i wykazuje wyraźne nawiązania do typu Chrysomelinae (s. 15) (Jolivet 1954).

Rodzaj Zeugophora ma wprawdzie tegmen po grzbietowej stronie zrośnięty, lecz tylko płytko rozdwojony, zaś użytkowanie skrzydeł tylnych zachowuje dobrze typ Eupoda. Pozostałe z najważniejszych cech taksonomicznych (wykrojone oczy, bezładne punktowanie pokryw, zamknięte przednie panewki biodrowe) są wspólnie z rodzajem Orsodacne.

Rodzaj Syneta zarówno w zakresie cech zewnętrznych owadów dorosłych, jak i w zakresie szczegółów budowy larwy (Gilarow i Miedwiediew 1964) nawiązuje do podrodziny Eumolpinae. Dotyczy to zwłaszcza głębokiego wycięcia trzeciego członu stopy, zarówno po jego grzbietowej, jak i po spodniej stronie (rys. 347). Było to i jest nadal źródłem pomyłek, polegających bądź to na zaliczaniu nowo opisywanych gatunków z podrodziny Eumolpinae do rodzaju Syneta, jak np. gatunków z rodzaju Aulexis Baly (Gressit 1942), bądź na odwróć, na wcielaniu rodzaju Syneta do podrodziny Eumolpinae (Gilarow i Miedwiediew 1964). Cechą odróżniającą rodzaj Syneta od przedstawicieli podrodziny Eumolpinae jest użytkowanie skrzydeł tylnych typu Eupoda (patrz s. 15) oraz budowa przedplecza. Natomiast budowa męskiego aparatu kopulacyjnego całkowicie odbiega od pozostałych Eupoda, tegmen bowiem jest zredukowany do postaci widełek, bardziej jeszcze aniżeli u większości Eumolpinae; stanowi więc cechę wybitnie apotypową.

Doświadczenie każe odnosić się z dużą rezerwą do tak radykalnych zmian, opartych tylko na jednym stadium rozwojowym lub na paru dowolnie wybra-
nych cechach. Toteż w niniejszym opracowaniu propozycji CROWSONA (1946) nie uwzględniono, przyjmując zakres znaczeniowy podrodziny Megalopodinae zgodnie z „Coelopterorum Catalogus”.

Po wydzieleniu podrodziny Zeugophorinae (CHUJO 1952) i Synetinae (EDWARDS 1953) w podrodzinie Orsodacinae pozostaje holarktyczny rodzaj Orsodacne oraz wspomniany już, a jak się zdaje bardzo niepewny, rodzaj Cucujopsis z północnej Australii.

Rozdział Orsodacne LATEILLE, 1802

Orsodacne LATEILLE, 1802: 223.

Pochodzenie nazwy: gr. orsodakne — zjadacz zawiązek; nazwa bliżej nie określonego owada u ARYSTOTELESA.

Gatunek typowy: Chrysomela Cerasi LINNAEUS, 1758.

Ciało smukłe, pokrojem przypominające przedstawiciele rodzaju Plateumaris, lecz różniące się od nich większą głową, krótszymi czułkami i bardziej wypukłymi pokrywami. Ubarwienie ciała niezwykle zmienne, obejmuje odcienie od słomkowego poprzez orzechowy, rdzawy i brunatny do czarnego i czarnego ze słabym, metalicznym połyskiem. Odcienie te obejmują różne części ciała w różnych kombinacjach, tworząc liczne odmiany barwne, wielokrotnie opisy-

Do rodzaju Orsodacne należy sześć gatunków: jeden znany tylko z Iranu, jeden północnoamerykański, dwa japońskie oraz dwa zachodniopalearktyczne, zasiedlające znaczną część Europy i należące również do fauny Polski.

Klucz do oznaczania gatunków

 ... O. cerasi (s. 168).

— Wierzch ciała gęsto, delikatnie owłosiony. Długość przedplecza większa od szerokości (rys. 342). Trzeci człon czułków w przybliżeniu tej samej długości co drugi.

 ... O. lineola (s. 171).

Orsodacne cerasi (Linnaeus, 1758)

Chrysomela Cerasi Linnaeus, 1758: 376.

Crioceris chlorotica Olivier, 1791: 203.

Pochodzenie nazwy: łac. *cerasus* — wiśnia; owady dorosłe spotyka się często na kwiatach drzew owocowych.

Terrae typicae: nie podana.

Dymorfizm płciowy słabo wyrażony i ograniczony do niewielkiej różnicy w szerokości pierwszego członu przednich stóp, który u samca jest wyraźnie, a u samicy bardzo nieznacznie szerszy od członu drugiego. Ponadto u samca ostatni człon głąszczków szczękowych jest krótszy i szerszy niż u samicy. Prącie jak na rys. 337, 338.
Zmienność osobnicza bardzo znaczna, zwłaszcza w zakresie wielkości ciała oraz jego ubarwienia. Opisano liczne odmiany, z których wyraźnie da się wyróżnić dwanaście:

1. Ubarwienie ciała jak w opisie gatunku forma typowa.
3. Ciemię, spód ciała i koniec pokryw brunatne lub czarne ab. melanura Fabricius, 1793: 22.
4. Ciemię, spód ciała oraz szeroka smuga wzdłuż bocznych krawędzi pokryw czarniawe, przedplecze ciemnokasztanowe do czarnego ab. limbata Olivier, 1808: 754.
5. Przednia część głowy, przedplecze i spód ciała czerwone, ciemię i pokrywy czarne. ab. glabrata Panzer, 1795: 175.
6. Całe ciało granatowe, głowa i przedplecze czerwone ab. cantharoides Fabricius, 1775: 120.
7. Całe ciało czarne z wyjątkiem czułków i nóg, które są kasztanowate ab. duftschmidti Weise, 1891: 355.

8. Całe ciało czarne z wyjątkiem czułków i nóg, które są kasztanowate, oraz jasnej plamy za guzem barkowym na każdej pokrywie ..ab. bohemic a ROUBAL, 1914: 92.
9. Przednia część głowy, przedpleczo i spód ciała czerwone, ciemię i pokrywy czarne, na każdej pokrywie jasna plama ...ab. horvathi LACZO, 1912: 5.
11. Przód głowy czerwony, ciemię i tarczka czarne, pokrywy jasnobrunatne z czarniawym końcem, wzdłuż szwu biegnie szeroka, brunatnawa smuga ..ab. baudii PIC, 1913: 154.

Rys. 344. Rozsiedlenie Orsodacne cerasi (oryg.).

Stadia przedimaginalne i szczegóły rozwoju nieznane. Owady dorosłe obdarzone są silnym leukotropizmem. Spotyka się je w maju i czerwcu na biało kwitnących krzewach i drzewach: tarninie, kalinie, jarzębinie, ligustrze, na drzewach owocowych, rzadziej na kwiatach roślin baldaszkowatych — Umbelliferae oraz na tawule — Spiraea L.

Obszar rozsiedlenia (rys. 344) obejmuje środkową i południowo-wschodnią

http://rcin.org.pl
część Europy i sięga po zachodnią Syberię. Jego północna granica przecina
księstwo Yorku oraz Fennoskandię wzdłuż linii Trondheim — środkowe dorzecze
Glommy — Gävle — Turku. Południowa biegnie przez południową Francję,
Ligurię, Adriatyk, południową Grecję i przez Azję Mniejszą po kraje kau-
kaskie. W południowej części arcału spotykany głównie lub wyłącznie w górach.
Brak jest doniesień z przeważającej części Ukraińskiej SRR, z dorzecza Donu
i z Niziny Nadkaspiajskiej. Dało to podstawę poglądowi, że O. cerasi w południo-
wej części swego arcału rozsiedlenia zamieszkuje wyłącznie obszary górskie
(Ruffo 1964).

W Polsce napotykany pospolicie w całym kraju, lecz łatwy do przeoczenia,
 gdyż na poszczególnych stanowiskach ma krótki, zwykle kilkunastodniowy
okres pojawu postaci dorosłej.

Orsodacne lineola (Panzer, 1795)

Crioceris lineola Panzer, 1795: 170.

Pochodzenie nazwy: łac. lineola, lineolae — kreseczka; od ciemnej smugi, u odmiany
typowej ciągnącej się wzdłuż środka przedplecza i szwu pokryw.

Terra typica: obszar krajów niemieckich z końca XVIII stulecia.

Długość 4–7 mm. Głowa ciemnobrunatna, przedplecze i tarczka jasno-
ordzawe, pokrywy, czułki, nogi i odwłok jaśniejsze od przedplecza, płowe lub
jasnoorzechowe. Przedpiersie i śródpierście brunatne, zapiersie, smuga wzdłuż
szwu pokryw i wzdłuż środka przedplecza czarne. Punktowanie przedplecza
znacznie gęstsze niż u *O. cerasi*, wzdłuż środka biegnie zazwyczaj wąska, lśniąca,
niepuntkowana smuga. Tarczka drobno zmarszczona. Użyłkowanie skrzydeł
tylnych jak na rys. 336.

Dymorfizm płciowy ograniczony do kształtu ostatniego człona gęśniaków
szczękowych, który u sameca jest krótszy i szerszy niż u samicy. Prącie jak na
rys. 339, 340.

Zmiennosc osobnicza przejawia się w niezwykłej rozmaitości różnych wariantów
ubarwienia ciała. Opisano liczne odmiany, z których w obrębie podgatunku
nominatywnego da się wyróżnić wyraźnie dziesięć:

1. Ubarwienie jak w opisie gatunku ..forma typowa.
2. Głowa i spód ciała brunatne lub prawie czarne, przedplecze i pokrywy jasne, płowe lub
jasnoorzechowe ...ab. *mespili* Lacordaire, 1845: 73.
3. Głowa, spód ciała i przedplecze brunatne lub czarne, pokrywy całkowicie jasne lub
z brunatną smugą wzdłuż szwu i krawędzi bocznych ...ab. *nigricollis* Olivier, 1808: 753.
4. Pokrywy jasne, smuga wzdłuż szwu i wzdłuż krawędzi bocznych czarna z metalicznym,
błękitnym połyskiem ...ab. *marginata* Csiki, 1899: 94.
5. Wierzch ciała czarny, często z metalicznym, błękitnym lub zielonawym połyskiem.
U nasady przedplecza dwie czerwone plamy, ponadto czerwona plama na każdym

http://rcin.org.pl

Stadia przedimaginalne i szczegóły rozwoju nieznane. Owady dorosłe spotyka się na kwiatach biało kwitnących krzewów i drzew, podobnie jak *O. cerasi*.

Obszar rozsiedlenia (rys. 345) obejmuje południową część Europy i Azji Mniejszej. Jego północna granica biegnie przez Anglię, Belgię (Derenne 1963), północne przedgórza Gór Łupkowych i Hercyńskich (Horion 1951), Sudety, okolice Krakowa i południową Lubelszczyznę, a dalej ku wschodowi prawdo-
podobnie wzdłuż północnej części Płyty Podolskiej. Południowa prowadzi od Zatoki Baskijskiej przez Pireneje i Morze Śródziemne po Liban i Syrię, gdzie żyje odrębny podgatunek *O. lineola ruficollis* Prč, 1895a: 284, różniący się od nominatywnego mocniejszym punktowaniem wierzchu ciała, dłuższym owłosieniem oraz mocnym zgrubieniem wszystkich ud u samca.

W Polsce występuje tylko w południowej części kraju; wskutek bardzo krótkiego okresu pojawu postaci dorosłych uchodzi za gatunek rzadki.

Podrodzina Synetinae Edwards, 1953

Synetinae Edwards, 1953.

Rodzaj typowy: *Syneta Lacordaire, 1845: 226.***

Chrząszcze długości 4,5–8 mm, ogólnym zarysem ciała przypominające przedstawicieli rodzaju *Orsodacne*, lecz bardziej przypłaszczone; przedplecze o charakterystycznym kształcie, po bokach opatrzone ząbkami (rys. 108, 346). Oprócz wymienionej formy przedplecza i charakterystycznego użytkowania tylnych skrzydeł (rys. 348) podrodzinę *Synetinae* wyróżnia następujący zespół cech: języczek (ligula) tylko bardzo słabo dwudzielny, oczy regularnie okrągłe, bez wykrojenia, punktowanie pokryw regularne lub przynajmniej z wyraźną tendencją do układania się w podłużne rządki, pazurki rozdwojone, panewki biodrowe z tyłu otwarte, paramery mocno zredukowane, o kształcie litery V.

Trudności ze znalezieniem dla tej podrodziny miejsca w systemie chrząszczy stonkowatych zostały już przedstawione na s. 166. Obszerną dyskusję tego zagadnienia, opartą na analizie użytkowania skrzydeł tylnych, przedstawił Jolivet (1954).

Jest to niewielka podrodzina, obejmująca 10 poznanych dotychczas gatunków, zgrupowanych w jeden rodzaj *Syneta*. Osiem z nich zasiada Amerykę Północną, jeden dorzecze Amuru i część wysp japońskich (Honsiu) i jeden — obszary subarktyczne od Norwegii po Morze Japońskie.

Rodzaj *Syneta* Lacordaire, 1845

Syneta Lacordaire, 1845: 226.

Pochodzenie nazwy: gr. synetes, synetou — współobywatel; nazwa wybrana dowolnie.

Gatunek typowy: *Crioceris betulae* Fabricius, 1792: 5.

Cechy morfologiczne rodzaju podano w opisie podrodziny. W Europie jeden gatunek.
Syneta betulae (Fabricius, 1792)

Crioceris betulae Fabricius, 1792: 5.

Pochodzenie nazwy: łac. betula, betulae – brzoza; od rośliny żywicielskiej.
Terra typica: Laponia.

Długość 6–7,5 mm. Ogólne ubarwienie ciała jasnobrunatne, spód ciała, szew pokryw i głowa ciemniejsze. Głowa i przedplecze gęsto, mocno punktowane, punktowanie pokryw nieregularne, lecz z tendencją do układania się w podłużne rządki, między którymi widnieją dwie wyraźne i dwie lub trzy słabo widoczne, wzniesione, niepuntkowane listewki. Najwyraźniejsza z nich biegnie wzdłuż całej długości pokrywy i odpowiada trzeciemu zagonikowi, druga, z przodu wzniesiona, a ku tyłowi zwykle przypłaszczona, rozpoczyna się na zewnątrz od guza barkowego i odpowiada zagonikowi siódmemu. Całe ciało pokryte krótkim, przylegającym, niezbyt gęstym, makroskopowo słabo widocznym owłosieniem.

Zmienność osobnicza ograniczona głównie do ubarwienia. Istniejącym odmianom nazw nie nadawano. Najczęściej spotykane odmiany:

1. Głowa czarna, przedplecze brunatne, pokrywy z ciemnym szwem i ciemną smugą wzdłuż bocznych brzegów.
3. Spód ciała brunatny, wierzch, czułki i nogi jednolicie jasnoorzechowe, pokrywy pozba-wione ciemniejszej smugi wzdłuż szwu.

Larwy żyją w glebie, obgryzając korzenie; cechy diagnostyczne larwy podane są przez Ogloblina i Miedwiediewa (1971).

Owady dorosłe spotyka się na liściach brzóz i wierzb, opisano również przypadek żerowania na igłach sosen (Kangas 1948).

![Rys. 349. Rozsiedlenie Syneta betulae (oryg.).](http://rcin.org.pl)

Podrodzina **Zeugophorinae** Chojó, 1952

Rodzaj typowy: *Zeugophora* Kunze, 1818: 71.

Ciało o ogólnym pokroju podobnym jak u innych *Eupoda*, lecz mniej smukłe niż u podrodzin dotychczas omawianych (rys. 350). Nogi stosunkowo krótkie,

Do podrodziny Zeugophorinae należą 52 gatunki, jeżeli wliczać obydwa niepewne, monotypowe rodzaje: madagaskarski Bruchomina ACHARD i himalajski Pedrilliomorpha Pic.

Rodzaj Zeugophora Kunze, 1818 — Natopolee

Zeugophora Kunze, 1818: 71.

Pochodzenie nazwy: gr. zeugos, zeugous — jarzmo i phoros — noszący; aluzja do przedplecza, w przedniej części rozszerzonego na boki.

Gatunek typowy: Crioceris subspinosa Fabricius, 1781: 155.

Drobne chrząszcze długości 2,5–4 mm. Głowa krótka i szeroka, warga górna szeroka. Oczy duże, bardzo wypukłe, prawie okrągłe, w pobliżu nasady

http://rcin.org.pl

Rodzaj Zeugophora rozpada się na dwa podrodzaje. Podrodzaj nominatywny zasiedla Holarktykę, a podrodzaj Pedrillia WESTWOOD — Obszar Paleotropikalny, we wschodniej Azji przenikając dość daleko ku północy, do Mandżurii, Kraju Nadmorskiego i na Półwysep Koreński. Gatunki europejskie żyją na topolach. Kolbe (1899) sygnalizował istnienie u tych owadów dwóch pokoleń w roku, tj. pokolenia wiosennego i letniego. Późniejsze obserwacje nie potwierdziły jednoznacznie tej tezy i obecnie brak jest zgodności co do tego szczegółu bionomii natopolców.

W Europie cztery gatunki, wszystkie należą do fauny Polski.

Klucz do oznaczania gatunków
owady dorosłe

1. Pokrywy czerwonawożółte.

 — Pokrywy czarne 2.

2. Głowa dwubarwna, czerwonawa, z czarną strefą obejmującą czoło i ciemię, a w rzadkich przypadkach samo ciemię 3.

 — Głowa jednobarwna, czerwonawa 4.

 — Boczne guzy przedplecza tępe (rys. 352), czoło bez wyraźnej, gładkiej, niepunktowanej smugi wzdłuż środka.

 Tutaj należą odmiany Z. scutellaris o głowie dwubarwnej.

 Z. flavicollis (s. 183).

4. Długość ciała rzadko przekracza, a zwykle nie osiąga 3 mm. Wzdłuż środka czoła biegnie gładka, niepunktowana smuga.

 — Długość ciała prawie zawsze przekracza 3,5 mm i tylko w rzadkich przypadkach samec mogą mierzyć 3 mm. Czoło bez gładkiej, niepunktowanej smugi.

 — Z. subspinosa (s. 180).

 — Z. scutellaris (s. 178).

larwy

1. Żuwaczka z trzema ząbkami (rys. 359).

 — Żuwaczka z dwoma ząbkami (rys. 358).

 — Z. flavicollis (s. 183).

 — Z. subspinosa (s. 180).

12 — Chrysomelidae
Zeugophora scutellaris Suffrian, 1840

Zeugophora scutellaris Suffrian, 1840: 99.

Pochodzenie nazwy: łac. scutellum – tarcza, scutellaris – tarczkowy, wyróżniający się tarczką; z powodu tarczki, która u formy typowej jest inaczej ubarwiona, niż pokrywy.

Terra typica: okolice Aschersleben i Magdeburga (NRD).

http://rcin.org.pl

Dymorfizm płciowy jak w opisie rodzaju, prącie jak na rys. 356.

Zmiennność osobnicza obejmuje przede wszystkim ubarwienie ciała. Najczęściej spotykane odmiany:

1. Ubarwienie ciała jak w opisie... forma typowa.
2. Czoło i ciemne czarne.. ab. frontalis SUFFRIAN, 1840: 100.
4. Przednia część epipleur czerwona lub z czerwoną plamą. Odmiana bez osobnej nazwy.

U każdej z tych odmian, lecz najczęściej u ab. frontalis, tarczka może być czarna; również obecność czerwonej plamy na epipleurach nie jest skorelowana z ubarwieniem głowy.

Szczegóły budowy larwy można znaleźć u BÖVINGA i CRAIGHEADA (1931)

Rys. 361. Rozsiedlenie Zeugophora scutellaris (oryg.).

Roślinami żywicielskimi tego gatunku są różne gatunki topól — Populus L. (Lengerken 1941). Dane o żerowaniu na wierzbie purpurowej — Salix purpurea L. (Pernersdorfer 1941) wymagają jeszcze sprawdzenia.

Z wrógów naturalnych stwierdzono bliżej nie oznaczonego pasożyta z rodziny Mymaridae (Hymenoptera), który atakuje jaja i larwy Z. scutellaris w Kanadzie (Strickland 1920, Jolivet 1950).

W Polsce zapewne w całym kraju, lecz łowiony rzadko i lokalnie, wyłącznie na nizinach i tylko ze Śląska sygnalizowano również napotkanie Z. scutellaris w niższych położeniach górskich (Gerhardt 1910).

Zeugophora subspinosa (Fabricius, 1781)

Crioceris subspinosa Fabricius, 1781: 155.

Pochodzenie nazwy: łac. subspinus — słabo kolczasty; boczne guzy przedplecza tępo zaokrąglone, nie mają formy kolca.

Terra typica: Anglia.

Zmienność osobnicza niewielka. Istnieją odmiany bez nazwy, różniące się od formy typowej obecnością jasnoczerwonej plamy obejmującej przednią część epipleur, czerwonym śródpiersiem, lub obydwemi tymi cechami łącznie.

Cykl rozwojowy jednoroczny. W trzeciej dekadzie kwietnia chrząszcze wychodzą z gleby i odbywają intensywny żer na liściach topól, zwykle na wysokości 2–4 m ponad ziemią, znacznie rzadziej na wysokościach większych. Chrząszcze zjadają miękisz zieleniowy, oszczędzając dolną skórkę liścia i omijając grubsze unerwienie. Kopulacja i składanie jaj trwały zwykle od połowy maja do połowy czerwca. Jaja zostają złożone w nacięcia, wykonane żuwaczkami przez samicę w górnej skórze liścia. Larwy wyżerają nieregularne, okrągłe miny, które barwią się czarno i są dzięki temu dobrze widoczne nawet z większej odległości. Larwy spotyka się często po kilka w jednej minie, gdzie żerują gromadnie, nie przeszkadzając sobie wzajemnie (Lengerken 1941). Większość larw opuszcza minę w pierwszej dekadzie lipca, by przepoczwarczyć się w glebie pod koroną drzewa macierzystego. Czas trwania diapauzy i moment przepoczwarczenia nie jest znany; możliwe, że larwy zimują jak u Z. flavi-
collis. Opisany cykl w południowej Europie (Włochy) rozpoczyna się mniej więcej o trzy tygodnie wcześniej (GRANDI 1941).

Roślinami żywicielskimi *Z. subspinosa* są różne gatunki topól, z których najczęściej bywa wymieniana topola czarna — *Populus nigra* L. (PERNERSDORFER 1941). W piśmiennictwie spotyka się też doniesienia o żerowaniu na brzozach (BAROWSKIJ 1909) i wierzbach, wszystkie jednak kwestionowano (RUFFO 1964).

W Polsce w całym kraju pospolity i łatwy do złowienia w pierwszej połowie lata, zwłaszcza przy zastosowaniu metody obtrząsania młodych topól nad płachtą lub do parasola entomologicznego.

Zeugophora turneri POWER, 1863

Zeugophora Turneri POWER, 1863: 8735.

Zeugophora rufo-testacea KRAATZ, 1871: 162.

Pochodzenie nazwy: od nazwiska adresata dedykacji, Tomasza Turnera z Exeter.

Terra typica: Szkocja.

Długość 3,2–3,6 mm. Pokrój ciała nieco smuklejszy, aniżeli u pozostałych gatunków rodzaju *Zeugophora*. Głowa, przedplecze, przedpierście, czułki i nogi brunatnawożółte, pokrywy nieco jaśniejsze, brunatnawożółte, średni- i zapierść oraz brzuszna strona odwłoka brunatne lub czarne. Przedplecze jak na rys. 351. Punktowanie przedplecza gęste i głębokie, wzdłuż środka biegnie wałka, gładka, niepunktowana smuga, która w tylnej części często wznosi się nieco ponad powierzchnię przedplecza. Pokrywy punktowane gęsto i mocno, wzdłuż każdej epipleury biegnie rządek bardzo delikatnych, niedziety zupełnie zaniżek punkiów.

Dymorfizm płciowy jak w opisie rodzaju, prącie jak u *Z. flavicollis* (rys. 354, 355).

Zmienność osobnicza ograniczona do słabszej lub mocniejszej pigmentacji ciała, poszczególnym odmianom osobnych nazw nie nadawano.

Stadia przedimaginalne, szczegóły rozwoju oraz rośliny żywicielskie nie znane.

Rozsiedlenie (rys. 363) wysoce niejasne. *Z. turneri* uchodzi do niedawna za gatunek północno-zachodnioeuropejski, jego występowanie stwierdzano bowiem na połaci ograniczonej do obszaru Wielkiej Brytanii, południowej Norwegii po Trondheim i Larvik (NATVIG 1914), południowej Szwecji po Wyżynę Gotlandzką, południowych wybrzeży Finlandii i części Karelskiej ASRR.
(Barowski 1925) oraz do zachodniej części Nizin Europejskiej od ujścia Łaby przez Schleswig-Holstein, Brunswik, Meklemburgię i całe Pomorze (Kraatz 1871, Helm 1880, Lüllwitz 1914) po Litewską SRR wraz z połacią obejmującą Turyngię (Horion 1951) i zachodnią częścią Śląska po Głogów, Legnicę i Świdnicę (Gerhardt 1910). Przed kilku laty Łopatin (1975) zasygnował napotkanie Z. turneri w Mongolii i obecnie nie wiadomo, jaką genezę ma stwierdzona dysjunkcja i jaki jest jej rozmiar. W świetle tego doniesienia staje się prawdopodobne, że omawiany gatunek ma o wiele szerszy areał występowania zwłaszcza w Europie wschodniej i że przy analizie jego rozsiedlenia należy uwzględnić dawne, od kilkudziesięciu lat nie potwierdzane doniesienia z Rawy Mazowieckiej (Osterloff 1884) i z Tarnopola (Rybiński 1897).

Rys. 363. Rozsiedlenie Zeugophora turneri (oryg.).

Zeugophora flavicollis (Marsham, 1802)

Auchenia flavicollis Marsham, 1802: 217.

Pochodzenie nazwy: łac. flavus — żółty i collum, colli — szyja; od żółtego przedplecza.

Terra typica: nie podana.
Długość 2,5–3,5 mm. Ciało czarne, cztery nasadowe człony czułków, przednia część głowy, przedplecze i nogi z wyjątkiem przyciemnionych tylnych ud — żółte. Powierzchnia głowy pokryta gęstym, dość mocnym punktowaniem, które pozostawia gładką, szeroką, niepunktowaną smugę wzdłuż czoła. Punktowanie pokryw bardzo mocne, bezładne, wzdłuż epipleur biegnie rzadki bardzo delikatnych, luźno leżących punktów.

Dymorfizm płciowy ograniczony do kształtu tylnej krawędzi odwłoka, który u samca jest wyciągnięty ku tyłowi, a u samicy poprzecznie ucięty i lekko wykrojony. Prącie jak na rys. 354, 355.

Zmienność osobnicza niewielka. Opisano odmiany:
1. Ubarwienie ciała jak w opisie gatunku formata typowa.
2. Wszystkie nogi jednolicie jasne ab. australis Weise, 1881: 58.
3. Nie tylko tylne, ale i środkowe uda ciemne ab. notatipes Pic, 1925: 9.

Larwa została po raz pierwszy, dość powierzchownie, opisana przez KALTENBACHA (1874). Podane przez GRANDEGO (1941) szczegóły morfologiczne larwy Z. scutellaris, jeśli nie liczyć kształtu żuwaczki, można odnieść i do larwy Z. flavicollis.
Rozwój poznany tylko fragmentarycznie. Według KALTENBACHA (1874) kopulacja i składanie jaj następują w pełni lata (VI-VII); pierwsze dojrzałe larwy opuszczają minę z końcem lipca i zagrzebują się w glebie, by przepoczwartczyć się dopiero w następnym roku.

Roślinami macierzystymi Z. flavicollis są różne gatunki topól — Populus L., głównie osika — P. tremula L. i białodrzew — P. alba L., a także topola kanałyska — P. serotina HARTIG.

Znaczenie gospodarcze. Z. flavicollis bywa wymieniana jako szkodnik upraw topoli; jest to mniemanie błędne, które ma swe źródło w składaniu na karb natopolców szkód, wywołanych przez inne owady minujące, szczególnie przez gąsienice motyli z rodziny Nepticulidae. W rzeczywistości Z. flavicollis nigdy nie osiąga takiej gęstości populacji, która by mogła w poważniejszym stopniu zagrazać stanowi zdrowotnemu upraw topoli.

W Polsce występuje na całym obszarze kraju, jako najpospolitszy gatunek rodzaju Zeugophora.

Podrodzina Criocerinae LATREILLE, 1807 — Poskrzypki

Criocerides LATREILLE, 1807: 43.

Rodzaj typowy: Crioceris MÜLLER, 1762: 237.

Ciało w ogólnym zarysie dobrze zachowuje cechy Eupoda. Głowa niezbyt duża, ale leżące po jej bokach bardzo wypukłe oczy znacznie zwiększają jej szerokość, która u wielu gatunków jest większa od szerokości przedplecza. Brzudy czołowe mocno zarysowane i głębokie, oczy naewnętrznej krawędzi płycie lub głębiej wykrojone. Czułki stosunkowo krótkie i grube, zwykle paciorkowate. Przedplecze bez bocznej listewki krawędziowej, u nasady znacznie węższe od pokryw. Pokrywy zawsze z wyraźnym guzem barkowym i zwykle z węzkiem w przedniej części. Tylne skrzydła nigdy nie ulegają skróceniu; wszystkie należące tutaj gatunki obdarzone są zdolnością lotu. Ogólny schemat użytkowania odbiega od typu Eupoda, nawiązując do typu Chrysomelinae (patrz s. 15).

Większość przedstawicieli podrodziny Criocerinae obdarzona jest zdolnością wydawania charakterystycznych, skrzypiących dźwięków. U gatunków krajowych najłatwiej zaobserwować to zbliżając twarz do owada trzymanego dwoma palcami od przodu za głowę i przedplecze. Słychać wówczas wyraźne
skrzypienie i widać zarazem, jak owad szybko wciągając i wysuwa odwłoka spod pokryw. Częstotliwość wydawanych dźwięków jest dość znaczna, lecz różna u różnych gatunków. Na przykład, u Lilioceris mérdidgera notowano około 200 (Landais 1874), u Crioceris duodecimpunctata przeciętnie 600 (Baier 1930), u Lilioceris lili 240 i u Lema melanopus 340 (obserwacje własne autora) „skrzypnięć” na minutę. Liczba ta zależy od różnych czynników (temperatura, długotrwałość drażnienia owada), a także od płci: według obserwacji autora strydulacja samców ma zwykle ton wyższy i częstotliwość większą niż u samic. Narząd strydulacyjny składa się z okrągłowej płytki, położonej pośrodku nasady ostatniego tergitu odwłoka (rys. 365) i pokrytej nadzwyczaj drobnym, poprzecznym marszczeniem oraz z dwóch szorstkich listewek, biegających tuż przy szwie w tylnej części pokryw po ich spodniej stronie. Wciągając i wysuwając odwółk owad pociera płytką strydulacyjną o wymienione listewki, co powoduje powstawanie dźwięku. Dokładny opis narządu podał Dingler (1935b). Rola „śpiewu” skrzypionek w ich życiu nie jest jasna. Nie służy on odnajdywaniu się partnerów odmiennej płci, gdyż po pierwsze narząd strydulacyjny jest obecny zarówno u samców, jak u samic, a po wtóre owady nie niepokojone nigdy dźwięków nie wydają. Trudno też rozważyć w kategoriach naukowych antropomorfizującą hipotezę, że strydulacja jest pryjmywną muzyką, która ma uprzyjemnić życie tych owadów (Pröchnow 1907). Toteż fakt, że omawiane chrząszcze wydają dźwięki wyłącznie przy ich niepokojeniu (uchwyćenie owada palcami, spychanie go słomką z miejsca, na którym siedzi itp.) skłania do opinii, że jest to odruch obronny, zapewne odstraszający (Dingler 1935a).

Larwy niemal wszystkich znanych gatunków żerują swobodnie na liściach i tylko nieliczne wgryzają się w głąb tkanek rośliny żywicielskiej, jak np. larwy Crioceris duodecimpunctata, żerujące wewnątrz rozwijających się owoców szparagów. Larwy o kształcie typowym dla rodziny (rys. 370, 371) żerują całkowicie okryte ośłonką, złożoną z mniej lub więcej pienistego śluży oraz kału, odkładanego na stronę grzbietową. Wyjątek stanowią przedstawiciele rodzaju Criocerus, których larwy otoczki śluzowo-kałowej nie wytwarzają. Larwa utrzymuje ośłonkę w stanie stałej wilgotności przez ustawiczne wydzielanie rdzadkiego śluży. Mechaniczne usunięcie ośląskiej nie pociąga za sobą złych następstw dla larwy, jeśli tylko nie grozi jej przy tym raptowna utrata wilgoci, jak się to dzieje np. w czasie suchego, gorącego wiatru. Autor w warunkach hodowlanych usuwał codziennie otoczkę śluzowo-kałową z larw Lilioceris lili, które mimo to przepoczwarczyły się normalnie i w tym samym czasie, co larwy kontrolne. Przy każdym linieniu larwa wraz z wylinką zrzuca otoczkę śluzowo-kałową, a następnie sporządza ją sobie od nowa. Dojrzała larwa, ukończynwszy ostatni (trzeci) okres wzrostowy, przestaje żerować i schodzi po pędach rośliny na powierzchnię gleby. Następnie opuszcza otoczkę śluzowo-kałową i zagrzebuje się w glebę, wykorzystując naturalne szczeliny. Głębokość, na jaką zagrażają się larwy Criocerinae, jest z reguły niewielka (2–5 cm) i zależy głównie od struk-
tery gleby. Znalazłszy dogodną szczelinę, larwa przygotowuje sobie kolebkę poczwarczą nadając jamce okrągławy, zwykle owoidalny kształt, a następnie opłata się oprzędem o formie gęstej, bezładnie utkanej siatki. Oprzęd powstaje przez wydzielenie z otworu gębowego wydzieliny produkowanej w uchyłkach jelita przedniego, która krzepnąc przybiera postać mocnego, początkowo lepkiego, a później suchego, elastycznego włókna.

Żerujące na zewnętrznych częściach roślin larwy są łatwo dostępne obserwacjom, toteż różne szczegóły rozwoju tych owadów zostały poznane bardzo wcześnie. Opisy wielu trafnych spostrzeżeń można znaleźć już u przyrodników z czasów przedlinneuszowskich (BLANKAART 1688, FRISCH 1720, VALISNIERI 1726, RÉAMUR 1737, RÖSEL 1749). Wszystkie one dotyczą trzech pospolitych i szkodliwych gatunków: Lema melanopus, Crioceris asparagi i Lilioceris lilii. Rozwój pozostałych europejskich Criocerinae poznany jest o wiele słabiej, a w odniesieniu do gatunków rzadszych istniejące informacje są bardzo fragmentaryczne i powierzchowne, lub brak ich zupełnie.

Criocerinae są wdzięcznym i niezawodnym obiektem hodowli, zarówno w warunkach polowych (woreczki z gazy), jak i laboratoryjnych. Ze względu na długi, caloroczny cykl rozwojowy, powodzenie hodowli zależy od zebrania owadów dorosłych dostatecznie wcześnie, najlepiej wkrótce po opuszczeniu przez nie zimowisk.

Poważnymi szkodnikami gospodarczymi są Lema melanopus (s. 203) na zbożach i Crioceris asparagi (s. 219) na uprawach szparagów. Na uprawnych liliach, a sporadycznie na cebuli wyrządza szkody Lilioceris merdigera (s. 232).

Klucz do oznaczania rodzajów

owady dorosłe

Lema (s. 189).

— Pazurki nie zrośnięte u nasady (rys. 366). Pokrywy u gatunków europejskich przynajmniej częściowo czerwone lub żółte

2. Pokrywy jednobarwne, czerwone lub jasnordzawe. Przedplecze bardzo silnie przewężone w środku długości (rys. 368).

Lilioceris (s. 225).

— Pokrywy czerwone z czarnym lub metalicznie połyskującym deseniem. Przedplecze znacznie słabiej przewężone, przewężenie leży w tylnej jego części (rys. 369).

Crioceris (s. 208).

larwy

Crioceris (s. 208).

2. Przednia krawędź wargi górnej po bokach z 1–2 dość głębokimi nacięciami (rys. 372). Na czole 4 szczecinki. Dorsolateralne skleryty śródtułowia z 3–4 szczecinkami. Śródt- i zatułów bez sklerytów pretergalnych, nato-
miast z jednym rzędem sklerytów posttergalnych, na każdym z nich 1–2 szczecinki.

.......

Lema (s. 189).

Przednia krawędź górnej wargi po bokach z 4–5 drobnymi karbkami. Na czole 6 szczecinek. Dorso­
lateralne skleryty śródtułowia z 9 szczecinkami. Śród- i zatułów z krótkim rzędziem mocno zredukowanych skleryt-
tów pretergalnych i z licznymi sklerytami posttergalnymi, na każdym z nich jedna szczecinka.

.......

Lilioceris (s. 225).

Rodzaj Lema Fabricius, 1798 – Skrzypionka

Lema Fabricius, 1798: 90.

Pelauristes Latreille, 1829: 136.

Pochodzenie nazwy: gr. lema, lematos — duma, chluba; zapewne od żywego ubar­wienia wielu gatunków.

Gatunek typowy: Chrysomela cyanella Linnaeus, 1758: 376.

Drobne lub — w odniesieniu do niektórych gatunków pozaleuropejskich — średniej wielkości chrząszcze, o kształcie ciała charakterystycznym dla podrodziny Criocerinae. Ubarwienie żywe, najczęściej spotyka się kombinacje barw czerwonej, czarnej i błękitej. Urzeźbienie pierwotne ciała ma z reguły postać mocnego punktowania, które na pokrywach układa się w regularne rzędy. Urzeźbienie wtórne bardzo słabe, najczęściej zanikłe, co nawet gatunkom pozba­wionym metalicznego ubarwienia nadaje mocny, „łakierowy” połysk. Naj­ważniejszą cechą diagnostyczną jest zrośnięcie pazurków u nasady. Larwy tych gatunków, których rozwój został poznany, żerują na liściach rośliny żywiciel­skiej, a przepoczwarczają się w glebie. Jedyny poznaną dotychczas wyjątek od tej reguły stanowi L. (Oulema) gallaeciana, którego larwa przepoczwarcza się na nadziemnych częściach roślin, sporządzając sobie uprzednio rodzaj oprzędu z krzepnącej wydzieliny produkowanej w uchyłkach jelita, a wydobywającej się na zewnątrz przez otwór gębowy. Specjalizacja pokarmowa na skale rodzaju pozorna jest słabo; wśród gatunków podrodzaju nominatywnego stwierdzano żerowanie głównie na roślinach dwuliściennych, natomiast gatunki podrodzaju Oulema są w większości, a być może wszystkie, związane z roślinami jednoliściennymi.

Poważniejsze znaczenie gospodarcze ma w Europie jeden gatunek — L. melanopus (s.203). Jest to znany szkodnik zbóż, szczególnie uciążliwy w Basenie

http://rcin.org.pl
Karpackim i na Półwyspie Bałkańskim. Pewną szkodliwość przypisuje się również gatunkowi L. gallecciana (s. 199), występującemu wraz z nim zwykle na wspólnych siedliskach.

Klucz do oznaczania podrodzajów

Owady dorosłe

 - Przytarczkowy rządka punktów obeeny ... 3.

 - Przytarczkowy rządka złożony z punktów równie dużych, lub niewiele mniejszych od sąsiednich punktów rządka przyszwowego (rys. 380).

Podrodzaj Lema s. str.

1 Podrodzajowych cech diagnostycznych dla larw rodzaju Lema dotychczas nie wykryto, toteż klucz do oznaczania larw (s. 195) obejmuje łącznie obydwa europejskie podrodzaje: Lema s. str. i Oulema.

190

http://rcin.org.pl
Lema (Lema) cyanella (Linnaeus, 1758)

Lema puncticollis Curtis, 1830: 323.
Lema rugicollis Suffrian, 1841: 97.

Pochodzenie nazwy: łac. cyanellus — niebieskawy; od ubarwienia wierzchu ciała.

Terra typica: nie podana.

Długość 4–5 mm. Głowa, przedplecze i pokrywy z mocnym, metalicznym, błękitnym lub rzadziej zielonawobłękitnym połyskiem, który na bokach przedplecza może niekiedy przybierać tęczujący, fioletowy lub purpurowy odcień.

Spód ciała, nogi i czułki czarne ze słabym metalicznym połyskiem. Przedplecze pośrodku długości przewężone, przewężenie ma postać głębokiej bruzdy biegnącej przez całą boczną powierzchnię niemal od przednich panewek biodrowych i stopniowo rozszerzającej się ku górze. Urzeźbienie powierzchni przedplecza bardzo zmienne, złożone z punktów różnych wielkości, z których największe tworzą zwykle dwa regularne lub nieco zmoczone rządkie biegnące wzdłuż środka; między nimi leży gładka, niepunktowana smuga. Smuga ta może być dodatkowo pokryta drobnymi punktami, może też zanikać całkowicie. Na pokrywach rządki punktów regularne, z tylu wglębione, punkty nieco wydłużone.

Dymorfizm płciowy słabo wyrażony, ograniczony do bardzo nieznacznego rozszerzenia przednich stóp i zwykle mniejszych wymiarów ciała u samców. Prącie jak na rys. 374, 375.

http://rcin.org.pl
Zmienność osobnicza w zakresie urzeźbienia powierzchni przedplecza i pokryw dość znaczna, w zakresie ubarwienia niewielka. Błękity, metaliczny połysk wierzchu ciała może w rzadkich przypadkach przybierać odcień zielony lub fioletowy, albo zanikać całkowicie. W ostatnim z wymienionych przypadków całe ciało owada jest jednolicie czarne. Istniejącym odmianom osobnych nazw nie nadawano.

Obszar rozsiedlenia (rys. 381) obejmuje znaczną część Palearktyny od Wysp Brytyjskich po Cieśninę Koreańską. Północna granica tego areału w Europie przecina Szkocję, południową Norwegię w okolicach Hallingdal, Szwecję w okolicach Madelpad, biegąc dalej przez środkową Finlandię i Wieliką Brytanię (Pomierancew 1908). Południowa prowadzi przez Pireneje, Korsykę, Kalabrię, Albanię i Rodopy, a dalej przez południowe Zadnieprze (LoPatin 1960) po północny

W Polsce napotykana wszędzie, zwłaszcza na nizinach, na miedzach, przydrożach, wysypiskach i podobnych stanowiskach roślinności ruderalnej, raczej nieczęsto i zwykle w nielicznych okazach.

Rys. 381. Rozsiedlenie *Lema cyanella* (oryg.).

Podrodzaj *Oulema* GOZIS, 1886

Oulema GOZIS, 1886: 33.
Ulema BEDEL, 1889: 116.
Hapsidolema HEINZE, 1927: 162.

Pochodzenie nazwy: gr. ou — nie i *Lema* — nazwa rodzaju; podkreślenie odrębności od podrodzaju *Lema* s. str.

Gatunek typowy: *Chrysomela melanopus* LINNAEUS, 1758: 376.

http://rcin.org.pl
Należy tutaj około 20 gatunków, rozsiedlonych w Obszarze Palearktycznym i Etiopskim. W Europie występuje osiem gatunków, z których pięć należy do fauny Polski.

Klucz do oznaczania gatunków

owady dorosłe

 — Przedplecze czerwone, pokrywy granatowe lub czarne 6.
2. Nogi żółte o przyciemnionych stopach. ... L. *tristis* (s. 201).
 — Nogi czysto czarne lub czarne z metalicznym połyskiem 3.

3. Poprzeczna bruzda w tylnej części przedplecza nie jest punktowana, lecz gładka lub pokryta zagłębeniami, które po bokach przybierają postać wąskich bruzdek (rys. 386). .. L. *gallaeciana* (s. 199)
 — Poprzeczna bruzda w tylnej części przedplecza punktowana 4
4. Prącie na końcu zaokrągcone (rys. 390). ... L. *erichsoni* (s. 195)
 — Prącie na końcu zaokrągłe (rys. 393, 395) ... 5
5. Drobne i gęste punktowanie pokrywa przedplecze tylko w tylnej części (jak na rys. 387).

- Drobne i gęste punktowanie pokrywa całą powierzchnię przedplecza.

L. septentrionis (s. 197).

- Nogi żółte lub czerwone, z czarnymi stopami.

L. hoffmannseggi (s. 203).

7. Czułki grube i krótkie, człon drugi bardzo krótki, jego długość mniejsza od grubości (rys. 388).

L. rufocyanea (s. 207).

- Czułki smuklejsze, długość drugiego członu większa od grubości (rys. 389).

L. melanopus (s. 203).

Larwy

1. Tylna krawędź przedplecza z 8 mikrochetami. Przednia (pretergalna) strefa śród- i zaplecza z czterema bardzo krótkimi szczecinkami. Drobne skleryty po spodniej stronie segmentów tułowioowych nie zlewają się ze sobą, na każdym jedna szczecinka. Na liściach traw i zbożu.

L. melanopus (s. 203).

- Tylna krawędź przedplecza zwykle bez mikrochet lub, gdy występują, liczba ich nie przekracza 4. Przednia (pretergalna) strefa śród- i zaplecza bez szczecinek. Drobne skleryty po spodniej stronie segmentów tułowioowych często tu i ówdzie zlewają się ze sobą po dwa i wówczas dwie szczecinki znajdują się na jednym sklerycie.

2. Na śródpleczu rząddek posttergalny złożony z czterech sklerytów, na każdym z nich dwie szczecinki. Na liściach ostrożeni – Cirsium L.

L. cyanella (s. 191).

- Na śródpleczu rząddek posttergalny złożony z dwóch większych i trzech mniejszych sklerytów. Na pierwszych po dwie, na drugich po jednej szczecinie. Na liściach traw i zbożu.

L. gallaeciana (s. 199).

Lema (Oulema) erichsoni Suffrian, 1841

Lema Erichsonii Suffrian, 1841: 104.

Pochodzenie nazwy: od nazwiska Wilhelma Ferdynanda ERICHSONA (1809–1849), inicjatora dzieła zbiorowego „Naturgeschichte der Insekten Deutschlands”.

Terra typica: Europa środkowa.

Długość 4–4,5 mm. Wierzch ciała metalicznie błyszczący, granatowy, z lekkim zielonawym czieciem. Poprzeczna bruzda w tylnej części przedplecza

1 Patrz notka na str. 190.
2 W opisie oryginalnym podane są miejscowości: Szczecin, Altenburg, Mainz, Kassel i Elberfeld.
pokryta drobnym, gęstym punktowaniem, które po bokach rozprzestrzenia się ku przodowi (rys. 387). To punktowanie bywa u niektórych okazów mocniejsze; wykazuje ono wówczas tendencję do zbiegania się w drobne, podłużne zmarszczki. Pokrywy punktowane regularnie, punkty w rządach dość delikatne, znacznie mocniejsze wzdłuż krawędzi bocznych oraz na obszarze weisku widocznego w przedniej połowie pokryw. Zagoniki nierówne, punktowanie wtórne skąpe, lecz złożone ze stosunkowo dużych punkcików, które tu i ówdzie, najczęściej jednak na drugim i czwartym zagoniku, mogą tworzyć wyraźne, regularne rządki. Czułki, nogi i spód ciała czarne, niekiedy z bardzo słabym, spiożowym lub fioletowym, metalicznym połyskiem.

Dymorfizm płciowy słabo zaznaczony i ograniczony do kształtu ostatniego sternitu odwłoka, którego tylna krawędź jest u samca prosto ucięta, a u samicy cała równomiernie zaokrąglona. Prącie jak na rys. 390, 391.

Zmiennosc osobnicza niewielka, ograniczona do mocniejszego lub słabszego punktowania oraz do zmian barwy metalicznego połysku wierzchu ciała. Opisano jedną odmianę:

1. Ciało czarne, prawie bez metalicznego połysku, punktowanie przedplecza i pokryw bardzo drobne; rządki na pokrywach zamoczone ab. lipperti GREDLER, 1866: 405.

Stadia przedimaginalne, bionomia i szczegóły cyklu rozwojowego nieznane.

Obszar rozsiedlenia niejasny wskutek ustawicznego mylenia tego gatunku z L. septentrionis. Zmusza to do omówienia areału występowania obydwóch gatunków łącznie (rys. 392), co zresztą i tak nie zapobiega niezbyt istniejącej informacji. Nie wiadomo na przykład, dlaczego obydwa wymienione gatunki, zasiedlające całą Francję (SAINTE-CLAUDE DEVILLE 1937), nie zostały wykryte we Włoszech; dlaczego mimo licznych doniesień z całej południowej Szwecji brak ich zupełnie z sąsiedniej Norwegii (HELLEN 1939); dlaczego te chrząszcze, charakterystyczne raczej dla krajów północnej oraz środkowej Europy i należące do rzadkości już w Basenie Karpackim, nagle zostają wykryte na południowym Zadnieprzu, w strefie stepów (ŁOPATIN 1960). Wspólny areał rozsiedlenia obejmuje znaczną część Europy. Północna jego granica biegnie od Irlandii (WALKER 1895, HALBERT 1893) przez Skagerrak, Wyżynę Ostrogocką po Gástrikland i dalej od ujścia rzeki Kemijoki w Finlandii po jezioro Ładoga (HELLEN 1939) i Wiesław (POMIERANCEW 1908). Południowa prowadzi od środkowej Hiszpanii przez wschodnie Pireneje, Alpy i Karpaty Południowe. AFFELBECK (1916) doniósł o złowieniu L. erichsoni w okolicach Sofii, ponadto znane są okazy tego gatunku z Jugosławii (ULRICH 1923), Minusiuska (JACOBSON 1902), Kazania (LEBIEDIEW 1906) i Władywostoku (RUFO 1964). Doniesienia
o złowieniu *L. erichsoni* we Włoszech (Luigioni 1929) dotyczą odrębnego, niedawno opisanego gatunku apenińskiego, *L. magistrettiorum* (s. 199).

W Polsce *L. erichsoni* jest spotykana nieradko w całym kraju na podmo­kłych łąkach oraz na brzegach rowów, torfowisk itp., w czerwcu i lipcu.

Rys. 392. Łączny areal rozsiedlenia *Lema erichsoni* i *L. septentrionis* (oryg.).

Lema (Oulema) septentrionis Weise, 1880

Lema septentrionis Weise, 1880: 158.

Pochodzenie nazwy: łac. septentrio, septentrionis — północ; od obszaru wystę­powania.

Terra typica: nie podana.

Długość 4–4,5 mm. Wierzch ciała metalicznie błyszczący, granatowy. Poprzeczna bruzda w tylnej części przedplecza pokryta dość mocnym punkto­waniem, które po bokach rozszerza się ku przodowi, podobnie jak u *L. erichsoni* (rys. 387). Pokrywy mocno, regularnie punktowane, punkty w rzędach leżą gęsto obok siebie.
Dymorfizm płciowy jak u *L. erichsoni*, prace jak na rys. 393, 394. Zmienność osobnicza obejmuje przede wszystkim urzeźbienie wierzchu ciała, które może być mocniejsze lub delikatniejsze oraz ubarwienie, oscylujące od niebieskozielonego poprzez błękitny i granatowy po prawie czysto czarny. Dominującym jest ubarwienie czysto, głęboko, ciemnobłękitne, a wymienione odstępstwa od tego fenotypu należą do rzadkich wyjątków. Istniejącym odmianom osobnych nazw nie nadawano.

Roślna żywicielska, stadia przedimaginalne, bionomia i szczegóły rozwoju nieznane.

Rozsiedlenie ogólne omówiono przy gatunku *L. erichsoni* (s. 195). W Polsce napotykana w całym kraju, lecz rzadko i zwykle w małej liczbie okazów. Lokalnie, zwłaszcza na torfowiskach i na podmokłych miejscach w górach, bywa łowiona liczniej.

Lema (Oulema) magistrettiorum Ruffo, 1964

Pochodzenie nazwy: od nazwiska włoskich entomologów, Anny i Mario Magistretti.

Locus typicus: Montallegro (wschodnia Liguria).

Gatunek został opisany na podstawie trzech okazów zebranych w trzech oddalonych od siebie prowincjach Włoch (Liguria, Umbria, Kampania). Ranga taksonomiczna *L. magistrettiorum* wymaga jeszcze dalszych badań, nie da się bowiem wykluczyć możliwości, że jest to rasa geograficzna gatunku *L. erichsoni*, lub, co ze względu na kształt prącia bardziej prawdopodobne, gatunku *L. septentrionis*. Znany dotychczas tylko z Włoch.

Lema (Oulema) gallaeciana Heyden, 1870

Crioceris cyanella Paykull, 1798: 23, nec Linnaeus, 1758: 376.

Chrysonela lichenis Voet, 1806: 42, nazwa unieważniona.

Crioceris obscura Stephens, 1829: 210, nec Fabricius, 1801: 476.

Lema Gallaeciana Heyden, 1870: 164.

Pochodzenie nazwy: od łac. nazwy Galicji (Gallaecia), krainy w północno-zachodniej Hiszpanii, skąd pochodzi seria typowa gatunku.

Locus typicus: Santiago de Compostela (Galicja, Hiszpania).

Długość 3,5–4,5 mm. Ubarwienie wierzchu ciała metalicznie niebieskie, rzadziej zielonawe lub czarne. Czułki, nogi i spód ciała czarne, normalnie bez metalicznego połysku. Przedplecze bardzo wypukłe, błyszczące, skąpo, lecz dość mocno punktowane, punkty wzdłuż środka układają się po 6–8 w dwa równoległe rądki. Tło gładkie, błyszczące, urzeźbienie wtórne złożone z bardzo drobnych, z rzadka rozsianych punkceków i drobnych nierówności, widocznych dopiero pod powiększeniem około 50 X. Poprzeczna bruzda przy nasadzie przedplecza niepuntkowana, błyszcząca, pokryta podłużnymi zmarszczkami lub listewkami, z krótką bruzdką lub podłużnym dołeczkiem pośrodku. Pokrywy błyszczące, mocno, regularnie punktowane, na drugim i czwartym zagoniku
zwykle widać prawie regularny rządek, utworzony z luźno ułożonych punktów urzeźbienia wtórnego.

Dymorfizm płciowy wyrażony bardzo słabo i ograniczony do niewielkich różnic w kształcie przednich stóp, które u sameca są nieco szersze niż u samicy. Prącie jak na rys. 397, 398.

Zmienność osobnicza niewielka, wyróżniono odmiany:

1. Metaliczny połysk wierzchu ciała zielonawobłękitny, błękity lub fioletowy.
2. Metaliczny połysk wierzchu ciała słaby, czarnomosiężny lub prawie zupełnie zanikły.
3. Pokrój ciała bardziej smukły niż u formy typowej, punktowanie pokryw szczególnie delikatne. Odmiana bez osobnej nazwy.

Pierwszy, powierzchowny opis larwy i poczwarki dał CORNELIUS (1850), dalsze szczegóły morfologii larwy są rozsiane w licznych pracach z zakresu entomologii stosowanej. Cechy diagnostyczne podali OGŁOBLIN i MIEDWIEDIEW (1971).

Rozwój poznany tylko fragmentarycznie (CORNELIUS 1850). Zimują niedojrzałe płciowo owady dorosłe, które łatwo napotkać już w pierwsze ciepłe dni wiosny. Okres żerowania larw przypada głównie na drugą połowę maja. W pierwszych dniach czerwca larwa, nie schodząc do gleby, sporządzając sobie rodzaj białawego, pienistego oprzędu, w którym zamknięta, nie liniając, pozostaje bez ruchu przez około 8 dni. Wewnątrz oprzędu przepoczwarza się i po około 14 dniach — w większości przypadków z końcem czerwca — ukazuje się dorosły owad. Okres składania jaj, najintensywniejszy w pierwszej połowie maja, trwa aż do pełni lata, dzięki czemu jeszcze w lipcu i sierpniu napotyka się w terenie larwy w różnych okresach wzrostowych i poczwarki. Było to źródłem przypuszczeń, że L. gallaeciana daje dwa pokolenia w roku (KÖPPEN 1880); dane te później parokrotnie prostowano (HITLERLAUS 1965). Dokładny, ilustrowany schematycznymi rysunkami opis przebiegu sporządzania oprzędu przez larwę podał HÄNSEL (1924) pod nazwą L. cyanella. Szczegółem różnicywym biologicznie L. gallaeciana od pokrewnych gatunków podrodzaju Oulema jest diapauza odbywana nie w glebie, lecz na roślinie.

Roślinami żywicielskimi są rozmaite trawy i zboża, z których najczęściej bywają wymieniane kupkówka pospolita — Dactylis glomerata L., stokłosa prosta — Bromus erectus HUDS., perz właściwy — Agropyron repens L. i jęczmień zwyczajny — Hordeum vulgare L. (PERNERSDORFER 1941).

Znaczenie gospodarcze niewielkie; owady dorosłe mogą w czasie intensywnego żeru wiosennego sporadycznie uszkadzać wschody i młode źdźbła zbóż jarych. Żer na zbóżach oziomych, a także żer larw nie mają poważniejszego wpływu na wzrost roślin i wysokość plonów.

Obszar rozsiedlenia (rys. 403) obejmuje znaczną część Europy, środkową Syberię i Mongolię (ŁOPATIN 1964, 1975). W Europie północna granica tego arealu biegnie przez Ulster, księstwo Yorku, Lindesnes, Mjostraktene, Änger-
manland i Västerbotten oraz przecina Finlandię i Karelską ASRR na wysokości równoleżnika 63°. Południowa prowadzi przez północną część Hiszpanii, Emilię (RUFFO 1964), Bośnię, Pirin i Rodopy (WARCIAŁOWSKI 1974) po północne przedgórza Kaukazu. Dalej ku wschodowi jej przebieg niejasny, prawdopodobnie szerokim łukiem omija od północy całą półpustynną i stepową część Azji Środkowej.

W Polsce wszędzie bardzo pospolita na stanowiskach roślinności trawiastej oraz na zasiewach zbóż, szczególnie owsa i jęczmienia.

![Rys. 403. Rozsiedlenie Lema gallaeciana (oryg.)](http://rcin.org.pl)

Lema (Oulema) tristis (HERBST, 1786)

Crioceris Tristis HERBST, 1786: 165.
Lema flavipes SUPFRIAN, 1841: 100.

Pochodzenie nazwy: łac. *tristis* – smutny, nazwa jednego z ciemnych odcieni błękitu; od ubarwienia wierzchu ciała.

Terra typica: Austria.

Długość 3,5–4 mm. Wierzch ciała mocno błyszczący, z zielonawoniebieskim, metalicznym połyskiem; czułki, spód ciała, biodra i krętarze, a zwykle i pazur-
kowy człon stóp brunatne lub czarne; nogi czerwonawożółte, końce goleni oraz pierwsze trzy człony stóp na końcach przyciemnione. Przedplecze (rys. 385) smuklejsze i przewężone nieco dalej od podstawy, aniżeli u pozostałych europejskich gatunków podrodzaju *Oulema*; tylna część pokryta drobnym, gęstym punktowaniem, zachodzącym po bokach aż na przednią połowę przedplecza. Pokrywy regularnie punktowane, rządki punktów leżą we wglębiionych bruzdkach.

![Map of distribution of *Lema tristis*](http://rcin.org.pl)

Rys. 404. Rozsiedlenie *Lema tristis* (oryg.).

Dymorfizm płciowy zbyt słaby, by móc według cech zewnętrznych odróżnić sameca od samicy, jakkolwiek można się dopatrywać niewielkich różnic w kształcie pierwszego członu przednich stóp i w stopniu zaokrąglenia tylnej krawędzi ostatniego sternitu odwłoka. Przecie jak na rys. 399, 400.

Zmienna osobniczka niewielka, w zakresie ubarwienia ograniczona do słabszej lub mocniejszej pigmentacji kończyn oraz do różnie w odcieniach metalicznego połysku przedplecza i pokryw. Odmian nie opisywano.

Rozwój poznany bardzo powierzchownie. W południowej części arcału rozsiedlenia owady dorosłe zimują w glebie, w kwietniu kopulują i składają

http://rcin.org.pl
jaja, od końca maja dorosłe już larwy schodzą do ziemi, by się przepoczwarczyć. Imagines nowego pokolenia pojawiają się w czerweu i lipcu, co było podstawą tezy o występowaniu u tego gatunku dwóch pokoleń w roku (BALACHOWSKY i MESNIL 1935, MÜLLER 1953).

W Polsce sprawdzone stanowiska występowania tego chrząszcza znajdują się na Śląsku i w okolicach Krakowa, istnieją też od dawna nie potwierdzone doniesienia z Gdańska (HORIZON 1951) i z okolice Modlina (OSTERLOFF 1884).

Lema (Oulema) hoffmannsegni LACORDAIRE, 1845

Lema Hoffmannsegni LACORDAIRE, 1845: 396.
Lema purpuricollis REICHE, 1861: 92.

Terra typica: Portugalia.

Długość 4–4,5 mm. Pokrywy granatowe, przedplecze pomarańczowe, głowa, spód ciała, czułki i nogi czarne.

Larwę, poczwarkę i przebieg rozwoju opisał XAMBÉAU (1890, 1893).

Obszar rozsiedlenia obejmuje Afrykę północno-zachodnią, cały Półwysep Iberyjski oraz południową część Francji (SAINTE-CLAIRE-DEVILLE 1937). Gatunek mauretańsko-iberyjski, nie natłumaczony dotychczas ani na terytorium Włoch, ani na wyspach Morza Śródziemnego. Niemniej, dane faunistyczne wymagają jeszcze sprawdzenia i być może korektów, gdyż *L. hoffmannsegni* była przez dłuższy czas uważana (WEISE 1881) za odmianę barwną *L. melanopus*.

Lema (Oulema) melanopus (LINNAEUS, 1758)

Chrysomela melanopus LINNAEUS, 1758: 376.
Chrysomela melanopa LINNAEUS, 1761: 173.

Pochodzenie nazwy: gr. melas — czarny i pous — noga; od czarnych stóp.
Terra typica: nie podana.
Długość 4,3-5,2 mm. Głowa i pokrywy granatowe, czułki, spód ciała, biodra i stopy czarne, przedplecze, uda i golenie jasnopomarańczowe lub czerwonawe. Przedplecze pokryte w przedniej części skąpo, a wzdłuż tylnej krawędzi gęsto, drobnym punktowaniem. Wzdłuż środka przedplecza punkty często układają się w trzy luźne, niezbyt regularne rządki. Pokrywy smukłe, rządki punktów na nich mocne i regularne, słabo wgłębione.

Rys. 405. Lema melanopus (wg Warchałowskiego 1971).

Dymorfizmu płciowego w odniesieniu do cech zewnętrznych brak. Prącie jak na rys. 401, 402.

Zmiennność osobnicza niewielka, ograniczona głównie do różnice w odcieniu metalicznego polysku pokryw. Spotykane odmiany:

1. Pokrywy niebieskozielone lub niebieskie .. forma typowa.
3. Pokrywy czarne z bardzo słabym metalicznym polyskiem, zwykle spiżowym lub zielonawym, punktowanie delikatne, tło lekko zmarszczone, niekiedy matowe ... ab. duftschmidtii Redtenbacher, 1849: 446.

Rozwój osobniczy był przedmiotem licznych obserwacji, zapoczątkowanych jeszcze przez Réamura (1737) oraz tematem kilku monografii (SaJo 1893, Miegałow 1927, Hodson 1929, Knechtel i Manolache 1936, Venturi 1942, Hitlerhaus 1965). Tabelaryczne porównanie cyklów rozwojowych L. mel-

Zeruje na różnych gatunkach dzikich i pastewnych traw, na pszenicy, jęczmieniu, owsie i kukurydzy. Wykaz roślin atakowanych przez **L. melanopus** podaje Pernersdorfer (1941). **L. melanopus** należy do ważnych szkodników gospodarczych i jest w wielu krajach objątą akcją planowego zwalczania. W krajach środkowej i północnej Europy, a także i w Polsce, szkody wyrządzane przez tego chrząszcza nie są wielkie, gdyż czynniki klimatyczne, przewaga zasiewów ozimych nad jarymi oraz dominacja w nich żyta nie stwarzają warunków do powstania gradacji.

Obserwowano atakowanie larwy **L. melanopus** przez pluskwiaka Nabis ferus L. (Knechtel i Manolache 1936, Speyer 1954), a także przez larwy złotoooków — Chrysopa sp. (Urquijo 1940). Ponadto stwierdzono (Hodson 1929) spasożytownie jaj przez błonkówkę z rodzaju Tetrastichus (Eulophidae). Najważniejszymi pasjożytami larw **L. melanopus** są gąsieniczniki Tersilochus moderator (L.) i T. carinifer Thomson. Obydwa wymienione gatunki mają

Obszar rozsiedlenia (rys. 406) bardzo rozległy, obejmuje znaczną część Europy, północno-zachodnią część Afryki, Maderę, Wyspy Kanaryjskie oraz zachodnią część Azji po Syberię Zachodnią, Mongolię i Jakucję. Północna granica tego areału przecina Wielką Brytanię w okolicach Glasgow, Norwegię koło Sogn, szwedzką prowincję Dalarne oraz Finlandię mniej więcej wzdłuż równoleżnika 63°, biegnąc dalej przez strefę tajgi po południowo-zachodnią Jakucję. Południowa biegnie od Marakeszu wzdłuż północnej krawędzi Sahary po Trypolis, a następnie przez Izrael, Mezopotamię, Iran, Afganistan i Kirgiską SRR po północno-zachodnią Mongolię. Obie granice zbiegają się prawdo-

Rys. 406. Rozsiedlenie Lema melanopus (oryg.).

http://rcin.org.pl
podobnie w dorzeczu górnej Leny. Dalej ku wschodowi, tzn. w Kraju Nadmorskim, na Półwyspie Koreańskim, w Chińskiej RL i na Wyspach Japońskich L. melanopus zostaje zastąpiona przez bardzo do niej podobny gatunek L. oryzae Kuwayama, 1931 i do tego gatunku odnoszą się dawniejsze doniesienia o występowaniu L. melanopus w Japonii (Jacoby 1888).

W Polsce na obszarze całego kraju na uprawach zbóż i na miejscach trawiastych, wszędzie bardzo pospolita i łatwa do napotkania przez cały rok.

Lema (Oulema) rufocyanea Suffrian, 1847

Lema rufocyanea Suffrian, 1847b: 100.

Pochodzenie nazwy: łac. rufus — czerwony (rudy) i zlatynizowane gr. kyaneos — błękitny; od czerwonego przedplecza i ciemnobłękitnych pokryw.

Terra typica: nie podana.

Długość 3,7–4,2 mm. Ubarwienie i urzeźbienie wierzchu ciała jak u *L. melanopus*, do której *L. rufocyanea* jest łudząco podobna. Jedyną uchwytną ze-

Rys. 407. Rozsiedlenie *Lema rufocyanea* (oryg.).
wewnętrzna cechą odróżniającą te dwa gatunki jest kształt drugiego członu czułków, który u *L. rufocyanea* ma długość wyraźnie mniejszą od grubości (rys. 388). Mniej wyraźną cechą jest u *L. rufocyanea* nieco bardziej krępą budowę ciała i trochę krótsze pokrywy.

Stadia przedimaginalne, szczegóły cyklu rozwojowego i rośliny żywicielskie nieznane. Doniesienia o żerowaniu na jasnocie — *Lamium L.* (Bourgeois 1876) polegają z pewnością na pomyłce.

Obszar rozsiedlenia (rys. 407) rozpościera się wokół doliny Rodanu, Alp i doliny górnego Dunaju. Jego granica biegnie od południa w przybliżeniu wzdłuż południka 2° szerokości wschodniej po okolice Paryża (Sainte-Claire-Deville 1902), a stąd przez północne przedgórza Ardenów (Frennet 1945), dolinę Menu, Wiedeń (Jakov 1979) i zachodnią część Basenu Karpackiego (Kaszab 1962a) wraz z częścią południowej Słowacji (Roubal 1941) po Istrię i Wenecję (Müller 1953). Wiele błędnych danych o napotkaniu *L. rufocyanea* polega na myleniu jej z pospolitą *L. melanopus*, toteż podane granice należy traktować bardzo ostrożnie.

W Polsce zapewne nie występuje. Donoszono o złowieniu jej w Wejherowie (Lentz 1879), co później kwestionowano w oparciu o ogólnie rozsiedlenie gatunku.

Rodzaj Crioceris Müller, 1764

Crioceris Geoffroy, 1762: 237, nazwa unieważniona.

Crioceris Müller, 1764: XIII.

Pochodzenie nazwy: gr. krios, kriou — baran i keras, keratos — róg; od stosunkowo grubych czułków.

Rodzaj *Crioceris* wyróżnia się pazurkami nie zrośniętymi u nasady oraz formą przewężenia skroniowego, które nie wkracza na grzbietową powierzchnię głowy. Przedplecze w przedniej części równomiernie wypukłe, przewężone przy nasadzie. Grzbietowa strona ciała zawsze nieowłosiona, tło lśniące i gładkie, punktowanie niekiedy drobne, lecz zawsze czysto i ostro nakłute, bez tendencji do zbierania się w zmarszczki. Larwy, w odróżnieniu od pozostałych rodzajów podrodziny, nie noszą na sobie otoczki śluzowo-kałowej. Całkowitą liczbę należących tutaj gatunków podać trudno, gdyż wiele z nich, opisanych pod nazwą rodzajową *Crioceris*, należy w rzeczywistości do sąsiedniego rodzaju *Lilioceris* (s. 225); dotyczy to zwłaszcza gatunków afrykańskich. W Palaarktyce żyje 14 gatunków, a z nich 7 w Europie. Wszystkie gatunki europejskie żyją na uprawnych i dzikich szparagach — *Asparagus* L. Owady dorosłe zjadają liście, a larwy bądź liście, bądź niedojrzałe owoce szparagów. Jeden gatunek (*C. asparagi*, s. 219) zalicza się do poważniejszych szkodników gospodarczych, pozostałe nie mają istotnego znaczenia dla upraw. Do entomofauny Polski należą 4 gatunki.
Klucz do oznaczania gatunków owadów dorosłych

1. Cała głowa czarna ... 2.
 - Głowa częściowo lub całkowicie czerwona 6.
2. Głowa oraz czarny desen przedplecza i pokryw z metalicznym, błękitnym, zielonym lub spiżowym połyskiem .. 3.
 - Głowa oraz czarny desen przedplecza i pokryw bez metalicznego połysku ... 4.

Rys. 408. Crioceris duodecimpunctata (wg Warchałowskiego 1971).

3. Przedplecze czarne, dookoła wąsko, czerwono obwiedzione, uda przy-najmniej u nasady czerwone.
 ... C. macilenta (s. 224).
 - Przedplecze jednolicie czerwone lub z dwiema czarnymi plamkami, które mogą zlewać się ze sobą i zajmować całą środkową część powierzchni. Uda całe czarne.
 ... C. asparagi (s. 219).

14 — Chrysomelidae

http://rcin.org.pl

........... C. paracenthesis (s. 219).

—. Bruzdka biegnąca wzdłuż środka czoła mocna, głęboko nacięta. Czarna smuga przyszwowa na pokrywach z przodu rozszerzona (rys. 435–438)

........... 5.

........... C. bicruciata (s. 219).

—. Przedplecze o bokach mocniej wypukłych (rys. 410). Za czarną plamą ramienną drugiej, mniejszej plamki brak.

........... C. quinquepunctata (s. 216).

6. Przedplecze jednolicie czerwone, koniec pokryw czerwony.

........... C. duodecimpunctata (s. 210).

—. Przedplecze czerwone z czterema czarnymi plamkami, koniec pokryw z czarną plamką.

........... C. quatuordecimpunctata (s. 214).

larwy

1. Wzdłuż boków odwłoka, bezpośrednio pod przetchlinkami, ciągnie się rządek wyraźnych, dobrze odgraniczonych guzków. Ubarwienie ciała szarozielone lub oliwkowe.

........... C. asparagi (s. 219).

—. Wzdłuż boków odwłoka, bezpośrednio pod przetchlinkami, ciągnie się rządek słabo wyróżnionych i niewyraźnie odgraniczonych guzków. Ubarwienie ciała białawe lub żółtawe.

........... C. quatuordecimpunctata (s. 214).

Crioceris duodecimpunctata (Linnaeus, 1758)

Chysomela 12-punctata Linnaeus, 1758: 376.
Lema dodecastigma Suffrian, 1841: 40.

Pochodzenie nazwy: łac. duodecim — dwanaście i punctum, puncti — punkt; od dwunastu czarnych kropek tworzących deseń pokryw.

Terra typica: Europa.

Dymorfizm płciowy ograniczony do przebiegu tylnej krawędzi ostatniego sternitu odwłoka, która u samicy jest nieco mocniej okrągła niż u sameca. Prącie jak na rys. 411, 412.

Zmienność osobnicza znaczna, lecz dotyczy ona głównie ubarwienia pokryw. Opisano liczne odmiany, w większości nie uwzględniane w katalogach. Dostatecznie wyraźnie da się wśród nich wyróżnić dziesięć:

Cykl rozwojowy. Owady dorosłe po opuszczeniu zimowisk żerują niezbyt intensywnie na rozwijających się pędach szparagów; w tym okresie chętnie zmieniają miejsce żerowania, przelatując z jednych stanowisk na drugie, nieraz na znaczną odległość. Gdy liście szparagów rozwinią się, owady przystępują do kopulacji i składania jaj. Zielonobrunatne jaja o wymiarach około 1,1 x 0,45 mm zostają przylepione boczną powierzchnią do liścia. Okres inkubacji trwa 5-12 dni. Młoda larwa wędruje po roślinie i natrafiwszy na młody owoc wgra się do wnętrza i tam żeruje. Po wyjadzeniu zawartości jednej jagody przenosi się do następnej; dla pełnego rozwoju potrzebuje 3-4 jagody. Mimo skrupulatnie przeprowadzanych obserwacji nie udało się ostatecznie stwierdzić, czy na swobodzie larwy C. duodecimpunctata istotnie żywią się wyłącznie owocami szparagów. W warunkach hodowlanych, nie otrzymawszy owoców, zjadają liście. Rozwój larwy jest szybki i w korzystnych warunkach termicznych trwa 7-10 dni, w okresach chłodów odpowiednio dłużej. Dojrzała larwa schodzi do gleby i sporządza sobie oprzę. Przepoczwarczenie nie następuje bezpośrednio po sporządzeniu oprzędu, lecz dopiero po upływie pewnego czasu, którego dokładnie nie określano, prawdopodobnie po kilku dniach. Diapauza w warunkach laboratoryjnych trwa, według obserwacji autora, 10-14 dni, a w warunkach klimatycznych stanu Nowy Jork 12-20 dni (Fink 1913). Owady dorosłe pojawiają się w drugiej połowie lipca i już po trzech tygodniach napotyka się pierwsze larwy drugiego (zimującego) pokolenia. Larwy w różnych okresach wzrostowych można znaleźć jeszcze w pierwszych dniach października. Nie zostało wyjaśnione, w jakim stadium C. duodecimpunctata zimuje w Europie środkowej i kiedy następuje zakończenie procesu metamorfozy. Nie wyjaśniono także, co się dzieje z larwami, które nie zdołały przed nadejściem chłodów zakończyć trzeciego okresu wzrostowego. Nie wyjaśniono wreszcie, czy istotnie wszystkie chrząszcze pokolenia letniego przystępują do procesu rozrodu jeszcze tego samego roku. Duża liczba sprzecznych informacji wskazywałyby na równoczesne istnienie różnych wariantów, a więc na dużą tolerancję tego gatunku względem warunków termicznych. To z kolei stoi jednak w niezgodzie z przebiegiem północnej granicy arealu rozsiedlenia, który w Europie nieznacznie tylko przekracza równoleżnik 56°. Wątpliwości tych nie rozpraszają wyników niedawnych badań nad cyklem rozwojowym C. duodecimpunctata, prowadzonych przez Bodora (1966).

Pierwszy opis i rysunek larwy tego gatunku podał Frisch (1738); dalsze szczegóły rozproszone są w pracach z zakresu entomologii stosowanej oraz

http://rcin.org.pl
w niektórych zbiorczych opracowaniach faunistycznych (Balachovsky i Me-
sníl 1935, Henriksen 1927). Cechy diagnostyczne larw podają Ogloblin
i Miedwiediew (1971). Szczegóły bionomii można znaleźć u Dinglera (1935b),
Jako roślina żywicielska podawany jest tylko uprawny lub zdziczały szparag
lektarski — Asparagus officinalis L. Znaczenie gospodarcze niewielkie; niezbyt
dotkliwe szkody wyrządzane przez C. duodecimpunctata dotyczą jedynie plonu
owoców szparagów na uprawach nasiennych.

Rys. 422. Rozsiedlenie Crioceris duodecimpunctata (oryg.).

Z pasożytów tego gatunku poznano dwie błonkówki (Jolivet 1950): Tetrasti-
chus asparagi Crawf. (Eulophidae) i Porizon microcephalus Grav. (Ichneu-
monidae).

Obszar rozsiedlenia (rys. 422) bardzo rozległy, obejmuje znaczną część
Palearktyki od Wysp Brytyjskich po Półwysep Koreański. Północna granica
tego areatu biegnie od północnej Anglii przez Skagerrak, Kattegat (doniesienia
ze Skanii okazały się mylne: Hellen 1939, Klefbeck i Sjöberg 1963) i nad-
bałtyckie republiki ZSRR. Południowa przecina południową część Półwyspu
Iberyjskiego, Grecję i północną Syrię (Ruffo 1964), biegnąc dalej przez środkowoazjatyckie republiki ZSRR, Mongolię i dorzecze Amuru (Łopatin 1975) po Półwysep Koreański (Chůjó 1940). Obszar Azji Środkowej zasiedla podgatunek C. d. hypopsila Jacobson, 1907: 25, o czerwonych czułkach i bardzo zredukowanym czarnym deseniu pokryw; do niego należy zapewne zaliczyć odmianę ab. delagrangei, znaną dotychczas tylko z Syrii. Pozostałą część opisanego arealu zasiedla podgatunek nominatywny. Pod koniec ubiegłego stulecia (Lugger 1884) C. duodecimpunctata została zawleczona na wschodnie wybrzeża Ameryki Północnej w okolicach Baltimore, a następnie obserwowano jej rozprzestrzenianie się w kierunku zachodnim i północnym (Chittenden 1907).

W Polsce na obszarze całego kraju, szczególnie jednak w dzielnicach centralnych i południowych, pospolita na uprawnych i zdziczałych szparagach.

Crioceris quatuordecimpunctata (Scopoli, 1763)

Attelabus 14-punctatus Scopoli, 1763: 37.

Pochodzenie nazwy: łac. quatuordecim – czternaście i punctum, puncti – punkt; od czternastu plamek tworzących deseń pokryw.

Terra typica: Karniolia.

Długość 5–6,5 mm. Ciało ceglastoczerwone; brzegi czoła, plama na ciormieniu, pięć plam na przedpleczu, siedem plam na każdej pokrywie (1, 2, 2, 1, 1), episterny i epimery śród- i zapiersia, biodra, końce ud, golenie i stopy czarne.

http://rcin.org.pl
Przedplecze gęsto, bardzo delikatnie punktowane, punktowanie pokryw o wiele mocniejsze.

Dymorfizmu płciowego w zakresie wyraźniejszych cech zewnętrznych brak. Prącie jak na rys. 423, 424.

Zmienność osobnicza prowadzi do wytwarzania rozmaitych wariantów ciemnego desienia. W formę klucza do oznaczania ujął je Kaszab (1962a). Najważniejsze odmiany:

1. Deseń jak w opisie gatunku (rys. 427) .. forma typowa.
5. Śródkowa przepaska zredukowana do małej plamki leżącej w pobliżu szwu (rys. 428). ... ab. internepunctata Csiki, 1953: 120.
7. Śródkowej przepaski brak (rys. 430) .. ab. parumpunctata Roubal, 1949: 3.
8. Tylnej przepaski brak (rys. 431) .. ab. deficiens Roubal, 1949: 3.

Bliższe szczegóły cyklu rozwojowego nieznane; powierzchowny opis życia i rozwoju podał Targioni-Tozza (1884), później nad bionomią tego gatunku dokładniejszych badań nie prowadzono.

Żyje na szparagu lekarskim — Asparagus officinalis L., a na południe od luku Karpackiego na szparagu cienkolistnym — A. tenuifolius L. W Basenie Karpackim, gdzie łowiony bywa częściej, występuje zazwyczaj na jałowych, piaszczystych wydmach lub odłogach, a znacznie rzadziej na uprawach szparagów. Znaczenia gospodarczego nie ma.

Z pasożytów atakujących C. quatuordecimpunctata zidentyfikowano muchówki z rodziny rączycowatych (Tachinidae) — Meigenia floralis Fallén (Jolivet 1950).

Obszar rozsiedlenia (rys. 432) obejmuje środkową i południowo-wschodnią część Europy, część Azji Środkowej i Syberii, Mongolie, dorzecze Amuru, Półwysep Koreański i część Wysp Japońskich. Wyznaczenie granic arealu jest bardzo utrudnione przez brak dostatecznej liczby nowszych danych. Wydaje się, że w zachodniej Palearktyce gatunek ten zasiedla przede wszystkim nadkaspiajską i czarnomorską strefę stepową i leśno-stepową, ku północy sięgając aż po okolice Petropawłowska (Jakovlew 1900) i Kazania (Lebiediew 1906) oraz rozsiedlając się dwiema drogami w kierunku Europy środkowej. Jedną z tych dróg jest dolina Dunaju z obszarem zasiedlenia obejmującym Basen Karpacki i jego otoczenie, a poprzez Bramę Morawską wkraczającym na Śląsk i jeszcze dalej ku północy i zachodowi. Takie jest zapewne pochodzenie stanowisk tego gatunku w Brandenburgii (Horion 1951) oraz na obszarze.
byłego Królestwa Pruskiego po okolice Kaliningradu (WEISE 1881). Druga droga to szlak wschodnioadriatycki od Azji Mniejszej przez południową część Półwyspu Bałkańskiego, Albanię i Dalmację po Istrię.

W Polsce znany zaledwie z kilku znalezisk w okolicy Raciborza i Świdnicy oraz z Wyżyny Małopolskiej.

Rys. 432. Rozsiedlenie Crioceris quatuordecimpunctata (oryg.).

Crioceris quinquepunctata (SCOPOLI, 1763)

Attelabus 5-punctatus SCOPOLI, 1763: 36.

Pochodzenie nazwy: łac. quinque — pięć i punctum, puncti — punkt; od pięciu plam składających się na deseń pokryw.

Terra typica: Karniolia.

Długość 5–6 mm. Głowa, czułki, nogi, cały spód ciała, tarczka oraz deseń wierzchu ciała czarne, przedplecze i tło pokryw ceglaste. Czarny deseń wierzchu ciała obejmuje na pokrywach smugę wzdłuż szwu, która w przedniej części rozszerza się tworząc dużą wspólną plamę, a ponadto na każdej pokrywie jedną plamę ramienną i jedną okrągłą plamę przedsześciotową. U odmian mela-
notycznych na przedpleczu bywa zaczerniona tylna listewka krawędziowa, mogą także występować trzy plamki, z których jedna leży przed tarczką, na powierzchni skróconej bruzdki środkowej, a dwie pozostałe tuż przed nią, po obu stronach środka powierzchni przedplecza. Czeło niezbyt wypukłe, wzdłuż środka biegłego nacięta bruzdka, guzki częściowo przypłaszczone. Przedplecze gęsto, nierównomiernie, drobno i dość płytko punktowane, zwykle wyraźnie słabiej błyszczące niż pokrywy; wzdłuż środka w przedniej części biegłego niekiedy lekko wypukła listewka lub wąska, gładka, niepunktowana linia; w tylniej części, przed tarczką, leży skrócona bruzdka środkowa, zwykle w postaci płytkiego, podłużnego dołeczka. Tło pokryw gładkie, błyszczące, punkty w rządach ułożone regularnie.

Dymorfizm płciowy prawie nie zaznaczony, prącie jak na rys. 433, 434. Zmienność osobnicza niewielka, odstępstwa od odmiany typowej są dość rzadkie. Opisano odmiany:

1. Ubarwienie ciała jak w opisie gatunku (rys. 436). Na przedpleczu czarnego desenia brak lub jest on ograniczony do malej plamki leżącej na powierzchni skróconej bruzdki środkowej oraz do zaczernienia tylniej listewki krawędziowej. forma typowa.

Stadia przedimaginalne i szczegóły rozwoju nie znane. Dane Targioni-Tozzettiego (1884) są bardzo powierzchowne i nieprzydatne dla przeprowadzenia porównań. Żyje na szparagu lekarskim — *Asparagus officinalis* L. (Weise 1881).

Rys. 442. Rozsiedlenie *Crioceris quinquepunctata* (oryg.).

Obszar rozsiedlenia w Europie (rys. 442) w ogólnych zarysach podobny jak u *C. quatuordecimpunctata* i chyba podobnie należy wyjaśniać jego genezę. Wykazuje mniejszą tendencję do przekraczania luku sudecko-karpackiego, natomiast głębiej zasiedla przedgórza Gór Dynarskich oraz rozsiedla się dalej na zachód, sięgając wzdłuż doliny Dunaju po północne prowincje Austrii (Jakob 1979) i Bawarię (Horion 1951). Najdalszej na wschodzie znane są stanowiska leżące wzdłuż Wolgi między Krasnoarmiejskiem (Jakobson 1897) a Kazaniem (Lebiediew 1906).

W Polsce jedynym pewnym miejscem znalezienia *C. quinquepunctata* są okolice Legnicy (Scholz 1927), wcześniej donoszono także o złowieniu jej
w Kłodzku (BACH 1856). Bliskość słowackich i morawskich stanowisk tego gatunku pozwala oczekiwać dalszych znalezisk na północ od Bramy Morawskiej i wzdłuż doliny Odry.

Criocerus bicruciata (SAHLBERG, 1823)

Lema bicruciata SAHLBERG, 1823: 54.

Pochodzenie nazwy: łac. *bis* — dwakroć i *cruciatus* — krzyżowy, naznaczony krzyżem; od desenia pokryw, który u pewnych odmian ma postać podwójnie przekreślonego krzyża.

Locus typicus: Cherson (Macedonia grecka).

Długość 5–6 mm. Wierzch ciała ceglastoczerwony, czarny desenia pokryw, który u pewnych odmian ma postać podwójnie przekreślonego krzyża.

Criocerus paracenthesis (LINNAEUS, 1767)

Chrysomela paracenthesis LINNAEUS, 1767: 1066.

Pochodzenie nazwy: gr. *parakentesis* — przedziurawienie, nakłucie; intencja autora nazwy niejasna.

Terra typica: Portugalia.

Długość 4–4,5 mm. Cechy diagnostyczne podane w kluczu do gatunków. Najmniejszy i najjaśniejszy ubarwiony gatunek w rodzaju. Dymorfizm płciowy wyrażony bardzo słabo. Zmienność osobnicza w zakresie ubarwienia dość znaczna. Opisano odmianny:

1. Desen pokryw jak na rys. 439 .. forma typowa.
2. Tylnej plamy na pokrywach brak (rys. 440) .. ab. *suralis* GRAVENHORST, 1807: 139.

Stadia przedimaginalne i szczegóły rozwoju nieznane. Żeruje na dzikim szparagu *Asparagus acutifolius* L. (WEISE 1881).

Obszar rozsiedlenia (rys. 443) obejmuje znaczną część basenu Morza Śródziemnego. Północna granica biegnie przez południową Francję, Lombardię, Chorwację i północną Grecję. Gdyby się potwierdziły informacje o występowaniu tego chrząszcza w Karyncji (HORION 1951), można by domniemywać się jego penetracji w kierunku Europy środkowej.

Criocerus asparagi (LINNAEUS, 1758)

Chrysomela Asparagi LINNAEUS, 1758: 376.

Chrysomela campestris LINNAEUS, 1767: 602.

Lema pupillata AHRENS, 1812: 30.

Lema maculipes GEBLER, 1834: 171.
Pochodzenie nazwy: łac. asparagus, asparagi – szparag; od rośliny żywicielskiej.

Terra typica: Europa.1

Długość 5–6,5 mm. Ciało wielobarwne. Głowa czarnozielona lub granatowa, przedplecze czerwone z trzema czarnymi, metalicznie połyskującymi plamami, pokrywy metalicznie niebieskozielone, wzdłuż boków i z tyłu obwiedzione ciemnopomarańczową smugą, ponadto na metalicznie ubarwionej części każdej pokrywy leżą trzy kremowobiałe, w przybliżeniu czworokątne plamy; przednia

między trzecim a piątym, środkowa i tylna między trzecim a ósmym rzędkiem punktów. Powstają w ten sposób trzy ciemne przepaski, z których przednia łączy się z podłużną płamą barkową. Te trzy przepaski łączy szeroka smuga ciągnąca się wzdłuż szwu na szerokości trzech wewnętrznych zagoników; z tyłu jest ona zwężona, ale sięga aż do końca pokryw, przerywając przy szwie pomarańczową obwódkę. Spód ciała czarny ze słabym, metalicznym połyskiem,

1 LINNEUSZ przy opisie oryginalnym wymienia Szwecję, Hamburg i Rosję.
przykołanowa część goleni, a u niektórych odmian także nasada ud i dwie planki po bokach ostatniego sternitu odwłoka czerwone. Człony czułków 5–11 oraz stopy czarne, bez metalicznego połysku.

Dymorfizm płciowy wyrażony bardzo słabo, prącie jak na rys. 444, 445.

Zmienna osobnicza w zakresie ubarwienia ciała bardzo znaczna; drobiazgowo opisał ją Dingler (1933). Próbę zinterpretowania i uporządkowania licznych opisów odmian rozproszonych w piśmiennictwie podjął niemal jednocześnie Schuster (1905), Heyden (1906) i Pic (1906). Prace te różnią się znacznie między sobą co do zakresu znaczeniowego poszczególnych nazw. W niniejszym opracowaniu przyjęto nazewnictwo zastosowane przez Pica (1906), którego praca ukazała się jako ostatnia z wymienionych. Pominięto natomiast szereg odmian opisanych później (Pic 1912, 1934b), są to bowiem jedynie warianty odmian uwzględnionych w poniższym wykazie:

1. Nasadowa połowa ud oraz nasadowa połowa goleni czerwone
 ...ssp. ! maculipes (Gebler).

3. Biały deseń na pokrywach zredukowany do trzech plamek leżących wzdłuż brzegów ciemnego tła (rys. 447), przedplecze pozostaje jednak całe czerwone.

4. Na pokrywach trzy ciemne przepaski, deseń jak w opisie gatunku; przednie białe plamy mogą być zredukowane do dwóch wąskich, podłużnych smug, leżących po obu stronach

http://rcin.org.pl

Cykl rozwojowy. Po opuszczeniu zimowis dorosłe owady żerują intensywnie na rozwijających się pędach i liściach szparagów; zarówno sam pojaw owadów, jak i ich przezywialność są w znacznej mierze uzależnione od temperatury powietrza, a zwłaszcza od gradientu jej wahania. Stwierdzono np. masowe wymieranie tych chrząszczy w zimowiskach, gdy po ciepłej wiosennej pogodzie nastąpiło nagłe oziębienie (Sanderson 1908). Jaja zostają złożone w trzeciej dekadzie maja. Samica przykleja je biegunem wegetatywnym do gałązek szparagów; każde jajo sterczy prostopadle do gałązki, co nadaje złożu charakterystyczny wygląd rządka malutkich, czarnobrunatnych słupków. Przeciętne wymiary jaja wynoszą 1,28 × 0,53 mm (Dingler 1935b). Są one do gałązek przyklejone czerniącą wydzieliną, która bardzo mocno przywiera do chorionu i nie da się od niego oderwać bez uszkodzeń, da się natomiast wraz z jajem odkleić od gałązek przy pomocy niektórych rozpuszczalników organicznych. Okres inkubacji trwa w zależności od temperatury powietrza 5–12 dni. Świeżo wylęgła larwa ma około 1 mm długości i jasne, szarozielone ubarwienie. Ubarwienie ostateczne, czarnozielone, uzyskuje już po kilku godzinach żerowania; głowa i nogi stają się błyszczączo czarne. Rozwój larwy trwa w warunkach klimatycznych Śląska około 20 dni; natomiast w warunkach laboratoryjnych 8–10 dni. Larwa linieje dwukrotnie i po zakończeniu trzeciego okresu wzrostowego schodzi do gleby. Tam sporządza sobie oprzędu, w którym po dalszych 3–4 dniach przepoczwarcza się. Diapauza trwa w warunkach połowych 12–20 dni, w laboratorium 7–8 dni. Całkowity czas rozwoju od złożenia jaja do wyjścia dorosłego chrząszcza z oprzędu poczwarczego trwa u nas około półtora
miesiąca. Dorosłe chrząszcze nowego pokolenia pojawiają się z końcem lipca. Brak jest przekonywujących dowodów dla rozstrzygnięcia, czy osiąganie przez nie dojrzałości płciowej i składanie jaj jeszcze w tym samym roku stanowi w Europie środkowej regułę, czy jest zjawiskiem wyjątkowym. Wszystkie niejasności podniesione przy opisie bionomii C. duodecimpunctata (s. 210) odnoszą się również i do C. asparagi.

C. asparagi żyje zarówno na dzikich, jak i na uprawnych szparagach – Asparagus L. i zalicza się do najgroźniejszych szkodników upraw tej jarzyny.

Rys. 456. Rozsiedlenie Crioceris asparagi (oryg.).

Pierwsze opisy larwy wraz z ilustracjami, a także opisy i obserwacje żerowania można znaleźć u Frischa (1720), Röselia (1749), Bouchégo (1834) i Westwooda (1839), a pierwszy dokładny opis hodowli C. asparagi podał Letzner (1857). Dane zawarte w licznych późniejszych publikacjach zebrał i uzupełnił wynikami badań własnych Dingler (1935b), którego opracowanie może dzisiaj stanowić punkt wyjścia przy podejmowaniu różnokierunkowych badań nad C. asparagi i C. duodecimpunctata. Dalsze szczegóły dorzucili Bodor.

W Polsce w całym kraju, zwłaszcza jednak w dzielnicach centralnych i południowo-wschodnich, na uprawnych i dzikich szparagach bardzo pospolity i często szkodliwy.

Crioceris macilenta WEISE, 1880

Crioceris campestris ROSSI, 1790: 113, nec LINNAEUS, 1767: 602.

Crioceris macilenta WEISE, 1880: 158.

Pochodzenie nazwy: łac. macilentus — wychudzony; od smukłej budowy ciała.

Terratypica: nie podana.

Długość 5–6 mm. Ubarwienie ciała w ogólnych zarysach podobne i równie zmienne jak u C. asparagi, w populacjach przeważają jednak odmiany pozbawione poprzecznych przepasek na pokrywach. Wzajemne podobieństwo tych dwóch gatunków obejmuje także budowę prącia. Zdaniem niektórych specjali stów (RUFFO 1964) zarówno przynależność gatunkowa niektórych form C. mac ilenta, jak i jej stosunek do C. asparagi, a zwłaszcza do dominującej na południu formy maculipes (s. 221), wymagają jeszcze dokładniejszych studiów. Wobec często podnoszonych wątpliwości (GRIDELLI 1930, MÜLLER 1953) mogą nasunąć się przypuszczenia, że C. macilenta jest zachodnio-śródziemnomorskim podgatunkiem C. asparagi, wyodrębnionym w wyniku izolacji plejstoceńskiej.

http://rcin.org.pl
populacji iberyjskich, a obecnie hybrydyzującym z ekspansywną, bardziej eurytopową *C. asparagi* s. str. Odbywałoby się to na obszarze Ligurii i południowej Hiszpanii, gdzie właśnie występują owe wątpliwe, trudne do zaklasyfikowania formy.

Rys. 457. Rozsiedlenie *Crioceris macilenta* (oryg.).

Rodzaj Lilioceris Reitter, 1912

Lilioceris Reitter, 1912: 79.

Pochodzenie nazwy: od łac. lilium, lillii — lilia i nazwy rodzajowej *Crioceris*; należące tutaj gatunki żyją na liliowatych.

Gatunek typowy: *Attelabus lilii* SCOPOLI, 1763: 36.

Główną cechą, która różni ten rodzaj od rodzaju *Crioceris* jest przebieg bruzdy odgraniczającej skronie od tylnej części głowy. U przedstawicieli rodzaju

Klucz do oznaczania gatunków

owady dorosłe

2. Punktowanie pokryw mocne i gęste, odległość między punktami w rządku na środku pokrywy w przybliżeniu równa średnicy punktu. Głowa dwubarwna.

... L. tibialis (s. 230).

-. Punktowanie pokryw drobne i niezbyt gęste, odległość między punktami w rządku na środku pokrywy równa 2-4 średnicom punktu. Głowa jednobarwna ... 3.

3. Głowa czerwona.

... L. faldermanni (s. 231).

-. Głowa czarna.

... L. lilii (s. 227).

4. Punktowanie pokryw mocne i regularne, szerokość zagoników w przybliżeniu dwukrotnie większa od średnicy punktów.

... L. schneideri (s. 235).

-. Punktowanie pokryw drobniejsze i mniej regularne, szerokość zagoników w przybliżeniu 3-4 razy większa od średnicy punktów.

... L. merdigera (s. 232).
larwy

1. Skleryty dorsolateralne, epipleuralne i interkoksalne wyraźne, ciemno pigmentowane. ... L. merdigera (s. 232).
—. Skleryty dorsolateralne, epipleuralne i interkoksalne niewyraźne, blade. ... L. lilii (s. 227).

Lilioceris lilii (Scopoli, 1763)

Attelabus lilii Scopoli, 1763: 36.
Chrysomela stercoraria Linnaeus, 1767: 600.
Crioceris Liliorum Thomson, 1866: 138.

Pochodzenie nazwy: łac. lilium, lilii – lilia; od rośliny żywicielskiej.
Terra typica: Karniolia.

Dymorfizm płciowy wyrażony bardzo słabo, prącie jak na rys. 458, 459. Zmienna osobnicza niewielka, ograniczona do mało istotnych różnic w urzeźbieniu pokryw oraz do ubarwienia tarczki, która u niektórych okazów może być w tylnej części czerwona. Opisano jedną odmianę:

1. Forma skrajnie melanotypna; całe ciało czarnobrunatne ... ab. chepm man Pic, 1934a: 21.

Cykl rozwojowy. Dorosłe owady pojawiają się zwykle w pierwszych dniach maja i od razu przystępują do kopulacji i składania jaj. W warunkach klimatycznych Śląska poszczególne stadia według obserwacji autora trwają: inkubacja 6-12 dni, larwa 20-32 dni, poczwarka przeciętnie 25 dni. Największą liczbę larw III okresu wzrostowego spotyka się w drugiej połowie czerwca, pierwsze dorosłe owady nowego pokolenia opuszczają kokony poczwarcze zwykle w drugiej dekadzie lipca, większość ich jednakże pojawia się dopiero w ciągu sierpnia. Składanie jaj przez jedną samicę trwa od trzech tygodni do półtora miesiąca lub dłużej; zależy to prawdopodobnie od temperatury powietrza, gdyż w warunkach laboratoryjnych okres ten nigdy nie przekracza miesiąca. Gdy okresy ciepłe i chłodne przeplatają się, w składaniu jaj nastę-
pują przerwy, mogące trwać do kilkunastu dni. Wskutek tego przez cały czerwiec, lipiec i przynajmniej przez część sierpnia na roślinach żywicielskich spotyka się zarówno owady dorosłe, jak ich jaja i larwy. Samica przytwierdza jaja do spodniej strony liści bądź pojedynczo, bądź grupami po 2–10 jaj. Są one wówczas ułożone ciasno koło siebie na kształt cegiełek (rys. 466). Świeżo złożone jaja o długości 1,3–1,5 mm są jasnoczerwone i w miarę rozwoju embriona zmieniają barwę na brunatną. Larwa żeruje w czarnej otoczce śluzowo-

kałowej, część materiału rozmazując po liściach w miarę przesuwania się z jednego miejsca żerowania na drugie. Dojrzała larwa schodzi na powierzchnię ziemi, a następnie, zrzuciając otoczke śluzowo-kałową, zagrzebia się w glebę i sporządza jajowaty oprzęd poczwarczy. Obserwowano wprawdzie również przepoczwarczanie się na nadziemnych częściach rośliny (LUCAS 1881), jest to jednak u omawianego gatunku zjawisko zupełnie wyjątkowe, które w normalnych warunkach nie zachodzi (MAYET 1881). Mimo wielokrotnie ponawianych obserwacji nie udało się w zadowalający sposób wyświetlić kilku ważnych szczegółów bionomii L. lilii. Nie jest dokładnie znana liczba pokoleń w roku.

W Europie środkowej stwierdza się jednoroczny cykl rozwojowy, w którym owady dorosłe wychodzą z kokonów poczwarczych późnym latem i dojrzałość płciową osiągają dopiero wiosną następnego roku; natomiast w basenie Morza Śródziemnego mają występować dwa, a przy długiej i ciepłej jesieni nawet trzy pokolenia w roku (MÜLLER 1953). Z kolei, w przypadku tych larw, które przepoczwarczają się jesienią nie wiadomo, czy zimują poczwarka, czy owad dorosły, a jeśli owad, to czy opuszcza on kokon poczwarczy przed wiosną.

http://rcin.org.pl
Nie wiadomo także, co sądzić o hipotezie, że samica może na okres odrętwienia zimowego przerwać składanie jaj, by wznowić je w następnym roku (MÜLLER 1953).

Roślinami żywicielskimi L. lili są uprawne ozdobne lilie, głównie lilia biała — Lilium candidum L., a także uprawna i dziko rosnąca lilia złotogłów — Lilium martagon L. Atakuje również uprawne gatunki szachownic – Fritillaria L., a w basenie Morza Śródziemnego stwierdzano żerowanie na Lilium carneolicum L. oraz na kokoryczce wielokwiatowej – Polygonatum multiflorum L.

W niewoli zarówno owady dorosłe, jak i larwy można karmić także innymi roślinami z rodziny Liliaceae, na przykład szczypiorem cebuli.

Rys. 467. Rozsiedlenie Lilioceris lili (oryg.).
Znaczenie gospodarcze niewielkie; na uprawach ozdobnych lilii obniża wartość handlową roślin szpecąc je odchodami larw i wygryzaniem dziur w liściach.

W Polsce w całym kraju pospolity i często szkodliwy na ozdobnych liliach zarówno w uprawie towarowej, jak i w ogrodach przydomowych.

Lilioceris tibialis (VILLA, 1838)

Lema tibialis VILLA, 1838: 63.
Crioceris alpina REDTENBACHER, 1849: 517.

Pochodzenie nazwy: lac. tibia, tibiae — goleń; od odmiennie ubarwionych tylnych goleni.

Terra typica: Włochy.

Zmiennność osobnicza obejmuje ubarwienie nóg. Znane odmiany:

1. Golenie dwubarwne: w nasadowej części czarne, pozostała część czerwona. forma typowa.

Stadia przedimaginalne poznane bardzo powierzchownie (HEYDEN 1863), szczegóły rozwoju, okresy pojawu i rośliny żywicielskie nieznane. Obszar
rozsiedlenia obejmuje cały obszar Alp wraz z ich przedgórzami. Ponadto sygnaлизowano napotkanie tego gatunku w masywie Pradziada (GERHARDT 1910), co wymagałoby nowych potwierdzeń, polega bowiem, być może, na pomyłce. Z Polski nie podawany.

Lilioceris faldermanni (GUÉRIN-MENEVILLE, 1829)

Crioceris Faldermanni GUÉRIN-MENEVILLE, 1829: 264.
Crioceris cornuta FALDERMANN, 1837: 323.

Pochodzenie nazwy: od nazwiska rosyjskiego entomologa, dra Franciszka FALDERMANNY, dyrektora Ogrodu Botanicznego w Petersburgu.

Terra typica: nie podana.

Obszar rozsiedlenia (rys. 468) obejmuje Grecję, Turcję, Syrię, Kaukaz, zakaukaskie republiki ZSRR, Dagestan i iracki Kurdystan. Istnieje niepewne doniesienie z Węgier.

Rys. 468. Rozsiedlenie *Lilioceris faldermanni* (oryg.).
(BERTI i RAPILLY 1976); gdyby się ono potwierdziło, można by domniemywać się migracji tego gatunku wzdłuż doliny Dunaju w kierunku Europy środkowej. Najprawdopodobniej jednak doniesienie wynika z błędnego zaetykietowania okazu. W Polsce nie występuje.

Lilioceris merdigera (LINNAEUS, 1758)

Chrysomela merdigera LINNAEUS, 1758: 375.
Crioceris brunnea FABRICIUS, 1792: 6.

Pochodzenie nazwy: łac. merda, merdae — łajno i gero — niosę; larwa nosi swoje odchody na grzbiecie.

Terra typica: nie podana.

![Rys. 469-474. Prącia (oryg.)](http://rcin.org.pl)

Dymorfizm płciowy, jak u całego rodzaju, wyrażony bardzo słabo, prącie jak na rys. 471, 472.

Zmiennność osobnicza niewielka; opisano odmiany:
1. Ubarwienie ciała jak w podanym opisie .. forma typowa.
2. Tylna część przedplecza czarna .. ab. *collaris* LACORDAIRE, 1845: 577.

232

http://rcin.org.pl
(= ab. mediciana LACORDAIRE, 1845: 579).

Stadia przedimaginalne i cykl rozwojowy nie były przedmiotem bardziej szczegółowych badań. Obserwacje rozwoju larwalnego prowadzili BOUDIER (1826), NOWICKI (1873), HACKER (1900), FABRE (1897) i BERTRAND (1924). Wyniki tych badań utrwaliły opinię, że cykl rozwojowy tego gatunku jest zupełnie podobny jak u L. lilii (s. 227). Cechy diagnostyczne larw można znaleźć u HENRIKSENA (1927) oraz u OGOLBLINA i MIEDWIEDIEWA (1971). Opis hodowli podał BUFFET (1901). Funkcjonowanie i budowę przyssawki analnej badał BRASS (1914).

 Żeruje na różnych roślinach z rodziny liliowatych — Liliaceae, najczęściej na konwallach — Convallaria majalis L. i na kokoryczkach — Polygonatum ALL.; ponadto na czosnku niedźwiedzim — Allium ursinum L., na uprawnej cebuli — A. cepa L., a także wraz z L. lilii na uprawnych liliach — Lilium candidum L. oraz na złotogłowiu — L. martagon L. Donoszono również o żerowaniu na psiankowatych — Solanaceae (TEMPÈRE 1946), na przestępie białym —

http://rcin.org.pl

233
Bryonia alba L. (BLAIR 1924), a nawet na wierzbach — Salix L. (SAULNIER 1946); wszystkie te dane należy traktować z wielką ostrożnością, zdają się bowiem polegać na nie dość krytycznych obserwacjach. Tym bardziej, że nawet w obrębie rodziny liliowatych nie wszystkie gatunki roślin są atakowane przez L. merdigera; nigdy np. nie obserwowano żeru tego chrząszcza na pospolitej konwalijsce dwulistnej — Majanthemum bifolium L. (KLEINE 1937). W hodowli można karmić zarówno larwy, jak i owady dorosłe szczypiorem cebuli i czosnku.

Rys. 476. Rozsiedlenie Lilioceris merdigera (oryg.).

Znaczenia gospodarczego nie ma, jakkolwiek od dawna sporadycznie donoszono o szkodach wyrządzanych przez L. merdigera na uprawach cebuli oraz na uprawnych liliach (SCHILLING 1834, BALACHOWSKY i MESNIL 1935, Czyżewski 1975).

Z pasożytów tego gatunku zidentyfikowano błonkówkę Holocremnus errabundus CRAWF. (Ichneumonidae) oraz muchówkę Meigenia variabilis FALL. (Tachinidae) (JOLIVET 1950).

Obszar rozsiedlenia (rys. 476) obejmuje znaczną część Eurazji oraz, w wyniku zawleczenia, część Ameryki Północnej i Południowej. W Europie północna
granica rozsiedlenia biegnie od północnych wybrzeży Francji przez kanał La Manche, Morze Północne, Bergen, Hallingdal i Sztokholm po środkową Finlandię, a południowa od Bretanii wzdłuż atlantyckich wybrzeży Francji, przez południowe przedgórza Masywu Centralnego, Riwierę, północną Jugosławię i Bułgarię; dalszy jej przebieg ku wschodowi niejasny, prawdopodobnie omija od północy strefę stepów czarnomorskich i nadkaspijskich oraz środkowoazjatyckie republiki ZSRR, a następnie przecina Mongolię i północne prowincje Chińskiej RL, omawiany gatunek znany jest bowiem także z Półwyspu Koreńskiego i z Japonii.

W Polsce w całym kraju; w lasach na liściach konwalii pospolity, w ogrodach i warzywnikach rzadszy, tam bowiem częściej napotyka się *L. lilii*.

Rys. 477. Rozsiedlenie *Lilioceris schneideri* (oryg.).

Lilioceris schneideri (Weise, 1900)

Crioceris Schneideri Weise, 1900: 268.

Locus typicus: Vallombrosa koło Florencji.
Długość 7,5–8 mm. Ubarwienie ciała jak u *L. merdigera*, lecz tarczka, przy­
najmniej w odniesieniu do dotychczas przebadanych okazów, zawsze jest
czerwona. Ciało krępe, większe i szersze niż u *L. merdigera*. Dymorfizm płciowy
słabo wyrażony. Prącie na końcu bardziej zaostrzone niż u *L. merdigera*. Zmien­
ność osobnicza nie była przedmiotem analizy, odmian nie opisywano. Stadia
przedimaginalne, szczegóły rozwoju i rośliny macierzyste nieznane.

Rozsiedlenie (rys. 477) niejasne. Większość stanowisk pochodzi z Półwyspu
Apenińskiego, Francji i Alp, znany jest także jeden okaz z Sycylii. Wykrycie
okazów pochodzących z Frankonii i Węgier (BERTI i RAPILLY 1976) wskazuje,
że jest to również gatunek środkowoeuropejski. Możliwe, że dalsze nie roz­
poznane okazy z Europy środkowej znajdują się w zbiorach, w seriach okazów
bardzo podobnej *L. merdigera*. Z Polski nie był wykazywany.
III. PIŚMIENNICTWO

Gwiazdką oznaczono pozycje, których autor nie miał w ręku.

Berlese A. 1925. Gli insetti. Tomo II. Milano, ss. 20-61 + 537-992 + IX.

http://rcin.org.pl

BLANKAART S. 1688. Schou-Burg der Rupsen, Wormen, Maden, en vliegende Dierkens daaruit voorkommende; door eigen ondervindinge by en gebragt etc. Amsterdam, 232 ss.

BOHEMAN C. H. 1854. Monographia Cassididarum. II. Holmiae, 506 ss.

CHEVROLAT A. 1844. Opisy i noty w: GUÉRIN-MÉNEVILLE F. E. Iconographie du règne animal ... (patrz s. 243).

COOPE R. G., BROPHY J. A. 1972. Late Glacial environmental changes indicated by a Coleoptera Succession from North Wales. Boreas, 1, 2: 37-142.

CURTIS J. 1830. British entomology, being illustrations and descriptions of the genera of Insects found in Great Britain and Ireland. VII. London, tt. 290-337.

DEGEER C. 1775. Mémoires pour servir à l'histoire des Insectes. V. Stockholm, 448 ss.

EGE R. 1926. On the respiratory conditions of the larva and pupa of Hydrocampa nymphaeata. Physiological papers dedicated to August Krogh, Copenhagen, ss. 25–39.

EVERTS E. 1903. Coleoptera Neerlandica. II. ’s-Gravenhage, IV + 796 ss.

FABRICIUS J. C. 1775. Systema Entomologiae, sistens Insectorum classes, ordines, genera, species, adiectis synonymis, locis, descriptionibus, observationibus. Flensburgi et Lipsiae, 32 + 832 ss.

FABRICIUS J. C. 1781. Species Insectorum exhibentes eorum differentias specificas, synonyma auctorum, loca natalia, metamorphosis adiectis observationibus, descriptionibus. II. Hamburgi et Kilonii, 494 ss.

FABRICIUS J. C. 1793. Entomologia Systematica emendata et aucta. Secundum classes, ordines, genera, species adiectis synonymis, locis, observationibus, descriptionibus. II. Hafniae, VIII + 519 ss.

16 – Chrysomelidae

Gerstaecker C. E. A. 1869. Bericht über eine im Essener Kreise als Verwüsterin von Getrei

http://rcin.org.pl

Gyllenhal L. 1813. Insecta Svecica, I, pars III. Scaris, 730 ss.

Gyllenhal L. 1817. [Opisy i noty] w: Schönherr C. J. Appendix ad Synonymium Insectorum ... (patrz s. 256).

Jacobson G. 1907. De duabus novis formis generis Crioceris GEOFFR. (Coleoptera, Chrysomelidae), additis annotationibus synonomyicis. Revue russe d'Ent., S.-Petersburg, 7: 25.

LANDOIS H. 1874. Thierstimmen. Freiburg, IX + 229 ss.

LATREILLE P. A. 1807. Genera Crustaceorum et Insectorum secundum ordinem naturalum in familia disposita, iconibus exemplibus explicata. II. Parisiis et Argentorati, 280 ss.

LEWIS G. 1874. Notes on Coleoptera common to Europe and Japan. Ent. monthly Mag., London, 10: 172-175.

LINNÆUS C. 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. I. Holmiae, 824 ss.

Marsh T. 1802. Entomologia Britannica sistens Insecta Britanniae indigena secundum methodum Linnaeanae disposita. I. Coleoptera. Londini, XXXI + 547 ss.

Mayet V. 1881. Sur la nymphose du Crioceris merdigera. Ann. Soc. ent. Fr., sér. 6, 1, Bull.: CXXVI.

*Moore R. M. 1952. The Control of St. John’s Wort (Hypericum perforatum L.) by Competing Pasture Plants.

Müller O. F. 1764. Fauna Insectorum Fridrichsdalina cum characteribus genericis et specificis, nominibus trivialibus, locis natalibus, iconibus allegatis, novisque pluribus speciebus additis. Hafniae et Lipsiae, X X IV + 96 ss.

Petagna V. 1787. Specimen insectorum ulterioris Calabriae. Francofurtae et Moguntiae, 46 ss.

[Rejchardt A. N.] Rejchardt A. H. 1924. Новый вредитель красноцветных (Phyllostreta fucata Wsed).

Riley C. V. 1876. Is the Colorado potato-beetle poissonous? Colman’s rur. World, Saint Louis, 1876, 7 June.

*Samouelle G. 1819. The entomologists useful compendium, or an introduction to the knowledge of British Insects comprising the best means of obtaining and preserving them, and a Description of the Apparatus generally used; together with the Genera of Linne and the modern Method of arranging the Classes etc. London, 496 ss.

Swammerdamm J. 1737. Biblia naturae, sive historia Insectorum in classes certas redacta, nec nec exemplis et anatomico variorum animalculturum examine, aeneisque tabulis illustrata, insertia numerosis rariorum naturae observationibus. Leydæ, 910 + 124 ss.

Śawrow patrz Szawrow

Thomson C. G. 1866. Skandinaviens Coleoptera, synoptisk bearbetade. Tom VIII. Lund 409 + LXXV ss.

WESTWOOD J. O. 1839. An introduction to the modern classification of Insects founded on the natural habits and corresponding of the different families. I. London, XII + 462 ss.

http://rcin.org.pl

Zschach J. J. 1788. Pars entomologica, ad systema entomologiae Cl. Fabricii ordinata. Lipsiae, 136 ss.

SKOROWIDZ NAZW SYSTEMATYCZNYCH

acutifolius, Asparagus 219
acutiformis, Carex 119
Adephaga 21
Adoxus 21
adusta, Phyllobrotica 37
aenea, Chrysoemela 50
aenescens, Altica 32
aerea, Plateumaris (Juliusina) consimilis ab. 158
aeruginosa, Donacia simplex ab. 139
affinis, Donacia 160
affinis, Plateumaris 147, 154, 155, 161, 162, 163
affinis, Plateumaris (Juliusina) 65, 160
aquatica, Glyceria 164
alba, Bryonia 234
alba, Nymphaea 73, 100
alba, Populus 185, albida, Syneta 173
Alisma 150
alni, Agelastica 50
aloides, Stratiotes 154
alpina, Crioceris 230
Altica 21, 25, 36, 53
Alticinae 7, 8, 9, 12, 14, 15, 16, 20, 24, 27, 28, 29, 30, 34, 39, 41, 43, 49, 52, 58, 62, 63, 71
ampelophaga, Altica lythri 32
amurensis, Crioceris 227
amurensis, Lilioceris 230
amurensis, Syneta betulae 175
andalusica, Donacia 120
angustata, Donacia dentata ab. 101
angustata, Donacia 100
angustifolia, Typha 121, 138, 145
anthracina, Donacia crassipes ab. 98
anticeconjuncta, Crioceris asparagi ab. 221, 222
antiqua, Donacia 64, 88, 130, 131, 132, 134
Apteles sp. 224
apiceconjuncta, Crioceris asparagi ab. 221, 222
appendiculata, Donacia 77, 96
appendiculata ab. chevrolati, Macroplea 78
appendiculata ab. flavicollis, Macroplea 78
appendiculata ab. lineata, Macroplea 78
appendiculata ab. rugipennis, Macroplea 78
appendiculata, Macroplea 64, 76, 77, 78, 79, 81
apricans, Donacia 120
aquatica ab. chalybaea, Donacia 116
aquatica ab. concinna, Donacia 116
aquatica ab. cyanicollis, Donacia 116
aquatica, Donacia 64, 67, 86, 87, 91, 92, 115, 116, 117, 118
aquatica, Glyceria 110, 111
aquatica, Leptura 115
aquatica, Oenanthe 67
aquatica ab. valdaica, Donacia 116
aquaticum, Phellandrium 67
armata, Plateumaris (Plateumaris) sericea ab. 149
articulatus, Juncus 159, 164
arvense, Cirsium 192
ararensis, Donacia malinovskyi ab. 111
aridula, Chaelocnema 48
armatus, Megalopus 19
armillata, Donacia impressa ab. 118
armoraciae, Phyllotreta 56
arundinacea, Phalaris 95
arundinis, Donacia 110
arundinis, Donacia malinovskyi ab. 110, 111, 113
arundinis, Hyalopterus 95
arvensis, Convulculus 50
asiatica, Donacia 148
asparagi ab. anticeconjuncta, Crioceris 221, 222
http://rcin.org.pl
asparagi ab. apiceconjuncta, Crioceris 221, 222
asparagi, Chrysomel a 208, 219
asparagi, Crioceris 33, 49, 65, 187, 188, 208, 209, 210, 219, 221, 223, 224, 225
asparagi ab. cruciata, Crioceris 222
asparagi ab. impupillata, Crioceris 221, 222
asparagi ab. incrucerif, Crioceris 221, 222
asparagi ab. linnaei, Crioceris 222
asparagi ab. maculipes, Crioceris 221, 224, 225
asparagi ab. pici, Crioceris 221
asparagi ab. pillata, Crioceris 221
asparagi ab. quadripunctata, Crioceris 221
asparagi ab. scissor, Crioceris 221, 222
asparagi, Tetrastichus 213, 224
asparagi > ab. cruciata, Crioceris 222
Asparagus 208, 223
atra, Phylloreta 49
auropertinea, Donacia simplex ab. 140
attenuata, Phyllophora flavicollis ab. 184
autumnalis, Donacia dentata ab. 102
balatonica, Macrolea mutica 80, 81
barovskyi, Donacia obscura ab. 130
bautii, Orsodacne cerasi ab. 170
Bennettitales 41
betulae amurensis, Syneta 175
betulae, Crioceris 173, 174
betulae, Syneta 60, 65, 174, 175
bicolor, Metriona 11
bicolora ab. collaris, Donacia 126
bicolora, Donacia 64, 66, 74, 86, 87, 90, 91, 93, 125, 126, 127, 128
bicolora meridionalis, Donacia 127
bicruciata, Crioceris 65, 210, 211, 217, 219
bicruciata, Lema 219
bidens, Donacia 103
bifolium, Majanthemum 234
bimaculata, Macrolenes 17
bisbiconnexa, Crioceris duodecimpunctata ab. 211
bisignata, Meigenia 224
bisquadripunctata, Crioceris duodecimpunctata ab. 211, 212
bohemic a, Orsodacne cerasi ab. 170
braccata ab. faizmairei, Plateumaris (Juliusina) 156
braccata, Plateumaris (Juliusina) 65, 154
braccatus, Priinus 153, 154
Braconidae 224
brancsiki, Orsodacne lineola ab. 172
braccata, Plateumaris 149, 154, 155, 156, 157, 158
brevicornis, Donacia 64, 87, 121, 122, 123, 124
brevicornis ab. noesskei, Donacia 121
brevitarsis, Donacia 64, 66, 88, 89, 132, 133, 134, 135
Bruchidae 25, 39, 57
Brachomina 165, 176
brunnea, Crioceris 232
Buprestidae 11
castellanea, Niasia 13
calamus, Acorus 138
callida, Steinriella 224
campestris, Chrysomela 219
campestris, Crioceris 224
Camptosoma 12, 14, 16, 41, 61
candidum, Lilium 229, 233
canthaloides, Orsodacne cerasi ab. 169
capreae, Lochmaea 18, 32, 50
Carduus 192
carex 92, 93, 110, 116, 121, 126, 130, 132, 134, 135, 138, 141, 150, 152, 154, 156, 159, 161, 164
carniifer, Tersilochus 205
carniolicum, Lilium 229
caroli, Donacia malinovskiy ab. 110, 111
Cassida 7, 8, 21
Cassida sp. 14
Cassinae 9, 11, 12, 15, 16, 17, 19, 25, 28, 31, 39, 41, 43, 53, 62, 63
caucaica, Plateumaris 147
copa, Allium 233
Cerambycidae 22, 25, 38, 39, 57, 68
Cerambycoides 15, 25, 41, 42
cerasi ab. baudii, Orsodacne 170
cerasi ab. bohemia, Orsodacne 170
Cerasi, Chrysomela 167, 168
cerasi, Orsodacne 169

cerasi ab. horvathi, Orsodacne 170

cerasi ab. lacordairei, Orsodacne 169

cerasi ab. limbata, Orsodacne 169

cerasi ab. melanura, Orsodacne 169

cerasi, Orsodacne 59, 60, 65, 167, 168, 169, 170, 171, 172

cerasi ab. sutralis, Orsodacne 170

cerasi ab. theresae, Orsodacne 170

Chaetocnema s.str. 12

Chaleidoidea 141

chalybaea, Donacia aquatica ab. 116

chevrolati, Macroplea appendiculata ab. 78

Chlamisinae 15, 16, 18, 24, 39, 41, 61, 63

chlamydata, Donacia marginata ab. 124

chlorotica, Crioceris 168

chrysocephala, Psylliodes 49, 58

chrysochlora, Donacia dentata ab. 102

Chrysomela 7, 8

Chrysomelidae 5, 7, 8, 9, 10, 14, 15, 16, 19, 21, 22, 25, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 47, 55, 56, 57, 64, 69, 165, 166

Chrysomelinae 8, 15, 16, 19, 24, 28, 30, 31, 36, 38, 39, 41, 53, 57, 58, 61, 63, 166, 185

Chrysopa sp. 205

Cicindela 99

Cicindelidae 11

cincta, Donacia 103

cinerea, Donacia 59, 64, 88, 89, 91, 92, 140, 144, 145, 146

cirsicola, Lema 193

Cirsium 192, 195

Clacocera 29

clavipes, Donacia 64, 68, 69, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96

clavipes var. glabrata, Donacia 94

clerica, Omophrjeta 36

Clytra 7, 21

Clytrinae 8, 9, 12, 16, 18, 24, 28, 30, 31, 32, 39, 41, 54, 55, 58, 61, 63

coccineofasciata, Donacia 115

cochleariae, Phaedon 32, 49

coelestis, Donacia sparganii ab. 114

colicolor, Plateumaris (Plateumaris) discolor ab. 152

coeerulea, Plateumaris (Juliusina) coerulea, Plateumaris (Juliusina) consimilis ab. 158

coeureulescens, Orsodacne lineola ab. 172

Coleoptera 20

collaris, Donacia 125

collaris, Donacia bicolora ab. 126

collaris, Lilioceris merdigera ab. 232

comari, Donacia 151

communis, Phragmites 90, 95, 111, 164

cocinna, Chaetocnema 14, 49

cocinna, Donacia aquatica ab. 116

concolor, Donacia semicuprea 109

concolor, Donacia vulgaris ab. 137

concolor, Lamprosoma 62

Coniferopsida 41

consimilis ab. aerea, Plateumaris (Juliusina) 158

consimilis ab. coerulea, Plateumaris (Juliusina) 158

consimilis ab. flavipes, Plateumaris (Juliusina) 159

consimilis, Leptura 157

consimilis ab. nigripes, Plateumaris (Juliusina) 159

consimilis orientalis, Plateumaris 159

consimilis, Plateumaris 154, 158, 159, 160

consimilis, Plateumaris (Juliusina) 65, 157

consimilis ab. variabilis, Plateumaris (Juliusina) 158

consimilis ab. violacea, Plateumaris (Juliusina) 158

consimilis ab. viridis, Plateumaris (Juliusina) 158

cornuta, Crioceris 231

crassipes ab. anthracina, Donacia 98

crassipes, Donacia 18, 64, 69, 73, 75, 81, 84, 85, 90, 91, 98, 99, 100, 101, 123

Crepidodera 50

Cricoderidae 38, 185

Cricoderinae 15, 24, 30, 31, 39, 41, 53, 59, 63, 64, 65, 165, 185, 186, 187, 189

Cricoderis 7, 12, 21, 65, 185, 186, 187, 188, 208, 225, 226

croatica, Orsodacne lineola ab. 172

crucinta, Crioceris asparagi ab. 222

Cruciferaceae 196

cruciferae, Phyllotreta 49

crus-galli, Echinochloa 203

Cryptopephalinae 8, 15, 16, 17, 18, 24, 28, 29, 31, 32, 35, 39, 41, 54, 55, 58, 61, 63

264

http://rcin.org.pl
Cryptocephalus 7, 8, 21, 33, 55
Cryptocephalus sp. 26
Cryptostoma 12, 16, 39, 41, 62
esiitii, Crioceris quatuordecimpunctata ab. 214, 215
Curculionidae 25
Cucujopsis 165, 167
cupraria, Plateumaris (Plateumaris) discolor ab. 152
curtisi, Macroplea mutica ab. 81
cyanella, Chrysomela 189, 191
cyanella, Crioceris 199
cyanella, Lema 191, 192, 193, 194, 195, 200
cyanella, Lema (Lema) 65, 191
cyanicollis, Donacia aquatica ab. 116
Cyaniris 21
Cyccadopsis 41
Cyclica 12, 41, 61
Cyperaceae 119
Cyphogaster 83
dahli, Crioceris paracenthesis ab. 217, 219
decemlineata, Leptinotarsa 26, 35, 47, 48
deficiens, Crioceris quatuordecimpunctata ab. 214, 215
deformicorinis, Agetocera 13
delagrangei, Crioceris duodecimpunctata ab. 212, 214
dentata ab. angustata, Donacia 101
dentata ab. autumnalis, Donacia 102
dentata ab. diabolus, Donacia 102
dentata, Donacia 64, 84, 85, 89, 91, 92, 100, 101, 102, 103
dentata ab. indentata, Donacia 102
dentata ab. phellandrii, Donacia 102
denticollis, Cassida 26
dentipes, Donacia 115
diabolus, Donacia dentata ab. 102
Diamphidia 29
discolor ab. coelicolor, Plateumaris (Plateumaris) 152
discolor ab. cupraria, Plateumaris (Plateumaris) 152
discolor, Donacia 151
discolor kratochvili ab. isocoeilocor, Plateumaris (Plateumaris) 152
discolor kratochvili ab. isocupraria, Plateumaris (Plateumaris) 152
discolor kratochvili ab. isolacordairei, Plateumaris (Plateumaris) 152
discolor kratochvili ab. isopurpuricena, Plateumaris (Plateumaris) 152
discolor kratochvili ab. isoviolacea, Plateumaris (Plateumaris) 152
discolor ab. nigrita, Plateumaris (Plateumaris) 152
discolor, Plateumaris 148, 149, 152, 153
discolor in sp., Plateumaris 152
discolor, Plateumaris (Plateumaris) 65, 151
discolor ab. pseudoviolacea, Plateumaris (Plateumaris) 152
discolor ab. purpuricena, Plateumaris (Plateumaris) 152
discolor ab. tatra, Plateumaris (Plateumaris) 152
dodecastigma, Crioceris duodecimpunctata ab. 211
dodecastigma, Lema 210
Donacia 7, 20, 21, 33, 64, 66, 67, 68, 69, 75, 81, 83, 93, 110, 113, 146
Donacia sp. 58, 70, 74
Donaciidae 66
Donaciasta 74
Donaciella 83
Donacinae 7, 15, 17, 19, 24, 26, 28, 29, 39, 41, 53, 55, 58, 59, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 81, 82, 124, 146, 166
Donaciocrioceris 74
Donaciomima 83
draba, Cardaria 50
dubius, Otiorrhynchus 38
duftschmidti, Lema (Oulema) melanopus ab. 204
duftschmidti, Orsodacne cerasi ab. 169
duodecimpunctata ab. bisbiconnexa, Crioceris 211
duodecimpunctata ab. bisquadripunctata, Crioceris 211, 212
duodecimpunctata, Crioceris 49, 65, 186, 187, 210, 211, 212, 213, 214, 224
duodecimpunctata ab. delagrangei, Crioceris 212, 214
duodecimpunctata ab. dodecastigma, Crioceris 211
duodecimpunctata ab. gisellae, Crioceris 211
duodecimpunctata ab. guaranyii, Crioceris 212
duodecimpunctata hypopsila, Crioceris 214
duodecimpunctata ab. reyi, Crioceris 211
duodecimpunctata ab. rufii, Crioceris 211
duodecimpunctata ab. steinmanni, Crioceris 211, 212
12-punctata, Chrysomela 210

Episthrix 10
equiseti, Donacia 77
erectus, Bromus 200
erichsoni, Lema 189, 194, 195, 196, 197, 198, 199
erichsoni, Lema (Oulema) 65, 195
erichsoni ab. lipperti, Lema (Oulema) 196
Eriopterum 152
erraundus, Holocremnus 234
erythropus, Derocrepis 33
esculent a, Bana 95
Eulophidae 205, 213, 224
Eumolpinae 11, 16, 19, 24, 29, 39, 41, 43, 62, 64, 165, 166, 173
eupliorbiae, Aphthona 49
Euplateumaris 147
Eupoda 12, 14, 15, 16, 38, 41, 59, 82, 166, 175, 185
evanescens, Trichogramma 141
exclamationi, Phyllotreta 13
extensa, Donacia thalassina ab. 135
externepunctata, Crioceris duodecimpunctata ab. 215
fairm airei, Plateumaris (Juliusina) braccata ab. 156
Faldermanni, Crioceris 231
faldermanni, Lilioceris 66, 226, 231, 232
faldermanni ab. notaticollis, Lilioceris 231
fastuosa, Dlochrysa 11
femoralis, Aulacophora 36
femorata, Sagra 10
fennica, Donacia 64, 85, 86, 90, 91, 92, 111, 112, 113
fennica, Donacia malinovskyi var. 113
fennicum, Rhagium 112
ferus, Nabis 205
festucae, Plateumaris (Plateumaris) sericea ab. 148
flavicollis, Auchenia 183
flavicollis ab. australis, Zeugophora 184
flavicollis, Macroplea appendiculata ab. 78
flavicollis ab. notatipes, Zeugophora 184
flavicollis, Zeugophora 65, 176, 177, 178, 181, 182, 183, 184, 185
flavipes, Lema 201
flavipes, Luperus 10
flavipes, Plateumaris (Juliusina) consimilis ab. 159
floralis, Meigenia 215, 224
fluitans, Glyceria 111
fluitans, Potamogeton 79
forojulensis, Plateumaris (Juliusina) rustica ab. 163, 164
Fritillaria 229
frontalis, Zeugophora scutellaris ab. 179
fulgida, Sagra 59
fulvus, Cryptocephalus 24
fuscicorne, Podagrica 50
Galeruca 7, 21, 25
Galerucella 10, 21
Galerucinae 9, 10, 12, 14, 15, 19, 20, 23, 24, 25, 27, 39, 41, 53, 58, 62, 63, 71
gallaeciana, Lema 188, 190, 192, 194, 195, 198, 199, 200, 201
gallaeciana, Lema (Oulema) 65, 189, 199
gallaeciana ab. obscura, Lema (Oulema) 200
genericula, Donacia 151
Ginkgopsida 41
gisellae, Crioceris duodecimpunctata ab. 211
glabrata, Donacia 93
glabrata, Donacia clavipes var. 94
glabrata, Orsodacne cerasi ab. 169
glomerata, Daotylis 200
Glyceria 89, 90, 92, 113, 126, 141
godena, Chlamisus 10
Gonioclava 21
Goniocenini 30
gracilis, Carex 159, 164
gracilis, Donacia 131
gracilis, Longitarsus 32
gurnayii, Crioceris duodecimpunctata ab. 211, 212
Gymnospermophyta 41
hainanensis, Chaetocnema 10
Haemonia 75
Halicta 7
Hapsidolema 193
Hemysa 165
herbacca, Chrysolina 11, 13
Hexanephria 21
hirtus, Nyctiphantus 10
Hispa 7
hispanica, Orsodacne lineola ab. 172
Hispinae 7, 12, 15, 16, 24, 28, 30, 31, 39, 41, 62, 63
Histeridae 21
hoefi, Colaphellus 50
hoffsmanseggi, Lema 195, 203
hoffsmanseggi, Lema (Oulema) 65, 203
Hornius 165
hortensis, Chaetocnema 14, 48
horvathi, Orsodeane cerasi ab. 170
humeralis, Orsodeane lineola ab. 171
hydrochaeridis, Donacia 144
Hymenoptera 141, 180
hyoscyami, Psylliodes 33
hypopsila, Grioceris duodecimpunctata 214
Ichneumonidae 206, 213, 234
impressa, Donacia 64, 86, 87, 117, 118, 119, 120, 121, 123
impressum, Rhaqium 117
impupillata, Crioceris asparagi ab. 221, 222
incisa, Macroplea mutica var. 81
inruti, Crioceris asparagi ab. 221, 222
indentata, Donacia dentata ab. 102
infernalis, Stomatolydella 224
inermis, Donacia thalassina ab. 135
inermis, Donacia impressa var. 120
inopinata, Donacia 73
intermedia, Plateumaris (Plateumaris) sericea ab. 149
internepunctata, Crioceris quatuordecimpunctata ab. 214, 215
iris, Donacia 106
iris, Donacia semicupraca ab. 109
isocoelicolor, Plateumaris (Plateumaris) discolor kratochvili ab. 152
isocupraria, Plateumaris (Plateumaris) discolor kratochvili ab. 152
isocordairei, Plateumaris (Plateumaris) discolor kratochvili ab. 152
isopurpuricena, Plateumaris (Plateumaris) discolor kratochvili ab. 152
isoviolacea, Plateumaris (Plateumaris) discolor kratochvili ab. 152
isoviolacea, Plateumaris (Plateumaris) discolor kratochvili ab. 152
isoviolacea, Plateumaris (Plateumaris) discolor kratochvili ab. 152
ischion, Donacia vulgaris ab. 137
italica, Setaria 203
jacobae, Longitarsus 32
japonica, Macroplea 68, 76
Julisina 65, 147, 153
jurassica, Protoscelis 38
kaufmanni, Crioceris quinguelpunctata ab. 217
kratzi, Orsodeane lineola ab. 172
kraochohvi ab. isocoelicor, Plateumaris (Plateumaris) discolor 152
kraochohvi ab. isocupraria, Plateumaris (Plateumaris) discolor 152
kraochohvi ab. isocordairei, Plateumaris (Plateumaris) discolor 152
kraochohvi ab. isoviolacea, Plateumaris (Plateumaris) discolor 152
kraochohvi, Plateumaris (Plateumaris) discolor 152
Labidostomis 21
lacordairei, Orsodeane cerasi ab. 169
lacordairei, Plateumaris 152
lacustris, Schoenoplectus 119, 120
ladonensis, Donacia malinovskyi ab. 111
laetus, Cryptocephalus 10
laevigata, Plateumaris (Plateumaris) sericea ab. 149
laeviuscula, Lilioceris ilii ab. 226
laeviuscula, Lilioceris ilii 230
Lamium 208
Lamprosoma 21
Lamprosomatinae 16, 24, 28, 39, 41, 43, 62, 63
lapponica, Macroplea mutica 77, 80
latisolia, Typha 138, 145
Lema 12, 65, 187, 188, 189, 190, 193
Lema s. str. 65, 190, 191, 193
Lema (Oulema) 191
lemnae, Donacia 123
lepida, Lacerla 29
Leptura 7
lichenis, Chrysomela 199
lichtneckerti, Crioceris quatuordecimpunctata ab. 215
Liliaceae 229, 233
ilii, Atelhabus 225, 227
ilii laevisuscula, Lilioceris 230
ilii laevisuscula, Lilioceris 226
ilii, Lilioceris 50, 65, 186, 187, 226, 227, 228, 229, 230, 233, 235
ilii ab. schepmanni, Lilioceris 227
ilii stercoraria, Lilioceris 230
Lilioceris 21, 65, 187, 188, 189, 208, 225, 226
Liliorum, Crioceris 227
limbata, Donacia 123
limbata, Orsodacne cerasi ab. 169
linearis, Donacia 139
lineola ab. brancsiki, Orsodacne 172
lineola ab. coerulescens, Orsodacne 172
lineola, Crioceris 171
lineola ab. croatica, Orsodacne 172
lineola ab. hispanica, Orsodacne 172
lineola ab. humeralis, Orsodacne 171
lineola ab. kraatzi, Orsodacne 172
lineola ab. marginata, Orsodacne 171
lineola ab. mespili, Orsodacne 171
lineola ab. nigricollis, Orsodacne 171
lineola ab. caroli, Donacia 172
lineola ab. marginata, Orsodacne 171
lineola ab. unicolor, Donacia 124
marginata, Donacia 64, 86, 87, 93, 123, 124, 125
marginata, Orsodacne lineola ab. 171
marginata ab. australis, Donacia 124
marginata ab. chlamydata, Donacia 124
marginata, Donacia 64, 86, 87, 93, 123, 124, 125
marginata, Orsodacne lineola ab. 171
marginata ab. unicolor, Donacia 124
marginatus, Cryptocephalus 18
mariscus, Cladium 157
maritima, Ruppia 81
martagon, Lilium 229, 233
medicina, Lilioceris merdigera ab. 233
Megalopodinae 12, 15, 17, 19, 41, 59, 63, 166, 167
Megascelinae 16, 41, 43, 61, 166
melanopa, Chrysomela 203
melanopus, Chrysomela 193, 203
melanopus ab. duftschmidti, Lema (Oulema) 204
melanopus, Lema 26, 32, 48, 186, 187, 189, 194, 195, 198, 203, 204, 205, 206, 208
melanopus, Lema (Oulema) 65, 203
melanura, Orsodacne cerasi ab. 169
Melasoma 21, 50
melli, Platypria 10
menthastris, Chrysolina 60
mequignoni, Donacia malinovskyi ab. 111
merdigera ab. suffriani, Lilioceris 233
meranthisid, Donacia 93
merdigera, Chrysomela 232
merdigera ab. collaris, Lilioceris 232
merdigera ab. mediciana, Lilioceris 233
merdigera ab. rufipes, Lilioceris 232
meridionalis, Donacia bicolora 127
mespili, Orsodacne lineola ab. 171
micans, Donacia 98
micans, Plateumaris (Plateumaris) sericea ab. 149
microcephalus, Porizon 213
Microlema 190, 191
miliaceum, Panicum 203
miniata, Chrysomela (Microdera) vigintipunctata var. 11
moderator, Tersilochus 205, 206

http://rcin.org.pl
monstrosa, Platyzantha 13
moravica, Crioceris quatuordecimpunctata ab. 214, 215
morsus-ranae, Hydrocharis 111
mosellae, Haemonia 77
mucronaia, Donacia 11
multiflorum, Polygonatum 229
murracea, Cassida 30
mutabilis, Meigenia 224
mutica balatonic, Macroplea 80, 81
mutica ab. curtisi, Macroplea 81
mutica, Donacia 79
mutica var. incisa, Macroplea 81
mutica lepponica, Macroplea 77, 80
mutica, Macroplea 64, 68, 74, 76, 77, 78, 79, 80, 81
mutica ab. ruppiae, Macroplea 80, 81
Mymaridae 180
napi, Psylliodes 31
natans, Potamogeton 79, 104
nebulosa, Cassida 49
nemorum, Phyllotreta 26, 49
Nepiculidae 185
nicaeensis, Timarcha 29
nigra, Donacia 154
nigra, Populus 182
nigricollis, Orsodacne lineola ab. 171
nigricornis, Macroplea 76
nigripes, Lilioceris tibialis ab. 230
nigripes, Phyllotreta 49
nigripes, Plateumaris (Juliussina) consimilis ab. 159
nigrita, Plateumaris (Plateumaris) discolor ab. 152
nittidum, Lamprosoma 16
nigriventre, Homoschema 36
nobilis, Cassida 11
nodicornis, Phyllotreta 13
noeskei, Donacia brevicornis ab. 121
Nonarthra 12
notaticollis, Lilioceris faldernanni ab. 231
notatipes, Zeugophora flavicollis ab. 184
nymphae, Plateumaris (Plateumaris) sericea ab. 149
Nuphar 90
Nymphaceae 99, 102
Nymphaea 90
nymphae, Pyrrhalla 33
obscura ab. barovskyi, Donacia 130
obscura, Crioceris 199
obscura, Donacia 64, 84, 88, 111, 128, 129, 130
obscura, Lema (Oulema) gallaeciana ab. 200
obcurrent, Adoxus 37, 62
officinale, Nasturtium 196
officinalis, Asparagus 213, 215, 218
oleracea, Altica 37
oleracea, Cirsium 192
oricalcia, Chrysolina 31
orientalis, Plateumaris consimilis 159
Orsodacne 165
Orsodachnidae 165
Orsodacne 33, 65, 165, 166, 167, 168, 173
Orsodacninae 15, 19, 24, 39, 41, 60, 64, 65, 165, 166, 167
oryzae, Lema 206, 207
Oulema 65, 189, 190, 193, 196, 200, 202
Pachnephyrus 11
palustris, Caltha 159
palustris, Donacia 151, 154
palustris, Heloccharis 111, 135
Papilionaceae 33
paracenthesis, Chrysomela 219
paracenthesis, Crioceris 65, 210, 217, 219, 220
paracenthesis ab. dahli, Crioceris 217, 219
paracenthesis ab. suturalis, Crioceris 217, 219
parvulus, Longitarsus 49
parumpunctata, Crioceris quatuordecimpunctata ab. 214, 215
pectinatus, Potamogeton 79
Pedrilla 165, 177
Pedrilliomorpha 165, 176
pellucidus, Longitarsus 50
perfoliatus, Potamogeton 79
perforatum, Hypericum 50
Petauristes 189, 190, 191
Phaedon 21
Phaedonini 30
phellandrii, Donacia 100
phellandrii, Donacia dentata ab. 102
phellandrii, Prasocuris 33
Phragmites 89, 91, 113, 145
Phratora 24, 34, 50
Phyllodecta 21
Phyllotreta 12, 21, 49
Phytophaga 15, 57
pici, Crioceris asparagi ab. 221
picipes, Plateumaris (Juliusina) rustica ab. 163, 164
piligerā, Macroplea 76
planicollis, Plateumaris (Juliusina) rustica ab. 163
plantago-aquatica, Alisma 102
Plateumaris 21, 33, 64, 66, 68, 69, 75, 131, 133, 146, 155, 167
Plateumaris sp. 74
Plateumaris s. str. 64, 147, 153
Platosodacne 165
platysterna, Donacia 121
plausibilis, Cassida 10
polita, Donacia 64, 84, 86, 105
Polygonatum 233
polygoni, Gastrophysa 33
Polypliaga 21, 23, 36
populi, Chrysomela 35, 58
populi, Melasoma 19
Populus 180, 185
porphyrogenita, Donacia thalassina ab. 121, 135
Potamogeton 79, 89
Prasocuris 21
pretiosa, Poecilomorpha 10
Protoscelinae 39
Protoscelis 39
pseudoacorus, Iris 150
pseudoviaceae, Plateumaris (Plateumaris) discolor ab. 152
Psylliodes 12
pubipennis, Macroplea 66, 76
pulcherrima, Donacia simplex ab. 140
pumila, Myiobia 224
puncticollis, Lema 191
pupillata, Crioceris asparagi ab. 221
pupillata, Lema 219
purpurea, Salix 180
purpureicina, Plateumaris (Plateumaris) discolor ab. 152
purpuricolli, Lema 203
quadripunctata, Clytra 60, 61
quadripunctata, Crioceris asparagi ab. 221, 222
quatuordecimpunctata, Crioceris 65, 210, 214, 215, 216, 218
quatuordecimpunctata, Crioceris duodecimpunctata ab. 211
quatuordecimpunctata ab. csikii, Crioceris 214, 215
quatuordecimpunctata ab. deficiens, Crioceris 214, 215
quatuordecimpunctata ab. externepunctata, Crioceris 215
quatuordecimpunctata ab. internepunctata, Crioceris 214, 215
quatuordecimpunctata ab. lichtneckerti, Crioceris 215
quatuordecimpunctata ab. moravica, Crioceris 214, 215
quatuordecimpunctata ab. parumpunctata, Crioceris 214, 215
quatuordecimpunctata ab. russica, Crioceris 214, 215
14-punctatus, Attelabus 214
quercetorum, Alitica 37
quinquefasciata, Cercheris 224
quinquepunctata, Crioceris 65, 210, 211, 216, 217, 218
quinquepunctata ab. kaufmanni, Crioceris 217
quinquepunctata ab. thoracica, Crioceris 217
5-punctatus, Attelabus 216
ramosum, Sparganium 97, 124, 126
repens, Agropyron 200
reticulata ab. coerulans, Donacia 97
reticulata, Donacia 64, 84, 85, 94, 96, 97, 98
reticulatus, Juncus 150
revyi, Crioceris duodecimpunctata ab. 211
Robinia 33
Rorippa 196
rostrata, Carex 130
rubi, Batophila 49
rubiginosa, Cassida 19
ruficollis lineola, Orsodacne 173
rufipes, Donacia 157
rufipes, Gonioctena 31, 35
rufipes, Lilioceris merdigera ab. 232
rufocyanea, Lema 194, 195, 207, 208
rufocyanea, Lema (Oulema) 65, 207
rufo-testacea, Zeugophora 182
rufouvariegata, Donacia thalassina ab. 135
rugicollis, Lema 191
rugipennis, Macroplea appendiculata ab. 78
ruffi, Crioceris duodecimpunctata ab. 211
ruppiae, Macroplea mutica ab. 80, 81
russica, Crioceris quatuordecimpunctata ab. 214, 215
rustica, Donacia 162
rustica ab. forojulensis, Plateumaris (Juliusina) 163, 164
rustica ab. picipes, Plateumaris (Juliusina) 163, 164
rustica ab. planicollis, Plateumaris (Juliusiana) 163
rustica, Plateumaris 154, 160, 163, 164
rustica, Plateumaris (Juliusiana) 65, 162
Sagittaria 93, 126
Sagittariae, Donacia 125
Sagittifolia, Sagittaria 89, 102, 121
Sagriane 15, 17, 19, 24, 39, 41, 42, 59, 68, 166, 176
Sagitta, Zeugophora 58, 65, 177, 178, 179, 180, 184
Semicuprea ab. concolor, Donacia 107
Semicuprea, Donacia 64, 66, 70, 84, 85, 86, 89, 90, 91, 92, 106, 107, 108, 109, 110, 113
Semicuprea ab. iris, Donacia 107
Semicuprea ab. tenebrans, Donacia 107
Septentriania, Lema 189, 195, 196, 197, 198, 199
Septentrionia, Lema (Oulema) 65, 197
Sericue ab. armata, Plateumaris (Plateumaris) 149
Sericue ab. atropurpurea, Plateumaris (Plateumaris) 149
Sericue ab. festueae, Plateumaris (Plateumaris) 148
Sericue ab. intermedia Plateumaris (Plateumaris) 149
Sericue ab. laevigata, Plateumaris (Plateumaris) 149
Sericue, Leptura 146, 148
Sericue ab. lucens, Plateumaris (Plateumaris) 149
Sericue ab. micans, Plateumaris (Plateumaris) 149
Sericue ab. nymphaeae, Plateumaris (Plateumaris) 149
Sericue, Plateumaris 146, 148, 149, 150, 151, 152
Sericue, Plateumaris (Plateumaris) 65, 148
Sericue ab. tenebricosa, Plateumaris (Plateumaris) 149
Sericue ab. violacea, Plateumaris (Plateumaris) 149
Sericue ab. viridis, Plateumaris (Plateumaris) 149
Sericueae, Cryptocephalus 14, 58, 61
Serotina, Populus 185
Signifera, Chirida 11
Silvaticus, Scirpus 150
Silvestris, Anthriscus 31
Simplex ab. acruginosa, Donacia 139
Simplex ab. atrocoerulea, Donacia 140
Simplex ab. aurichalea, Donacia 139
Simplex, Diamphidia 29
Simplex, Donacia 14, 64, 66, 86, 88, 90, 91, 92, 139, 140, 141, 142
Simplex ab. pulcherrima, Donacia 140
Simplex ab. sanguinea, Donacia 140
Simplex, Sparganion 116
Simplex, Sparganium 91, 92, 113, 124, 126, 138, 141, 145, 150
Speciosissima, Oreina 11
Spectabilis, Glyceria 110
Sphecidae 223
Spicatum, Myriophyllum 79, 81
Spiraea 170
Springeri, Donacia 64, 66, 86, 87, 118, 120
Staphylaea, Chrysolina 62
Staphylinoidea 21
Steinmanni, Crioceris duodecimpunctata ab. 211, 212
Stercoraria, Chrysomela 227
Stercoraria, Lilioceris lili 230
Stercoraria, Lilioceris 226
Stercoraria ssp., Lilioceris 230
Stylomosus 15
Subspinosa, Crioceris 176, 180
Subspinosa, Zeugophora 59, 60, 65, 177, 178, 180, 181
Succineus, Longitarsus 50
Suffriani, Donacia versicolorea ab. 104
Suffriani, Lilioceris mordigera ab. 233
Sulcifrons, Plateumaris 147
Suvinensis, Eumolpus 19
Naturalis, Crioceris paracenthesis 217, 219

http://rcin.org.pl
SPIS TREŚCI

Słowo wstępn e .. 5

I. Część ogóln a .. 7
 1. Historia badań ... 7
 2. Budowa zewnętrzna i anatomia owadów dorosłych 9
 3. Budowa zewnętrzna i anatomia stadiów przedimaginalnych 23
 4. Przystosowania obronne, lokomocyjne i sygnalizacyjne ... 28
 5. Bionomia ... 31
 6. Autentologia i struktura populacji 33
 7. Synekologia .. 35
 8. Wybrane zagadnienia z cytologii i genetyki 35
 9. Filogeneza i układ systematyczny 38
 10. Rozmieszczenie geograficzne 41
 11. Znaczenie gospodarcze 48
 12. Metody zbierania, konserwowania i hodowli 50

II. Część szczegółowa ... 57
 Rodzina Chrysomelidae 57
 Klucz do oznaczania podrodzin 57
 Przegląd systematyczny gatunków z podrodzin Donacinae, 64
 Orsodacninae, Synetinae, Zeugophorinae i Criocerinae
 Podrodzina Donacinae 66
 Podrodzina Orsodacninae 165
 Podrodzina Synetinae .. 173
 Podrodzina Zeugophorinae 175
 Podrodzina Criocerinae 185

III. Piśmiennictwo ... 237

IV. Skorowidz nazw systematycznych 262

http://rcin.org.pl

W sprawach wymiany należy zwracać się pod adresem: Biblioteka Instytutu Zoologii Polskiej Akademii Nauk, 00-950 Warszawa, ul. Wilcza 64.

«Fauna Poloniae» izdaje się Instytutem Zoologii Polskiej Akademii Nauk.

Po dealom obmennym prosimy o adresować się pod adresem: Biblioteka Instytutu Zoologii Polskiej Akademii Nauk, 00-950 Warszawa, ul. Wilcza 64, Polska.

Zamówienia należy kierować pod adresem: «Ars Polona», 00-068 Warszawa, Krakowskie Przedmieście 7, Polska.

«Fauna Poloniae» is published by the Institute of Zoology of the Polish Academy of Sciences.

For exchange write, please, to the following address: Biblioteka Instytutu Zoologii Polskiej Akademii Nauk, 00-950 Warszawa, ul. Wilcza 64, Poland.

Book orders should be addressed as follows: «Ars Polona», 00-068 Warszawa, Krakowskie Przedmieście 7, Poland.

http://rcin.org.pl