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Optimum reliability and structure in reliability-based structural
design (%)

M. YONEZAWA, Y. MUROTSU, F. OBA and K. NIWA (0saka)

A PROBLEM is considered to determine simultaneously optimum reliability and structure when
the costs caused by the failure of the structure are given. For this purpose the expected total
cost is defined; it is taken as the sum of the structural costs and the costs due to the failure
of the structure. An algorithmic procedure which applies stochastic programming and the
uni-dimensional search technique is developed and a numerical example is presented.

Rozpatrzono problem jednoczesnego wyznaczania optymalnej niezawodnodci konstrukcji oraz
zaprojektowania konstrukcji optymalnej, gdy straty spowodowane jej katasuofg sa z gory
dane. Funkcja celu jest wtedy suma kosztu konstrukcji i strat wywolanych jej zniszczeniem.
WkaI'ZySllljac zasady programowania stochastycznego, opracowano algorytm procedury roz-
wiazujacej oraz technike rozwigzania w przypadku jednowymiarowym. Przedstawiono réwniez
przykiad numeryczny.

Paccmorpena npoGiieMa OHOBPEMEHHONO ONpPE/IEICHHsA ONTHMAILHOM HA/IEXKHOCTH KOHCTPYK-
MM H MPOSKTUPOBAHHA ONTHMAJLHON KOHCTPYKIMM, KOTJa NOTepH, BHI3BAHHLIE ee KaTa-
crpodoif, sapadee 3axaHbl. DyHKUMEH M ABNACTCA TOTJA CYMMa CTOMMOCTEH KOHCTPYKIHH
M DOTeph, BHI3BAHHBIX ee paspylueHdeM. VICmome3ys HpPHHIMITBI CTOXACTHUECKOTO IPOrpam-
MupoBaHus, paspaloraH ajropuTM pellaolliell NpOoUeAyPsl M TeXHHMKa pellleHHWs B OfIHO-
mepHoM cnyuae. IlpeqcraBiien Toxe UMCNICHHBIH TIpHMeEp.

1. Introduction

LoADS acting on the structures and the strength of the structural elements are sometimes
subject to random variations. In such a case structural reliability or, alternatively, the
probability of failure has been used as a criterion for structural safety. By applying relia-
bility analysis, optimum design problems have been studied [1-10] to determine the
structure for minimizing the structural weight or cost. However, due to the lack of an
efficient method for computing the failure probability of a multi-element or multi-mode
structure, considering the statistical dependence, either correlation was ignored or an
approximate method for calculating correlation was proposed using a Gaussian distribu-
tion for all the joint probability distributions. A method was developed [11] for calcula-
ting the multi-dimensional Gaussian distribution, using the Hermite polynomial expansion
methods. By the use of this method the authors [10] treated a problem to determine the
optimum structure for minimizing the structural cost or weight under the specified failure
probability of the structure. Applying stochastic programming, an efficient algorithmic
procedure was proposed for solving the problem.

(*) Presented at the 18-th Polish Solid Mechanics Conference, September 7-14, 1976, Wista—Ja-
wornik, Poland.
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In this paper, a problem is considered to determine simultaneously the optimum
failure probability and the structure when the cost caused by the failure of the structure
is specified. For this purpose the expected total cost is defined; it is taken as the sum
of the structural cost and the cost due to the failure of the structure. An algorithmic
procedure is developed and a numerical example is presented.

2. Statement of problem

Consider a structural system in which the structural elements or the failure modes
are described by a linear combination of the resistances of the elements and the loads
acting on the structure. Hence, the reserve strengths Z; of the structural elements or the
failure modes are given by

n I

@2.1) Zi= D ayR= D) byL; (i=1,2,..,m),

j=1 j=1
where R; — structural resistance of the j-th element, L; — the j-th load acting on the
structure, a;; — resistance coefficient determined by the position and condition of
the j-th element or failure mode related to the i-th element or failure mode, b;; — load
coefficient determined by the position and magnitude of the j-th load on the structure
related to the i-th element or failure mode, n— number of structural resistances,
] — number of loads, m — number of elements or failure modes.

Failure of the structure occurs when any value of Z; (i=1, 2, ..., m) is negative,
i.e. any one of the elements or failure modes fails. When the structural resistances R; and
the loads L; exhibit statistical variations and are thus treated as random variables, the
reserve strengths Z; also become random variables. Hence the reliability of the structure
must be evaluated by the failure probability of the structure. Let F; be the event of failure
of element or mode i and F, the survival of element or mode i. The failure probability
of the structure can be written as follows:

(2.2) Py = Prob(F,)+Prob(F; n F,)+Prob(F, nF, " F3)+ ...
+Prob(F, nF30 ... AFp_yAF,) = 1=Prob(F,nF, N ... \Fy).

The structural resistance R; is a function of design variables 4; such as the cross-
sectional area and the strength of the materials C,; to be used, both of which are, in
general, random variables. However, only C,; are treated as random variables in this
paper as the design variables. The dimensions of the structural elements are adopted
and their values are assumed to be determined by the mean values of the structural re-

sistances and the strengths of the materials, R; and C,;, i.e.
(2.3] A_;= Aj(.ﬁj, E,;).

The structural cost H¢ is a function of the dimensions of the structural elements when
the materials to be used are specified and thus, using Eq. (2.3), it can be written as follows:

(2.4) Hc = He(Ry, Rz, ..., R,).
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Now consider the case where the failure probability P, is determined by specifying
only the mean values of the structural resistances R; when the probabilistic natures of
tthe loads L; are given. An example of such a case is the one where R; are Gaussian random
wariables with known coefficients of variation.

Let C; denote the cost caused by the failure of the structure. The expected total cost
Hy is given by

(25) Hr = H5+CIPI.

The total cost may, in general, be affected by the support conditions [13] and the
connecting members [14, 15]. However, they are not ¢onsidered here for the sake of
simplicity.

The problem to be considered is

PROBLEM. Given the configuration of the structure and the materials to be used, determine
the structural resistances R; to minimize the expected total cost.

By solving the problem, the optimum failure probability or, alternatively, the optimum
reliability of the structure is determined together with the optimum structure.

3. Solution of problem

It is time-consuming to calculate the multi-dimensional probability distribution func-
tions for evaluating the failure probability of the structure Py in Eq. (2.2). Further, the
probability thus evaluated is approximate using any method developed so far for calcula-
ting multi-dimensional probability distribution functions. Thus, it is desirable to make
use of a search method to attain the optimum solution without employing the derivative
of Py, which requires much processing time and may result in the accumulation of errors.
For this purpose consider a subproblem.

SUBPROBLEM. With a specified probability level Py,, determine the optimum structure
R j to minimize the structural cost H¢ under the constraint

(3.0 P; < Pp.

The subproblem is the problem treated in the previous paper [10] and the outline
of the algorithmic procedure solving the solution is presented in Appendix 1. For the
optimum structural design problem it is shown in Appendix 2 that the solution to the
subproblem is attained in general on the boundary P; = Py,. Consequently, the solution
to the original problem is obtained by solving sequentially the subproblem. The algorithmic
procedure is given as follows:

Step 1: Specify the initial value of Pg,.

Step 2: For the given value of Py,, solve the subproblem and calculate the expected
total cost corresponding to the optimum solution thus obtained. If the optimality condi-
tion for the original problem is satisfied, stop the calculation. Otherwise, go to Step 3.

Step 3: Applying the uni-dimensional search technique [12], the value of Py, must
be adjusted so as to minimize the expected total cost Hy. Return to Step 2.
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The procedure is repeated until the optimality condition is satisfied. The flow chart
for the above procedure is given in Fig. 1, and the mathematical background is given

in Appendix 2.
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4. Numerical example

Consider a plastic design of an indeterminate 3-member truss structure as shown in
Fig. 2. The failure of the structure occurs when any two members among three collapse.
Thus the following three failure modes are considered and their reserve strenghts Z; are
given as follows:

i) Members 1 and 2 collapse:

@1 Z, = R+ '§ '/2:,, '/2('/3”) Ly
ii) Members 2 and 3 collapse:
(42) z,= ‘/;Rzuz; '/2151 V 2('/3")1,2,

and iii) Members 1 and 3 collapse:

2
4.3) Z;= 1/2_ R, +
The failure probability of the structure is calculated as follows:
(44) P; = Prob(Z, < 0)+Prob(Z, = 0nZ, < 0)+Prob(Z, 2 0nZ, > 0nZ; <0)

>
= 1=Prob(Z, > 0nZ, > 0nZ; > 0).



OPTIMUM RELIABILITY AND STRUCTURE IN RELIABILITY-BASED STRUCTURAL DESIGN 231

In this example, the strength of the members R; are related to their respective cross sec-
tional area A; and yield stress C,; as follows:

(4.5) Rj = Cy;4;.

The structural cost is given by

3
4.6) He = D) Cujdjly4;,
j=1
where C,,; — material cost of the j-th member per unit weight, d; — specific weight of
the j-th member and /; — length of the j-th member.
Consider the case where the resistances of the member R; and the loads L; are in-
dependent Gaussian random variables and the coefficients of variations CVg; and CVy;

and the means of the loads I_,,- are given. Thus the failure probability of the structure is

determined by specifying the mean value of the strengths R;.
For example, when the cross sectional area 4; are deterministic variables and the

yield stresses C,; are Gaussian random variables with the known means C,; and coef-
ficients of variations CV)y;, the resistances of the j-th members become Gaussian random
variables with known coefficients of variations as seen from Eq. (4.5). Considering the
case mentioned above, A4; are taken as R;/C,;.

Further, the reserve strengths given by Egs. (4.1)-(4.3) become Gaussian random
variables as well, and thus to evaluate the failure probability P, three-dimensional Gauss-
ian distribution functions need to be calculated. For this purpose the method developed
in Ref. [11] and outlined in Appendix 3 is used. The data concerned are as follows:
C,j=40ksi (j=1,2,3), L, =100kips, L, = 150 kips,

CV,; =005 (j=1,2,3), CV; =020 (=12,

L=Il3=y2,, . I,=60in, Cnd;=003%/in j=12,3.
Figure 3 illustrates a search procedure in Steps 2 and 3 given in Section 3, using the
quadratic approximation [12] for the case of C; = 10 $. A brief explanation of the
quadratic approximation method is given in Appendix 4.
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Fi6. 3. A procedure searching for optimum failure probability by the use of the quadratic approximation
method (Cy; = 10* §).
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Table 1. Optimum solutions corresponding to various values of the failure
coler.

C} M A| il."l2 Ag il'lz A; iﬂz Pj Hc $ H‘r $

10? 1.75 3.30 1.56 9.64x10-% 14.71 15.67
10% 2.23 3.50 1.76 7.79x10-*  16.85 17.63
104 2.63 3.67 1.92 6.79x10-%  18.61 19.29
108 298 3.82 2.06 6.16x10"¢  20.15 20.77
108 3.30 3.95 2.18 5.71x10-7  21.55 2213

The optimum solutions are listed in Table 1 for various values of C;. As the value
of C; becomes large, that is, the cost due to failure of the structure becomes large, the

Pr H$ |

1-0-2 L .

\ //‘q'fc
’
03 20 / l’/

\ Fic. 4. Effect of failure cost C; on optimum
solution.

10
2 3 ] 5 6
0 10 10 10 10° Cp §

optimum failure probability becomes small, while the structural cost becomes large. This
fact is also schematically shown in Fig. 4. :

Table 2. Optimum solutions by a procedure directly calculating the gradient
of Hr.

C_r 3 A, in? Az in? A;Iiﬂz P_r He §$ Hy $

10? 2,07 3.44 1.82 1.22x10-3 16.49 17.11
10% 2.95 3.7 2.14 7.06x10-¢  20.10 20.81

The optimum solutions to the original problem are tentatively searched by directly
calculating the gradient of the total expected cost Hr, and some results are given in
Table 2. Comparing the results to those of Table 1, it is seen that the proposed algorithmic
procedure gives us better solutions within the shorter processing time.
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5. Conclusion

An optimum structural design problem is treated for determining simultaneously the
optimum failure probability (or reliability) and structure when the cost due to the failure
of the structure is given. An efficient method is proposed to solve the problem using
stochastic programming and the uni-dimensional search technique. A numerical example
is presented to illustrate the procedure.

Appendix 1. Algorithmic procedure for solving subproblem

For the solution of subproblem consider the subproblem:

SUBPROBLEM A. Determine the optimum value of the structural resistances R j to mini-
mize the structural weight or cost Hc under the constraints on the allowable failure prob-
ability of each element or failure mode

Pfi's.ani (f=1§2s"'9m)9

where Py; and Pg,; are the failure probability and the specified allowable failure probability
of mode i, respectively.

Subproblem A is a typical stochastic programming (*), (*) and reduced to the follow-
ing equivalent convex progra;nming when R; and L; are independent Gaussian random
variables:

min He
subject to

n i n 1
T — - - —.11/2
2, ai;R;+ ZbijLJ +9(Prai) [Z af;CVi; R} + Zlbf; CVE;Li] >0,
j=1 J=1 j=1 j=1
where
v(Pral)

1 12
—Ej_; e df = P_rgl

-0

and CVg; and CV,; are the coefficients of variations of the strengths and the loads.

Thus, an algorithmic procedure is proposed to attain the optimum solution to sub-
problem by solving sequentially subproblem A. The procedure constists of the following
steps:

Step 1: Specify the initial values of P{)(i = 1,2, ..., m). For example, P{3} = Py,,
(i=1,2,...,m.

Step 2: Setting Py, = Pfs!, solve subproblem A and then calculate the failure
probability of the structure using the optimum solution thus obtained. If P, = Py,, go
to Step 4. Otherwise, go to step 3.

(') Y. MuRroTsuy, et al., A study on stochastic nonlinear programming problems, Trans. Japan Society
of [nstrument and Control Engineers, 18, 3, 341-347, 1972.

(*) Y. Murotsu, et al., On a determination of allowance for control variables in stochastic linear
programming problems, Journal of Japan Association of Automatic Control Engineers, 18, 3, 219-225,
19%4.



234 M. Yonezawa, Y. Murotsu, F. OBA AND K. Niwa

Step 3: Change the allowable failure probabilities of the active failure modes, i.e.
P}t?"l) = Pﬁ-"?i-(Pf_Pfa) for f’s{flpfi = Pra},
where y;, is a parameter to be adjusted to assure the convergence of the algorithm and
satisfies the inequalities
£—0.5 P
% S e Pfj;fn

considering the condition 0 < P{5" < 0.5. Go to Step 2.

Step 4: Search for the optimum solution along the boundary of the probability
constraint Py = Pr,. The following procedure is used for the search in Step 4.

Step 4-1: At a boundary point R?, find a feasible direction s satisfying the follow-
ing relations:

VHcs<0 and VPr-s<O.
If there is a feasible direction, go to Step 4-2. Otherwise, the point R° is optimum.
Step 4-2: At a feasible point R: R = R%+us, calculate the failure probabilities
Py, o is a constant to be taken so that the point R may be feasible.
Step 4-3: Resetting the allowable failure probability of each failure mode such that
Prai = Ppy, go to Step 2. The flow chart is given in Fig. A-l.
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FiG. A-1. Algorithmic procedure for solving Subproblem.
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Appendix 2. Mathematical background of algorithmic procedure

Let the design variables be expressed by the n-dimensional vector X and its design
space I" be a subspace of n-dimensional Euclidean space E", i.e. I' = E". The structural
cost Hc and the failure probability P; is a function of the design vector X and are
thus written as

He = Hc(X), P_r = PI(X) for Xel.

In the structural systems the structural costs increase in general as the design variables
are taken to be large, while the failure probabilities decrease for the cases considered.
Hence the following conditions are satisfied in general:

(C1) H¢(X) is componentwise increasing, i.e. for some j € {1, 2, ..., n} and for any
X! and X? € I" such that X2—X' = (X3—X})e; > 0, Hc(X) is increasing along [X', X?].
¢ is a n-dimensional unit vector with the j-th element of unit and all others of zero.

(C2) Py(X) is componentwise decreasing, i.e. Py(X) is decreasing along [X', X?] as
defined in (Cl). The following lemma holds for the solution to subproblem.

LEMMA 1: The solution to subproblem is attained on the boundary of the probability
constraint, i.e. Py(X¥) = Py,.

Proof. For any vector X' contained in an open set

G 2 {X|P/(X) < Pra}
i.e. X! € G, there exists a number ¢ > 0 which defines the neighbourhood
0.(X") £ {X| |IX'—X|| < ¢} = G.
Consider a vector X° whose elements X? are identical with those of X' except the i-th
element, i.e.
XP=Xl—¢ef2, XP=X}] (=1,2,..,n,j#i)
and which satisfies
X%0,(X") = G.

Considering the condition (Cl), the following inequality holds between the structural
costs corresponding to X° and X':

Hc(X') > Hc(X0).

Consequently, X' can not be an optimum to subproblem (g.e.d.).

As to the expected total cost, the following lemma holds.

LEMMA 2: When the failure probability Py is specified to be Py,, the expected total
cost Hr is minimum for the solution to subproblem.

Proof. For the specified value of Py, the second term of Hy is constant, i.e. Cy Py =
= C; Pr, = constant. Then

(HE)py=pse =  min  (He+CrP) = min  He+CPy,

Xl Pr=Psa Xcl,Py=Pya

= min Hc+ C!PI“.

XcI'Pr<Psa
The last relation follows from Lemma 1 (g.e.d.).
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From Lemmas 1 and 2, the following lemma concerning the solution of Problem holds.
LeEMMA 3: The solution to Problem is obtained by sequentially solving subproblem.
Proof. From Lemmas 1 and 2, the following relation results:

min Hy = min(H;)Pr_p!. = m‘ln{ min (Hc-l' CJ'P_()}
Xcr Pra Pra XcI',Py=Psa

=min{ min Hc+CiPyp)} =min{ min He+C,Pr} (qed).
Pra XcI'Py=Pysqg Pra XcI' Pr<Rjya

Denote the structural cost corresponding to the optimum solution of subproblem

for a specified value of P, as H2(Py,) ie.
.HS(PI,,) = min Hc(X).
XcI'PyX)<Pya

The following lemma holds:

LeMMA 4: HQ(Py,) is a decreasing function of Py,.

Proof. For the specified values of the allowable failure probability such that
P}, < P}, consider the corresponding feasible regions:

A4 A

G' = {XIP/(X) < P}, G* = {X|P/(X) < Pf.}.

The conditions (C2) yields
G! c G~
Hence
H(Pfa) > HE(Pfa)
from Lemma 1 (g.e.d.).

Finally, it is clear from Lemma 3 that the following proposition holds concerning
the algorithmic procedure for solving Problem.

ProposITION: The solution to Problem is obtained by the procedure given in Sect. 3,
using the uni-dimensional search with respect to the allowable failure probability.

It should be remarked here that the algorithm does not always work well when the
expected total cost Hr is not unimodal with respect to the allowable failure probability
Pya. In that case the optimization should be started from a number of initial values of
Py,, and search for the global minimum since the solution from any one initial value
may be a local minimum.

Appendix 3. Calculation of multi-dimensional Gaussian distribution function

Let X;and x; (i= 1, 2, ..., k) be the random ‘variables and their realizations. Using
Hermite polynomials, the k-dimensional probability density function p(x;, X2, ..., X&) is
expanded into the following form:

P(xl.:xz, "':xk)

N Ty Py E=

my,may,... mg = i=1
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where ¢(x) = (1 ]]/ E)cxp(«-xzm), Hpi(x): the m;-th order Hermite polynomial,

A(my, my, ... m:)—(” o (x‘_‘u‘»,

{(*)): mean of (), u;, 0;: mean, standard deviation of X , and Z’ represents the sum-

mation excluding the case where m;, = m, = ... = my = 0. In the following, the random
variables X; are used in the sense of the standardized random variables (X;—u;)/o;.

In the case of Gaussian distribution, the probability distribution function P(x;, x5, ...

., Xi) is expressed in the following form, using the property of Hermite polynomials.

o

k—1)k
[

Flrisminrsimdm 3 ) 0L o fg-Tk ” (= 1) Hnys(x )9,
N=0{ﬁn mytmyal. o mg_ !

where

H_y(x)o(x)) = B(x) = [ (o).

D denotes the summation taken over all sets of non-negative values of the m;; which
[mylNv

satisfy the following relation for the given N:

k=1 k
™ N=2 Z mij,

i=] j=i+1
0ij: correlation coefficient between X; and X;
J—1 k
mj= Zm”+ Z mj;
i=1 i=j+1

Using the above relations, the following algorithmic procedure is given for cal-
culating the multi-dimensional Gaussian probability distribution functions taking account
of the moment terms to any specified order:

Step 1. Specify the dimension (k), the order of the moment terms retained (NMT)
and the value of x; to calculate the probability distribution function.

k
Step 2. Set Po= [[D(x;) and N=0.
j=1
Step 3. Set N=N+1 and perform the summation

i 2 3
A o 2 074 013 E‘(k e ' r 1) Hy
Py m;z'mla (=DH, l(xj)‘f’(ﬂ-';)

[mijln = M- 1ok

for all possible sets of non-negative values of the m;; which satisfy Eq. (*) for the given
N. Putting P,y = Pyy_,+A4P,y, go to Step 4.
Step 4. If N = NMT, stop the calculation. Otherwise, go to Step 3.

The flow chart is given in Fig. A-2 which illustrates the computational procedure
mentioned above.
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xi(i=1,2,k)
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FiG. A-2. Algorithmic procedure for calculating the multi-dimensional Gaussian probability distribution
function.

In order to examine the contribution of the moment terms of various order, partial
sums of the series AP,y are calculated and listed in Table A-1 for two-dimensional
Gaussian probability distribution functions with variances of unit and some correlation
coefficients ;5.
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Table A-1. Contribution of moment terms AP,y (x;, x;) = (1,1)

. 212
0.1 0.3 0.5 0.7 0.9
N\

1 0.5854981E-02 0.1756494E-01  0.2927490E-01 0.4098487E-01  0.5269483E-01

2 0.2927491E-03  0.2634741E-02  0.7318726E-02  0.1434470E-01  0.2371267E-01

3 0. 0. 0. 0. 0.

4 0.9758305E-06  0.7904225E-04  0.6098939E-02  0.2342968E-02  0.6402421E-02

5 0.1951661E-07 0.4742535E-05 0.6098939E-04  0.3280155E-03  0.1152436E-02

6 0.2927492E-08  0.2134141E-05 0.4574204E-04  0.3444163E-03  0.1555788E-02

7 0.2973960E-09  0.6504048E-06  0.2323405E-04  0,2449183E-03  0.1422435E-02

8 0.5808517E-11  0.3810966E-07 0.2268951E-05  0.3348492E-04  0.2500374E-03

9 0.2811322E-11  0.5533523E-07 0.5490860E-05 0.1134469E-03  0.1089163E-02
10 0.1264966E-14  0.7469494E-10  0.1235318E-10 0.3573213E-06  0.4410660E-05
11 0.2168889E-13  0.3842119E-08 0.1059027E-05  0.4288598E-04  0.6806197E-b3
12 0.1070880E-15 0,5691089E-10  0.2614450E-07 0.1482234E-05 0.3024477E-04
13 0.1455078E-15  0.2319863E-09 0.1776217E-06  0.1409810E-04  0.3698610E-03
14 0.3763462E-17  0.1800051E-10  0.2297033E-07  0.2552464E-05  0.8609584E-04
15 0.8532704E-18  0.1224349E-10  0.2603972E-07  0.4050949E-05  0.1756806E-03
16 0.6167317E-19  0.2654825E-11  0.9410568E-08  0.2049577E-05  0.1142815E-03
17 0.4220690E-20  0.5450601E-12  0.3220127E-08 0.9818600E-06  0.7038911E-04
18 0.7593919E-21  0.2942036E-12  0.2896846E-08  0.1236602E-05  0.1139805E-03
19 0.1578400E-22  0.1834511E-13  0.3010555E-08  0.1799199E-06  0.2132181E-04
20 0. 0.2783640E-13  0.7613563E-09  0.6370134E-06  0.9705947E-04

Table A-2. Effect of dimensions and

moment terms retained on computer

processing time (sec)
T~ dimension
N “\ 2 3 4 6
2 0.00964 0.02632 0.08268
5 0.00715 0.02729 0.20533 7.97935
10 0.01146 0.10571 325794  ceeeees
15 i 0.01646 027620  21.63036  ceceece
20 |' 0.02214 0.58323 90.96636  --ece-

The computer processing times for various dimensions are listed in Table A-2 against
thee noment terms retained to calculate the multi-dimensional probability distribution
fumctions. The processing time becomes large as the order of the moment terms retained
is incaeased and the dimensions become large. The computations are processed with the
use f the TOSBAC-5600 Model 120 computer system at the Computer Center of
the: University of Osaka Prefecture.

Appendix 4. Quadratic approximation

Aa algorithmic procedure comprises of bracketing a region containing the minimum
and arrying out the quadratic approximation by using the smallest three points:
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Step 1: Evaluate Hr(Ps,) at P{3’> and P{2’ +h by solving subproblem. If Hr (P2’ +
+h) < Hr(P§2), go to Step 2. Othemlse, let h = —2h and go to Step 2.

Step 2: Set Pfi*V = P{ +h, and evaluate Hr(Pfi*"’) by solving subproblem. Go
to Step 3.

Step 3: If H(PE*D) < Hy(P), double 4 and return to Step 2 with k = k+1.
Otherwise, denote P}i“’ by P}:", P by Pf*-1, and Pfi~" by Pf7~?. Reduce / by one-
half, and go to Step 4.

Step 4: Set P"*V = P{™ _p, and evaluate Hr(P§i*") by solving subproblem. Of
the four equally-spaced values of Py, in the set (P{+D, P{P, Pia~V, PH~2), discard
either P{3’ or P{7~?, whichever is farthest from the P, corresponding to the smallest
value of Hr(Py,) in the set. Let the remaining three values of Py, be denoted by P§2,
P§2, and P9, where P§? is the center point, i.e. Pf2 = Pf —h and PfQ = P{2+h. Go
to Step 5.

Step 5: Carry out a quadratic approximation of the optimum failure probability
P?,

h[Hr(P;2)— Hr(P;2)]
2[H(P§2)—2H (P + Hr(P))]

P}, ~ PO 4
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