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Optimum reliability and structure in reliability-based structural 
design(*) 

M. YONEZAWA, Y. MUROTSU, F. OBA and K. NIWA (osAKA) 

A PROBLEM is considered to determine simultaneously optimum reliability and structure when 
the costs caused by the failure of the structure are given. For this purpose the expected total 
cost is defined; it is taken as the sum of the structural costs and the costs due to the failure 
of the structure. An algorithmic procedure which applies stochastic programming and the 
uni-dimensional search technique is developed and a numerical example is presented. 

Rozpatrzono problem jednoczesnego wyznaczania optymalnej niezawodnoSci konstrukcji oraz 
zaprojektowania konstrukcji optymalnej, gdy straty spowodowane jej katastrofil ~ z g6ry 
dane. Funkcjil celu jest wtedy suma kosztu konstrukcji i strat wywolanych jej zniszczeniem. 
Wykorzystujilc zasady programowania stochastycznego, opracowano algorytm procedury roz
w~zujilcej oraz technik~ rozwiilzania w przypadku jednowymiarowym. Przedstawiono r6wriiez 
przyklad numerycmy. 

PaccMo-rpeua npo6neMa o,w~oapeMeHHoro onpe.n;eneHHH onTHMa.rn.uo:H ua.n;e>KHoCTH I<OHCTp}'K
l.UIH H npoei<THpOBaHIDI OnTHMa.rn.HOH I<OHCTpYJ<LUIH, I<Or.n;a DOTepH, Bbi3BaHHble ee l<aTa
CTpocl>o:H, 3apauee 3a,llaHbl. <l>YJU<ImeH UeJDI .RBJUieTCH Tor.n;a cyMMa CTOHMOCTeH I<OHCTP}'KUHH 
H noTeph, Bbi3BaHHbiX ee paspyweHHeM. McnoJib3yH DpHHI.Ufilbi croxaCTHlleCJ<oro nporpaM
MMpOBaHHH, paspa6oTaH anropHTM pema10me:H npoue.n;ypbi H TeXHHI<a pemeHHH a o,w~o
MepuoM CJI~e. Tipe.n;craaneu Tome tiHCJieHHblli npHMep. 

1. Introduction 

LOADS acting on the structures and the strength of the structural elements are sometimes 
subject to random variations. In such a case structural reliability or, alternatively, the 
probability of failure has been used as a criterion for structural safety. By applying relia
bility analysis, optimum design problems have been studied [1-10] to determine the 
structure for minimizing the structural weight or cost. However, due to the lack of an 
efficient method for computing the failure probability of a multi-element or multi-mode 
structure, considering the statistical dependence, either correlation was ignored or an 
approximate method for calculating correlation was proposed using a Gaussian distribu
tion for all the joint probability distributions. A method was developed [11] for ·calcula
ting the multi-dimensional Gaussian distribution, using the Hermite polynomial expansion 
methods. By the use of this method the authors [10] treated a problem to determine the 
optimum structure for minimizing the structural cost or weight under the specified failure 
probability of the structure. Applying stochastic programming, an efficient algorithmic 
procedure was proposed for solving the problem. 

(*) Presented at the 18-th Polish Solid Mechanics Conference, September 7-14, 1976, Wisla-Ja
wornik, Poland. 
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In this paper, a problem is considered to determine simultaneously the optimum 
failure probability and the structure when the cost caused by the failure of the structure 
is specified. For this purpose the expected total cost is defined; it is taken as the sum 
of the structural cost and the cost due to the failure of the structure. An algorithmic 
procedure is developed and a numerical example is presented. 

2. Statement of problem 

Consider a structural system in which the structural elements or the failure modes 
are described by a linear combination of the resistances of the elements and the loads 
acting -on the structure. Hence, the reserve strengths Zi of the structural elements or the 
failure modes are given by 

PI I 

(2.1) Zi = 2 aiJRJ- 2 bi1L1 (i = 1, 2, ... ,m), 
}= 1 J= 1 

where R 1 - structural resistance of the j-th element, L 1 - the j-th load acting on the 
structure, ail - resistance coefficient determined by the position and condition of 
the j-th element or failure mode related to the i-th element or failure mode, bii - load 
coefficient determined by the position and magnitude of the j-th load on the structure 
related to the i-th element or failure mode, n - number of structural resistances, 
1- number of loads, m - number of elements or failure modes. 

Failure of the structure occurs when any value of Zi (i = l, 2, ... , m) is negative, 
i.e. any one of the elements or failure modes fails. When the structural resistances R1 and 
the loads L 1 exhibit statistical variations and are thus treated as random variables, the 
reserve strengths Zi also become random variables. Hence the reliability of the structure 
must be evaluated by the failure probability of the structure. Let Fi be the event of failure 
of element or mode i and F, the survival of element or mode i. The failure probability 
of the structure can be written as follows: 

(2.2) P, = Prob(F1) + Prob(F1 n F2 ) + Prob(F1 n ft; n F 3) + ... 

+Prob(.f; n.F;n .. . nF,_ 1 nFm) = 1-Prob(~ nF;n ... nF,.). 

The structural resistance R1 is a function of design variables A1 such as the cross
sectional area and the strength of the materials Cy 1 to be used, both of which are, in 
general, random variables. However, only C,1 are treated as random variables in this 
paper as the design variables. The dimensions of the structural elements are adopted 
and their values are assumed to be determined by the mean values of the structural re-

sistances and the strengths of the materials, R 1 and C, 1 , i.e. 

(2.3) 

The structural cost He is a function of the dimensions of the structural elements when 
the materials to be used are specified and thus, using Eq. (2.3), it can be written as follows: 

(2.4) 
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Now consider the case where the failure probability P1 is determined by specifying 
conly the mean values of the structural resistances R i when the probabilistic natures of 
U:he loads L i are given. An example of such a case is the one where R i are Gaussian random 
variables with known coefficients of variation. 

Let C1 denote the cost caused by the failure of the structure. The expected total cost 
Hr is given by 

(2.5) 

The total cost may, in general, be affected by the support conditions [13] and the 
connecting members [14, 15]. However, they are not considered here for the sake of 
simplicity. 

The problem to be considered is 
PROBLEM. Given the configuration of the structure and the materials to be used, determine 

the structural resistances Ri to minimize the expected total cost. 
By solving the problem, the optimum failure probability or, alternatively, the optimum 

reliability of the structure is determined together with the optimum structure. 

3. Solution of problem 

It is time-consuming to calculate the multi-dimensional probability distribution func
tions for evaluating the failure probability of the structure P1 in Eq. (2.2). Further, the 
probability thus evaluated is approximate using any method developed so far for calcula
ting multi-dimensional probability distribution functions. Thus, it is desirable to make 
use of a search method to attain the optimum solution without employing the derivative 
of P1, which requires much processing time and may result in the accumulation of errors. 
For this purpose consider a subproblem. 

SUBPROBLEM. With a specified probability level P1a, determine the optimum structure 

Ri to minimize the structural cost He under the constraint 

(3.1) 

The subproblem is the problem treated in the previous paper [10] and the outline 
of the algorithmic procedure solving the solution is presented in Appendix I. For the 
optimum structural design problem it is shown in Appendix 2 that the solution to the 
subproblem is attained in general on the boundary P1 = P1a. Consequently, the solution 
to the original problem is obtained by solving sequentially the subproblem. The algorithmic 
procedure is given as follows: 

S t e p I : Specify the initial value of P1a. 

S t e p 2: For the given value. of P1a, solve the subproblem and calculate the expected 
total cost corresponding to the optimum solution thus obtained. If the optimality condi
tion for the original problem is satisfied, stop the calculation. Otherwise, go to Step 3. 

S t e p 3: Applying the uni-dimensional search technique [12], the value of P1a must 
be adjusted so as to minimize the expected total cost Hr. Return to Step 2. 
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----··-- ---------- -----------------

The procedure is repeated until the optimality condition is satisfied. The flow chart 
for the above procedure is given in Fig. 1, and the mathematical background is give~n 

in Appendix 2. 

Solve SUBPROBLEM 
min. He 

under Pf ~ Pfa 

FIG. 1. Algorithmic procedure using uni-dimensional 
search. 

4. Numerical example 

FIG. 2. 3-member truss structure. 

Consider a plastic design of an indeterminate 3-member truss structure as shown in 
Fig. 2. The failure of the structure occurs when any two members among three collapse. 
Thus the following three failure modes are considered and their reserve strenghts Zi are 
given as follows: 

i) Members 1 and 2 collapse: 

(4.1) Z _ R y'2R y2L y'2(JI'3+ 1) L . 
1- 1+ 2 2+2 1- 4 2, 

ii) Members 2 and 3 collapse: 

(4.2) Z _ y'2R R y'2L 1/ i(y'f-1) L . 
2-2 2+ 3-2 1- 4 2• 

and iii) Members and 3 collapse: 

(4.3) -v2 -v2 L2 z3 = 2 RJ + 2 R3-L1 +2 . 

The failure probability of the structure is calculated as follows: 

(4.4) P1 = Prob(Z1 < O)+Prob(Z1 ~ OnZ2 < O)+Prob(Z1 ~ OnZ2 ~ OnZ3 < 0) 

= 1-Prob(Z1 ~ OnZ2 ~ OnZ3 ~ 0). 
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In this example, the strength of the members R1 are related to their respective cross sec
tional area A1 and yield stress C,1 as follows: 

(4.5) R1 = C,1A1 . 

The structural cost is given by 
3 

(4.6) He = 2 CmidiliAb 
)=1 

where Cm1 - material cost of the j-th member per unit weight, d1 - specific weight of 
the j-th member and /j- length of the j-th member. 

Consider the case where the resistances of the member R1 and the loads L1 are in
dependent Gaussian random variables and the coefficients of variations CVRj and CVL} 

and the means of the loads [ 1 are given. Thus the failure probability ·of the structure is 

determined by specifying the mean value of the strengths ii1. 

For example, when the cross sectional area A 1 are deterministic variables and the 

yield stresses C,1 are Gaussian random variables with the known means C,1 and coef
ficients of variations CV,1, the resistances of the j-th members become Gaussian random 
variables with known coefficients of variations as seen from Eq. (4.5). Considering · the 

case mentioned above, A1 are taken as ~(CyJ· 
Further, the reserve strengths given by Eqs. (4.1)-(4.3) become Gaussian random 

variables as well, and thus to evaluate the failure probability P1 three-dimensional Gauss
ian distribution functions need to be calculated. For this purpose the method developed 
in Ref. [11] and outlined in Appendix 3 is used. The data concerned are as follows: 

C,1 = 40 ksi (j = 1, 2, 3), L1 = 100 kips, L2 = 150 kips, 

CVyj = 0.05 (j = 1' 2, 3), CVL) = 0.20 u = 1' 2), 

11 = /3 = Vii2 , 12 = 60 in, Cmldl = 0.03 $/in3
, j = 1, 2, 3. 

Figure 3 illustrates a search procedure in Steps 2 and 3 given in Section 3, using the 
quadratic approximation [12] for the case of C1 = 103 $. A brief explanation of the 
quadratic approximation method is given in Appendix 4. 

$ 

Hr 

17.62 

... 
5 6 7 8 9 10 11 

Pr {lC10-4
) 

FIG. 3. A procedure searching for optimum failure probability by the use of the quadratic approximation 
method (C1 = 103 $). 
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Table 1. Optimum solutioos corresponding to various values of the failure 
cost c,. 

c, $ A1 in2 A 2 in2 AJ in2 P, He$ Hr$ 

102 1.75 3.30 1.56 9.64x 10- 3 14.71 15.67 
103 2.23 3.50 1.76 7.79 X 10-4 16.85 17.63 
104 2.63 3.67 1.92 6.79 x 10- 5 18.61 19.29 
105 2.98 . 3.82 2.06 6.16x 10-6 20.15 20.77 
106 3.30 3.95 2.18 5.71 x to- 7 21.55 22.13 

The optimum solutions are listed in Table 1 for various values of C1 . As the value 
of C1 becomes large, that is, the cost due to failure of the structure becomes large, the 

Pr 

1o·Z 

10-3 

10"" 

10"5 

10~6 

15 

10-f 

FIG. 4. Effect of failure cost C1 on optimum 
solution. 

optimum failure probability becomes small, while the structural cost becomes large. This 
fact is also schematically shown in Fig. 4. 

Table 2. Optimum solutions by a procedure directly calculating the gradient 
of Hr. 

c, $ A1 in2 Az in2 A3 ' in2 P, He$ Hr$ 

103 2.07 3.44 1.82 1.22 x 10- 3 16.49 17.71 

105 2.95 3.71 2.14 7.06xl0- 6 20.10 20.81 

The optimum solutions to the original problem are tentatively searched by directly 
calculating the gradient of the total expected cost HT, and some results are given in 
Table 2. Comparing the results to those of Table 1, it is seen that the proposed algorithmic 
procedure gives us better solutions within the shorter processing time. 
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S. Conclusion 

An optimum structural design problem is treated for determining simultaneously the 
optimum failure probability (or reliability) and structure when the cost due to the failure 
of the structure is given. An efficient method is proposed to solve the problem using 
stochastic programming and the uni-dimensional search technique. A numerical example 
is presented to illustrate the procedure. 

Appendix 1. Algorithmic procedure for solving subproblem 

For the solution of subproblem consider the subproblem: 
SuBPROBLEM A. Determine the optimum value of the structural resistances Ri to mini

mize the structured weight or cost He under the constraints on the allowable failure prob
ability of each element or failure mode 

Pli ~ Plai (i = 1,2, ... ,m), 

where P1; and P1ai are the failure probability and the specified allowable failure probability 
of mode i, respectively. 

Subproblem A is a typical stochastic programming (1), (2) and reduced to the follow
ing equivalent convex progra~ing when R i and L i are independent Gaussian random 
variables: 

minHc 
subject to 

where 

and CVRi and CVLi are the coefficients of variations of the strengths and the loads. 
Thus, an algorithmic procedure is proposed to attain the optimum solution to sub

problem by solving sequentially subproblem A. The procedure constists of the following 
steps: 

Step I: Specify the initial values of PfaHi = I, 2, ... , m). For example, P}~: = P1a, 
(i= 1,2, ... ,m). 

S t e p 2: Setting P1ai = P}~}, solve subproblem A and then calculate the failure 
probability of the structure using the optimum solution thus obtained. If P1 = P1a, go 
to Step 4. Otherwise, go to step 3. 

e) Y. MUROTSU, et al., A study on stochastic nonlinear programming problems, Trans. Japan Society 
of lnstrument and Control Engineers, 18, 3, 341-347, 1972. 

e) Y. MUROTSU, et al., On a determination of allowance for control variables in stochastic linear 
prorramming problems, Journal of Japan Association of Automatic Control Engineers, 18, 3, 219-225, 
1974. 
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S t e p 3: Change the allowable failure probabilities of the active failure modes, i.e. 

P}~t.l) = P}~}·-Yi·(PJ-Pfa) for i's{iiPJi = P!ad, 

where y1, is a parameter to be adjusted to assure the convergence of the algorithm and 
satisfies the inequalities 

P}~l-0.5 P}~l 
---- ~ y ·. < ---
PJ-Pfa ' PJ-Pfa 

considering the condition 0 < P}!t u ~ 0.5. Go to Step 2. 
S t e p 4: Search for the optimum solution along the boundary of the probability 

constraint P1 = P1a. The following procedure is used for the search in Step 4. 

Step 4-1: At a boundary point R0 , find a feasible directions satisfying the follow
ing relations: 

V He · s ~ 0 and V P1 · s ~ 0. 

If there is a feasible direction, go to Step 4-2. Otherwise, the point R0 is optimum. 

Step 4-2: At a feasible point R: R = R0 +as, calculate the failure probabilities 
P11 • a is a constant to be taken so that the point R may be feasible. 

S t e p 4-3: Resetting the allowable failure probability of each failure mode such that 
Pfai = Pit, go to Step 2. The flow chart is given in Fig. A-l. 

Min. H ~ 
:.. 

under 

Pfi~Pfa i 

YES 

0 

Calculate 

'i/HC & 'i/Pf 

Set P fai P f i 
corresponding to 
a feasible point 

FIG . A-1. Algorithmic procedure for solving Subproblem. 
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Appendix. 2. Mathematical background of algorithmic procedure 

Let the design variables be expressed by the n-dimensional vector X and its design 
space F be a subspace of n-dimensional Euclidean space En, i.e. F c En. The structural 
cost He and the failure probability P1 is a function of the design vector X and are 
thus written as 

He = He(X), Pf = P,(X) for X E F. 

In the structural systems the structural costs increase in general as the design variables 
are taken to be large, while the failure probabilities decrease for the cases considered. 
Hence the following conditions are satisfied in general: 

(Cl) He(X) is componentwise increasing, i.e. for some j E {1, 2, ... , n} and for any 
X1 and X2 Er such that X2 -X1 = (X]-X})ei > 0, He(X) is increasing along [X\ X2

]. 

ei is a n-dimensional unit vector with the j-th element of unit and all others of zero. 
(C2) PiX) is componentwise decreasing, i.e. P1(X) is decreasing along [X1

, X2
] as 

defined in (Cl). The following lemma holds for the solution to subproblem. 
LEMMA 1 : The solution to subproblem is attained on the boundary of the probability 

constraint, i.e. P1(X*) = Pfa· 
Proof. For any vector X1 contained in an open set 

G ~ {XIPJ{X) < P,a} 

i.e. X1 E G, there exists a number E > 0 which defines the neighbourhood 

Oe(X1
) ~ {XIIIX1 -XII < e} c G. 

Consider a vector X0 whose elements XJ are identical with those of X1 except the i-th 
element, i.e. 

X?= Xl-e/2, K.i0 =X} U = 1, 2, ... , n, j :/= i) 

and which satisfies 
X0e0e{X1) c G. 

Considering the condition (Cl), the following inequality holds between the structural 
costs corresponding to X0 and X1 : 

He(X1
) > He(X0

). 

Consequently, X1 can not be an optimum to subproblem (q.e.d.). 
As to the expected total cost, the following lemma holds. 
LEMMA 2: When the failure probability P1 is specified to be P1a, the expected total 

cost Hr is minimum for the solution to subproblem. 
Proof. For the specified value of P1, the second term of Hr is constant, i.e. C1P1 = 

= C1 Pia = constant. Then 

(H;)P1 = P111 ~ min (Hc+CJPr) = min He+CJPfa 
Xcr,PJ=Ptt~ XcT,Pt=PJa 

The last relation follows from Lemma 1 (q.e.d.). 

= min He+ C1P1a· 
Xcr,P1 ~Ptt~ 
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From Lemmas 1 and 2, the following lemma concerning the solution of Problem holds. 
LEMMA 3: The solution to Problem is obtained by sequentially solving subproblem. 
P r o o f. From Lemmas 1 and 2, the following relation results: 

minHT = min(H;)P,-P, .. = min{ min (Hc+C1 P1)} 
Xcr P1• P1• Xcr,Pr=Pf• 

= min{ min Hc+C1 P1)} = min{ min Hc+C1 P1 } (q.e.d.). 
P1.. Xcr,P1=P1.. P1.. Xcr,P1 t;;.RI• 

Denote the structural cost corresponding to the optimum solution of subproblem 
for a specified value of P1a as H8(P,a) i.e. 

H8(P,a) = min Hc(X). 
Xcr,P1(X)t;;.P1 .. 

The following lemma holds: 
LEMMA 4: H8(P1a) is a decreasing function of PJa· 
Proof. For the specified values of the allowable failure probability such that 

P}a < P}a, consider the corresponding feasible regions: 

G1 ~ {XIP,(X) ~ P}a}, G2 ~ {XIP,(X) ~ P}a}· 

The conditions ( C2) yields 

Hence 

from Lemma I (q.e.d.). 
Finally, it is clear from Lemma 3 that the following proposition holds concerning 

the algorithmic procedure for solving Problem. 
PROPOSITION: The solution to Problem is obtained by the procedure given in Sect. 3, 

using the uni-dimensional search with respect to the allowable failure probability. 
It should be remarked here that the algorithm does not always work well when the 

expected total cost HT is not unimodal with respect to the allowable failure probability 
P1a. In that case the optimization should be started from a number of initial values of 
P111 , and search for the global minimum since the solution from any one initial value 
may be a local minimum. 

Appendix 3. Calculation of multi-dimensional Gaussian distribution function 

Let Xi and xi (i = 1, 2, ... , k) be the random variables and their realizations. Using 
Hermite polynomials, the k-dimensional probability density function p(x1, x 2 , ••. , xk) is 
expanded into the following form: 

p(x1, x2, ... , xk) 
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where l/J(x) = (l/V2n)exp( -x2 j2), Hmi(x): the mrth order Hermite polynomial, 

< ( · )) : mean of ( · ), /-lh <11: mean, standard deviation of X , and 1:' represents the sum
mation excluding the case where m1 = m2 = ... = mk = 0. In the following, the random 
variables Xi are used in the sense of the standardized random variables (X1-p,1)/<11• 

In the case of Gaussian distribution, the probability distribution function P(x1 , x 2 , ••• 

. . . , xk) is expressed in the following form, using the property of Hermite polynomials. 

where 
Xj 

H_l(xi)l/J(xi) = C/>(xi) = J lf>(t)dt. 
-00 

.J: denotes the summation taken over all sets of non-negative values of the mii which 
[m1J]N 

satisfy the following relation for the given N: 

k-l k 

(*) N=};}; mtb 
i=l j=i+l 

eii: correlation coefficient between Xi and Xi 
j-1 k 

mi =}; m;i+ }; mii· 
i=l i=j+l 

Using the above relations, the following algorithmic procedure is given for cal
culating the multi-dimensional Gaussian probability distribution functions taking account 
of the moment terms to any specified order: 

Step 1. Specify the dimension (k), the order of the moment terms retained (NMT) 
and the value of x1 to calculate the probability distribution function. 

k 

S t e p 2. Set P 0 = n C/>(x i) and N = 0. 
j=l 

S t e p 3. Set N = N +I and perform the summation 

k 

2:-, mu mjl m(k-l)k n 
L1P = e12 e1~ · ·· e<k-t>k . (-l)H. (x ·).A..(x ·) 

2N t f f mJ-l J o/ J 
.. m12. m1J .... m<k-Uk. . 

(mtJ]N J= I 

for all possible sets of non-negative values of the mii which satisfy Eq. (*) for the given 
N. Putting P2 N = P2N- 2 +L1P2N, go to Step 4. 

Step 4. If N = NMT, stop the calculation. Otherwise, go to Step 3. 
The flow chart is given in Fig. A-2 which illustrates the computational procedure 

mentioned above. 
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FIG. A-2. Algorithmic procedure for calculating the multi-dimensional Gaussian probability distribution 
function. 

In order to examine the contribution of the :ttroment terms of various order, partial 
sums of the series L1P2N are calculated and listed in Table A-1 for two-dimensional 
Gaussian probability distribution functions with variances of unit and some correlation 
coefficients e 12 • 
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Ta•le A-1. Contribution of moment teans LJP2 N (x1 , x 2 ) = (1, 1) 

":~/ O.l 

1 0.5854981E-02 
2 0.2927491E-03 
3 0. 
4 0.9758305E-06 
5 0.1951661E-07 
6 0.2927492E-08 
7 0.2973960E-09 
8 0.5808517E-11 
9 0.2811322E-11 

10 0.1264966E-14 
11 0.2168889E-13 
12 0.1070880E-15 
13 0.1455078E-15 
14 0.3763462E-17 
15 0.8532704E-18 
16 0.6167317E-19 
17 0.4220690E-20 
18 0.7593919E-21 
19 0.1578400E-22 
20 0. 

~3 ~5 0~ 

0.1756494E-01 0.2927490E-01 0.4098487E-01 
0.263474\E-02 0.7318726E-02 0.1434470E-01 
0. 0. 0. 
0.7904225E-04 0.6098939E-02 0.2342968£-02 
0.4742535E-05 0.6098939£-04 0.3280155E-03 
0.2134141E-05 0.4574204E-04 0.3444163£-03 
0.6504048£-06 0.2323405£-04 0,2449183£-03 
0.3810966£-07 0.2268951E-05 0.3348492£-04 
0.5533523£-07 0.5490860£-05 0.1134469£-03 
0.7469494£-10 0.1235318£-10 0.3573213£-06 
0.3842119£-08 0.1059027£-05 0.4288598£-04 
0,5691089E-10 0.2614450E-07 0.1482234E-05 
0.2319863£-09 0.1776217£-06 0.1409810E-04 
0.1800051£-10 0.2297033£-07 0.2552464£-05 
0.1224349£-10 0.2603972£-07 0.4050949E-05 
0.2654825£-11 0.9410568£-08 0.2049577£-05 
0.5450601E-12 0.3220127£-08 0.9818600E-06 
0.2942036£-12 0.2896846E-08 0.1236602E-05 
0.1834511E-13 0.3010555£-08 0.1799199E-06 
0.2783640£-13 0.7613563£-09 0.6370134E-06 
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0.9 

0.5269483£-01 
0.2371267£-01 
0. 
0.6402421£-02 
0.1152436£-02 
0.1555788E-02 
0.1422435£-02 
0.2500374E-03 
0.1089163£-02 
0.4410660E-05 
0.6806197E-l)3 
0.3024477£-04 
0.369861 OE-03 
0.8609584E-04 
0.1756806E-03 
0.1142815E-03 
0.7038911E-04 
0.1139805£-03 
0.2132181£-04 
0.9705947£-04 

Table A-2. Effect of dimensions and moment terms retained on computer 
processing time (sec) 

2 
5 

10 
15 
20 

2 

0.00715 
0.01146 
0.01646 
0.02214 

3 

0.00964 
0.02729 
0.10571 
0.27620 
0.58323 

4 

0.02632 
0.20533 
3.25794 

21.63036 
90.96636 

6 

0.08268 
7.97935 

The computer processing times for various dimensions are listed in Table A-2 against 
thte noment terms retained to calculate the multi-dimensional probability distribution 
fumctions. The processing time becomes large as the order of the moment terms retained 
is increased and the dimensions become large. The computations are processed with the 
uste ~f the TOSBAC-5600 Model 120 computer system at the Computer Center of 
the! University of Osaka Prefecture. 

A):l)ptndix 4. Quadratic approximation 

At algorithmic procedure comprises of bracketing a region containing the minimum 
anal carrying out the quadratic approximation by using the smallest three points: 
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Step 1: Evaluate HT(P1a) at Pj~> and Pj~> + h by solving subproblem. If HT(Pj~> + 
+h)~ HT(Pj~>), go to Step 2. Otherwise, let h = -2h and go to Step 2. 

Step 2: Set Pj!+O = Pj!> +h, and evaluate HT(Pj!+ 1 >) by solving subproblem. Go 
to Step 3. 

Step 3: If HT(P}!+l>) ~ HT(Pj!>), double h and return to Step 2 with k = k+ 1. 
Otherwise, denote Pj!+ 1> by Pj':>, Pj!> by Pjr;-o, and Pj!-o by Pj':}- 2>. Reduce h by one
half, and go to Step 4. 

Step 4: Set P}m+u = Pjm> -h, and evaluate HT(P}r;+ 0 ) by solving subproblem. Of 
the four equally-spaced values of P1a in the set (PS.':+l>, Pj':>, P}r;-o, P}r;- 2 >), discard 
either Pj':> or P}r;- 2 >, whichever is farthest from the P1a corresponding to the smallest 
value of HT(P1a) in the set. Let the remaining three values of Pfa be denoted by P}:>, 
Pj~>, and Pj~>, where Pj~> is the center point, i.e. Pj:> = Pj~> -h and Pj~> = Pj!> +h. Go 
to Step 5. 

S t e p 5: Carry out a quadratic approximation of the optimum failure probability 
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