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On the quasi-static growth of cracks 

A. I. CHUDNOVSKII, V. A. DUNAEVSKII and V. A. KHANDOGIN 
(NOVOSffiiRSK) 

THE GROWTH of a crack modelled by a region of sm:dl transversal dimensions is studied on 
the basis of general thermodynamics of irreversible processes. The non-local model has been 
selected due to the fact that in applying the traditional model - a cut - some of the essential 
features of the crack growth process are lost. From the expression of the entropy production 
density the singular component is isolated which is connected with the crack motion and located 
at the crack tip. Certain integrals invariant with respect to the choice of the contour of integration 
and analogous to the well known J-integral can be interpreted as terms describing thermo
dynamic forces driving the crack. The equations of crack motion are illustrated by an example. 

Wzrost szczelin rozwai:a si~ na podstawie og6lnych zasad termodynamiki proces6w nieodwracal
nych, przy czym szczelin~ modeluje si~ za pom~ obszaru o malych wymiarach poprzecznych. 
Zastosowanie modelu nielokalnego tlumaczy sict tym, i:e przy tradycyjnym modelu szczeliny, 
majllcym postac cie(Cia, traci sict pewne istotne elementy procesu ~kania. Z wyrai:enia na ge(stosc 
produkcji entropii wydzielono sktadnik osobliwy zwiltzany z procesem wzrostu szczeliny i zloka
lizowany w jej wierzcholku. Pewne calki niezmiennicze ze wzglctdu na wyb6r konturu calko
wania Sll analogicznie do znanej z teorii pe(kania calki J i mogll bye interpretowane jako 
wyrai;enia opisujllce sily termodynamiczne poruszajltce szczelinct. R6wnanie wzrostu szczeliny 
zilustrowano przykladem. 

C o6J.QHX ll03H~HH TepMOJUffiaMHI<H Heo6paTHMbiX npo~eCCOB H3ytlaeTCSl pOCT Tpei.QHHbi, 1<0-
TOpaR: Mo~eJIHpyerca o6naCTLro c MaJibiM nonepetmbiM pa3MepoM. Bbi6op HeJIOI<aJibHOH Mo~eJIH 
o6yCJIOBJieH TeM, 'tiTO B Tpa~~OliHOH MO~eJIH TpeliUIHbi-pa3pe3e--TepSIIOTCSl Hei<OTOpbie 
cyii.leCTBeiiHbie qepTbi pocra TpeliUIHbi. B nnoTHOCTH nopom~eHHSI 3HTPOllHH Bbi~eneHa CHH
rynapHaa COCTaBIDIIOJ.QaSI, CBSl3aHHaSI C pOCTOM TpeJ.QHHbl H JIOI<aJIH30BaHHaSI B ee BepWHHe. 
fipH 3TOM po.m. TepMOJUffiaMJ~qeCI<HX CHJI, ~BH>Kyn\HX Tpe:u.umy, m-paiOT HHBapHaHTHbie OTHO
CHTeJII>HO I<OHTypa HHTerpHposamma mrrerpaJibi, no~o6Hbte H3BeCTHoMy HHTerpany J. Ypaa
HeHHa pocra TpelUHHbi HJIJDOCTpHpyroTca npHMepoM. 

IT IS KNOWN [1, 2] that the crack growth characteristics (trajectory and speed) contain 
information on the material strength of fracture mechanisms. The process of decoding 
information is a major problem in the modern theory of strength of materials. 

In fracture mechanics the study of crack growth proceeds in two principal directions. 
The first one consists in determining the stress field components in bodies containing cracks 
which move according to prescribed laws [3-5]; on the other hand, attempts are made 
to construct suitable crack growth laws. In the latter case the states of stress and strain 
are usually assumed to be known (quasi-static approximation), and then the speed of 
a crack moving along a prescribed trajectory is evaluated [4, 6, 7]. In order to determine 
the trajectories, certain special principles must usually be applied [5, 8]. Therefore, the 
relations between the crack growth laws and the material strength characteristics are not 
considered in those papers. 

The aim of this paper is to construct the crack growth equation on the general basis 
of thermodynamics of irreversible processes, without applying any additional principles, 
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and to establish the relationship between the crack growth and the material strength 
characteristics. 

The crack is modelled by a region of a small transversal dimension a which is of the order 
of magnitude of the smallest characteristic dimension of the real material region which 
still may be considered as statistically homogeneous (i.e. in which the continuous medium 
model may be applied). The choice of such a model is justified in the light ot the fact that 
in applying the traditional model of a cut some of the essential features of the crack growth 
process get lost. 

The production of entropy in a body with a crack is decomposed into two parts, regular 
and singular, the latter being localized in the vicinity of the crack tip. The singular com
ponent represents a bilinear form in fluxes and forces; the role of forces is played by certain 
curvilinear integrals (analogous to the well-known J-integral) invariant under the choice 
of integration contour, and the role of fluxes- by the linear and angular crack tip veloci
ties. 

The crack equations are constructed within the tramework of linear approximation 
of the method of approximations, the value of a being assumed as the small parameter. 
Confining the considerations to the terms linear in a, we make the assumption that the 
crack tip region does not deform; at the same time the crack is completely characterized 
by its trajectory and growth rate. It is shown that the trajectory equation may be derived 
only by replacing the usual crack model, a cut, with another model. 

A particular example of motion of a shallow crack in a linear Maxwell medium is 
considered. It is shown that the non-homogeneity of the material strength properties 

influences the form of the trajectory. 

1. Energy and entropy balance 

In a medium endowed with relaxation properties and lacking chemical reactions and 
mass transfer, the energy balance equation has the form 

(1.1) 

Here u- internal energy density. Uti' eii- stress and strain tensors, q- heat flux vector. 
u is now written in the usual form as the sum 

(1.2) u = f+Ts 

with f denoting the free energy density, T- absolute temperature, s- entropy density. 
The energy balance in Eq. (1.1) takes the form 

(1.3) 

The time rate of the change of entropy s consists of two parts: si - entropy production 
due to irreversible processes, and se- the part due to the internal entropy flux 

(1.4) S, = --div( ~ ). 
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Equations (1.3) and (1.4) yield the entropy production 

(1.5) 

Let us assume that a crack is propagating within the body occupying the region V. 
The crack is modelled by a region V1 c V characterized by the small transversal dimension 
a (Fig. 1). 

FIG. 1. 

Properties of the fractured material in the region V1 are different from those of the 
original in V2 = V""-V1 • Thus the densities of the free energy, entropy and work inside 
the regions V1 and V2 are also different: 

(1.6) 

f(x) = {1- x(x)} fz(x)+ x(x)ft (x), 

s(x) = {1-x(x)}s2 (x)+x(x)st(x), 

{
1, 

x(x) = 0, 

Such a choice of the model is connected with the fact that in applying the traditional model 
of the crack, a cut, the characteristic features of fracture propagation are lost. 

Equations (1.5) and (1.6) for a body with a crack V1 yield in the case of thermal equilib
rium, the expression 

(1.7) Ts; = {1-x(x)}{o,(a;ietih-i2 -Ts2 }+x(x){o,(dijeii)-i1-Tst}- ~ gradT 

+x(x){[fz+Tsz-(a;ieii)z]-[ft +Ts1- (diieti)d} 

= { 1-x(x)} Ts;z + x(x) Tsil + x(x) { hz-ht}. 
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Here sil and si 2 denote the entropy productions due to irreversible processes occurring 
within the regions V1 and V2 , and h1 , h2 denote the enthalpies in the respective regions 
V1 , V2. The term x{h,-ht} corresponds to the production of entropy due to the charge 
of the region vl (crack growth), and x(x) 

(1.8) . ( ) _ oz(x) dxk _ .\l (;:)V) x x - ----- - uk u 1 vk. 
oxk dt 

Here oV1 is the boundary of V1 , vk- components of the velocity vector of the boundary 
points, av1 and ~ j( avl) is calculated in the following manner [9]: for any bounded function 
1p(X) 

(1.9) f 1p(x)~i(oVl)dV = f 1p(x)nidQ, 
av1 

ni are components of the external unit normal to oV1 • 

Let us confine our considerations to the plane problem in which the boundary of 
a region vl is represented by a contour r. It is assumed that the velocity vj differs from 
zero only in the small neighbourhood rv of the crack tip and it may be represented by 
a power in the small parameter a (Fig. 1 ). 

(1.10) v = v0 +w xr+v1 • 

The first two terms in Eq. (1.10) correspond to the rigid motion of the crack tip, and v 1 

is the velocity connected with the crack tip deformation. 
The production of entropy in the region V due to the growth of the region V1 may be 

written, in view of Eqs. (1.8) to (1.10), in the form 

{1.11) 

f x(x){h2-ht}dV = -vo(JJ,o-/)-w(p1 -D)+O(a2), 
V 

#o = ei J h1 nidF, #1 = J (x 1 n2-x2n1)h1 dF, 
ru r., 

T = ei J h2nidr, D = J (x 1 n2 -x2 n1)h2 dF, e .= Voj 
J -

rl} rv Vo 

Here r V - the moving portion of the contour r (Fig. 1); #o - surface density of enthalpy 
for a rectilinear crack; #t- the complementary surface density of enthalpy connected 
with the crack curvature, v0 - rectilinear velocity of the tip; w - angular crack tip veloc
ity; I- enthalpy variation of the region V2 due to a unit increment of the crack length; 
D -the complementary variation of enthalpy in the region V2 due to the curvature of 
the crack increment. 

Parameters #o and # 1 depend solely on the state of the fractured material and are 
determined according to the model of fracture of the body. 

Parameters I and D depend on the state of the medium surrounding the fractured region 
Y1 and are functionals of the fracture process. 
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2. Invariant integrals fto , flt and /, D 

In a homogeneous isotropic medium fto, ftt, I, D are expressed by curvilinear integrals 
independent of the contour of integration. In order to establish the invariance properties 
in the case of homogeneity and isotropy, the equations of state, equilibrium and tem
perature field homogeneity must be used. 

In view of homogeneity of the medium, enthalpy depends on the coordinates indirectly 
through the state parameters which may be assumed as the stresses a11 and entropy s. 
Then the conditions of invariance of enthalpy under arbitrary translations are reduced 
to the equations 

oh oh 
fhh = ihh- --akaii- -oks = o. 

oa11 os 
(2.1) 

Here ak is the operator of differentiation of the expliCity functions of xk, and ak - the 
total derivative operator. 

In view of the temperature field homogeneity ok T = 0 and okh are reduced to the 
divergence form 

(2.2) 

where u1 is the displacement field. 
From Eqs. (2.2) and (2.1) it follows that in a homogeneous medium and for any L1 V c: V 

bounded by F 0 (Fig. 1) we have 

(2.3) f akhdV = f n1f t}Jkf-a;iui,k}dF = 0. 
.:IV To 

For a non-homogeneous medium (containing a crack) the enthalpy density may be repre
sented in a form analogous to Eq. (1.6), 

(2.4) 
h(x) = h2(x){I-x(x)}+ht(x)x(x), 

akh = t3k<D<h2- h1). 

From Eqs. (2.2) and (2.4) we now obtain, instead of Eq. (2.3), the relation 

j akhdV = j (h2-h 1)nkdF = f ni{t3Jkf-aiiui,k}dF 
LIV Tv To 

(2.5) = J ni{ t3 ik/2- (aijui,kh}dF- J nJ{ t}Jkft- (aiiu; ,k)t}, 
T2 T1 

Similarly, in isotropic media the enthalpy should be invariant under the group of 
rotations, and hence in a polar coordinate system it should not explicitly depend upon the 
angle cp, 

(2.6) 
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o,h may be reduced to a divergence form similar to Eq. (2.2); this yields the invariance 
property of the integrals p,1 and D, 

J B~~'hdV = J (h2-htHxtn2-x2n 1)dF = D-p,1 
.1v r., 

= f { (x1 n2-x2 n1)/- o'iini(x1 o2 -x2 o1)ui- (ai 1 u2- ai2u1)n;}dF, 
ro 

(2.7) 
D = f {(xtn2-x2nt)f2-[o'unj(xt 02-x2ot)u;h- [(o'ttU2-ai2Ut)nih}dF 

r2 

- J {(xtn2-x2nt)ft-[o'iinj(xto2-x2ot)u;]t-[(aitu2-o'i2ut)n;].}dF. 
r, 

Thus it follows from Eqs. (2.3), (2.5), (2.6) and (2.7) that the integrals /, D, p,0 , p,1 are 
invariant with respect to the choice of contours F 1 , F 2 • In view of that invariance the 
region of integration L1 V may be contracted and reduced to the size of an immediate neigh
bourhood of the crack tip, its diameter becoming of the order of magnitude of a. 

Density of the entropy production in a body with a crack V1 is equal to 

(2.8) 

Here s10 - entropy production in a body with a stationary crack; <54 ( X- M)- <5-function 
concentrated in the neighbourhood of the crack tip M, its diameter being of the order of 
a [10]. 

Equation (2.8) shows that the entropy production in a body containing a crack consists 
of two components, the regular and singular ones, the latter being concentrated in the 
small neighbourhood of the crack tip. Both the singular and regular components allow 
for representations by bilinear forms in ftuxes and forces; v0 and w play the parts of ftuxes 
in the singular production process, while the invariant integrals (p,0 - I) and (p, 1 - D) 
represent the forces. 

Jt should be noted that the ftuxes and forces written explicitly in Eq. (2.8) correspond 
to the linear part of expansion of the singular production into a power series of the small 
characteristic parameter a. Taking into account the remaining terms of the expansion 
we can determine the additional production connected with the deformation of the crack 
tip in the process of its motion. 

3. Equations of quasi-static growth of cracks 

Pursuant to the second law of thermodynamics 

(3.1) si~ o. 
The equality sign holds true only in reversible processes. 

Let us consider the ideal process of crack growth in which no irreversible deformations 
occur; this means that by reversing the sign of loads the crack is sealed, the system and 
the thermostat returning to their initial states. Such an ideal growth may be termed per-
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fectly brittle. Under non-zero fluxes (v0 #= 0, w #= 0) the entropy production si = 0 
in such processes, and due to the independence of v0 and w, it follows that 

I-p,0 = 0, 
(3.2) 

D-p, 1 = 0. 

In the case of linear approximation in a, the crack is characterized by two parameters: 
the length and curvature of its middle line. Taking into account that I and D are functio
nals of the process, it is concluded that Eqs. (3.2) completely determine the brittle crack 
growth. 

However, in most of the real structural materials the crack growth is accompanied 
by irreversib]e deformations and is not a reversible process. In such cases the simpJest 
equations governing the quasi-static growth of quasi-brittle cracks will be the linear 
phenomenological relations between the fluxes and forces, similar to the traditional 
relations of linear thermodynamics of irreversible processes. 

Vo = Lu(/-to-/)+Lll(ftt -D), 

w = L2t{fto-/)+L22(p,t -D). 
(3.3) 

Here Lii denote certain phenomenological coefficients. 

4. Shallow crack in a Maxwell medium 

Consider a crack extending in an .infinite medium subject to tension p applied at infinity. 
The medium is assumed to obey the linear Maxwell model rules 

(4.1) 

Here eij - elastic part of Eij, r - relaxation time. It is moreover assumed that the crack 
is shallow and the stress intensity factors may be determined according to Eq. (A.4). The 

x(t) 

t 

FIG. 2. FIG. 3. 

abscissa of the crack vertex is selected as the natural parameter. The stress field is obtained 
by superposition of uniform and asymptotic fields. Thermal effects are disregarded. 

The first Eq. (2.2) takes the form 

(4.2) {1 + X~)}J0(t)+R(t) = /lo. 

4* 
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(4.2) 
[cont]. 

A. I. CHUDNOWSKII, V. A. DuNAEVSKJI and V. A. KHANDOGIN 

10 (1) = ~ {Kf(t)+Kfi(t)} = n;; x(t), 

a 
c = -' flo = h 1 a. 2-r 

Here K1(t), K11(t)- stress intensity factors, E- Young's modulus, v- the Poisson 
ratio, t0 - the time of application of loads, t 1 - time of creation of the macrocrack. 

Equations (4.2) yield the crack growth velocity x(t), 

. cx(t) 
x(t) = 1*-l(t)-x(tT' 

/* = 2Eflo l(t) = 2(1-v) c(t+ to). 
np2 ' n 

(4.3) 

The solution in Eq. (4.3) is shown in Fig. 3. The necessary condition of crack stability 
with respect to the external load ox(t)fop = (oo) yields the critical length x* = x(t*), 

(4.4) x* = 1*-l(t*). 

The above expression shows that in a viscoelastic medium the critical length x* differs 
from the Griffith critical value by the second term /(t*) which is connected with the energy 
dissipation. 

The equations similar to Eq. (4.3) have been derived in [6]. 
In order to satisfy the second Eq. (3.2), it is necessary to specify the form of the crack tip. 

For the sake of simplicity let us assume tt to have a wedge form. We obtain 

(4.5) 

The following equation (cf. also Eq. (A.4)) for the crack ordinates is now obtained: 

(4.6) y(x)+ -~-Jx .. ;- s {y(x)-y(S) _ y(S)}ds = !.!!__xo.,(flo-R). 
:n; Jl x-S x-S S 3 flo-R 

0 

The right-hand side of Eq. (4.6) is a function of the non-homogeneity characteristics 
of the strength parameters, in accordance with the assumed model of material fracture. 

Non-homogeneity of the strength properties produces the undulation of the crack 
trajectory (fracture surface roughness). In real materials the strength properties are usually 
described by random fields and Eq. (4.6) is transformed into a stochastic equation of the 
fracture surface (integrations and differentiations should be considered in the stochastic 
sense). 

It should be pointed out that by comparing the solutions of such stochastic equations 
with real fracture surfaces obtained experimentally, we may be able to determine the 
micro-nonhomogeneity of material properties of the body. 
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Appendix 

The analytical determination of intensity factors for curvilinear cracks was discussed 
in [5, 11, 12]. In this paper we shall use the method presented in [12). 

According to [12], in an isotropic body containing smooth curvilinear cuts Li 
(j = I, 2, ... , K) the evaluation of intensity factors may be reduced to determining the 
functions p(t) at Li satisfying the equation 

- -- ---- --=--=-- p(t)dt- --- ---=---=- + -----=- - - e-' 1110 p(t)dt = </>(t0 ), 
1 J ( ei'Po e-i'l'o ) 1 r ( ei'l'o t- to . ) - -- ---

Jri L t- fo t -- to ni i t- t0 (t- 10 )
2 

(A.l) J p(t) dt = 0' j = 1 ' 2' 3' ... ' k' 
LJ 

<J>(t) = -{Xn(t)+iYn(t)}, 
K 

t, to E L, L = U L i, i = v-=-f. 
j=O 

Here 'f/Jo = 1p{t0) - - the angle between the external normal to the left-hand edge of the 
cut and the Ox-direction, Xn(t), Yn(t)- the given functions defined by the loads applied 
to the crack edges and at infinity. 

The intensity factors are then calculated from the equations 

(A.2) K1(bi)-iK11 (bi) = --. / ~n lim {p(t)J1
1

{t-ai)(t-b)} . Jl bi-ai , .... b1 

Here a i and b i - origins and ends of the arcs L i. 
Under the assumption of K = 1, the contour L is analytical and shallow 

sup lx(t)(t- t0 )1 ~ 1 
t,t0 eL 

with x(t) denoting the curvature of L a.t point t, and Eqs. (A.1) and (A.2) yield the expres
sions for the intensity factors of the cracks shown in Fig. 3 

(A.3) K1-iK11 = V m~:: a) [V{::.~ dL. 

From Eq. (A.3) we obtain K1 and K11 

(]r:IJ --

KJ ~ li 2J!nx, 
(A.4) 

X 

Ku ~ ~J-. j S ( y(x)- y(S) - y(S)~) dS + KI y(x) . 
nx Jl x-S x-S S x 

0 

Discussion 

1. The choice of the non-local crack model folJows from the fact that in the limiting 
case of a-+ 0 the integrals D and t-t 1 (representing the thermodynamic forces connected 
with the angular velocity w) tend to zero; consequently, in the case of a cut-type model of 
a crack, the trajectory equation becomes degenerate. In the author's opinion it is necessary 
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to introduce an additional length parameter so as to give a complete description of the 
crack growth process. 

2. As it has been mentioned in Sect. 1 quadratic terms in the expansion of the entropy 
production are responsible for the deformation of the crack tip. This factor may be of 
major importance in the analysis of brittle-viscous transitions in crack propagation processes 
or for fatigue crack analysis, and thus it would be most useful to construct the relations 
connecting the crack tip velocity and the corresponding thermodynamical forces. Similar 
attempts made in the theories of plasticity and creep indicate that serious difficulties may 
be encountered in solving that problem. 

3. It is seen from Eq. (1.7) that the generalized thermodynamic flux x corresponds to 
a thermodynamic force (h 2 - h 1 ) - the jump of enthalpy (chemical potentials) of the 
fractured and unfractured phases. It is known that the phase equilibrium (stationary crack) 
corresponds to the equality of chemical potentials. By means of the thermodynamical 
analysis the process of fracture is reduced in a natural way to a problem of phase transi
tion. 

4. The possibility of evaluating the strength properties (which cannot be determined 
directly) by investigating the statistical properties of the fracture surface seems very prom
ising. It can be seen from the solution of the stochastic equation of crack surface that 
its properties depend not only on the non-homogeneous behavior of strength characteristics 
but also on the crack length and velocity. Reconstruction of the strength properties will 
then be possible only under the condition of most accurate experimental investigation of 
growing cracks. 
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