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On wave guide-type propagation in elastic fibre-reinforced composites 

M. HLA V ACEK (PRAGUE) 

A SECOND-ORDER microstructure theory for elastic fibre-reinforced composites is presented for 
the purpose of studying plane harmonic wave propagation in the direction of the fibres. Disper
sion curves are obtained and compared with the results of other theories and with some experi
mental data. 

Przedstawiono mikrostrukturaln(! teori~ drugiego rz~u dla kompozyt6w spr~zystych wzmocnio
nych wt6knami, w celu zbadania wtasnosci rozprzestrzeniania si~ fat harmonicznych w kierunku 
wt6kien. Otrzymano krzywe dyspersji, kt6re zostaly por6wnane z wynikami innych teorii i do
st~pnymi danymi doswiadczalnymi. 

llpeACTaBJieHa MHl<pOCTpyKTypaJibHa.fl TeOpHH BTOporo IIOpHAKa OIIHCbiBaiO~a.fl l<OMII03HTbl 

apMHpoaaHHbie aonol<HaMH. TeopHH HCIIOJI&3yeTcH AJIH HCCJieAOBaHHH pacrrpocrpaHeHHH 

IIJIOCI<HX rapMOHHlleCKHX BOJIH B HarrpaBJieHHH BOJIOKOH. llonytieHHbie AHCIIepCHbie l<pHBbie 

cpaBHHBaiOTCH c pe3yJI&TaTaMH APYrHX TeopHH: H c HeKOTOpbiMH 3KcrrepHMeHTaJibHbiMH AaH

HbiMH. 

1. Introduction 

IN THE CONVENTIONAL method of describing composite media the composite is replaced 
with a homogeneous anisotropic classical continuum. The geometric arrangement of the 
ph~es in a composite material will generally manifest itself as a certain type of anisotropy 
of this homogeneous continuum whose effective moduli should be determined in terms of 
the elastic moduli of the constituents and the parameters describing the geometrical layout 
of the composite. This effective modulus theory cannot account for the dispersion of 
harmonic waves. Only the lowest (acoustical) modes, and even those without dispersion, 
can be described by means of the effective modulus theory. 

A conceptionally different approach, called the effective stiffness method, was pro
posed in [1] for the case of a laminated material. A heterogeneous material was transformed 
into a homogeneous higher-order continuum with microstructure. The method is based 
on expansions of the displacements in each layer. The coefficients of the expansions con
stitute the microstructure variables of the theory. Expressing the strain and kinetic energies 
of the layers in terms of displacement expansions, "smoothing" the resulting expressions 
to obtain continuous variables, and applying Hamilton's principle results in a continuum 
theory. A second-order approximation of the displacements in the layers [2, 3] afforded 
better results for the dispersion of shorter harmonic waves than the first-order approxima
tion used in [1]. For uni-directional fibre-reinforced composites the method was used in 
[4, 5]; bi-directional fibres were considered in [7]. This approach was also adopted in [6] 
to find the approximate effective moduli of two-phase elastic composites consisting of 
a matrix and ellipsoid-, needle- and disc-shaped inclusions. 
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190 M. HLAVACEK 

In [4] uni-directional fibres arranged hexagonally were considered and the displace
ments in the fibre and in the matrix jacket of a composite element were linear. The aim 
of the present paper is to obtain a better approximation of dispersion curves for waves 
propagating in the direction of the fibres using quadratic approximation of the displace
ments in the matrix. 

In Sect.' 2 the composite geometry and the displacement expansions are described. 
In Sect. 3 the strain and kinetic energy densities are defined from which the displacement 
equations of motion can be obtained through Hamilton's principle. In Sect. 4 the dispersive 
behaviour of harmonic waves propagating in the direction parallel to the fibres is examined. 
These results are compared with the results obtained from other theories and with some 
experimental data. 

2. Geometry and kinematics 

Let us consider a material consisting of two components: matrix and fibres. Both the 
matrix and the fibres are linear, elastic, homogeneous and isotropic materials. The Lame 
constants and the mass density of the fibres and of the matrix are denoted by ./.1 , ft 1 , th 
and ./.2, t-t2 , e2 , respectively. The infinitely long fibres are of circular cross-section with 
a radius r1 and are arranged in a hexagonal array throughout the matrix material (Fig. la). 

b 

FIG. la. Fibre-reinforced composite. FIG. 1 b. Composite element. 

The fibres are parallel to the x 3 axis and the distance between them is 2/. The hexagonal 
prisms in Fig. la are replaced with circular cylinders of the same volume (Fig. lb). The 
radius of the cylinder is 

.. /2v3 
'2 = I v-n- ~ 1.11. 

The composite cylinder will be referred to as the composite element. 
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Let XI, x2, x3 be the global Cartesian coordinates. Let us introduce Xt, x2, x3 as 
the local Cartesian coordinates in the composite element with 

where x 01 , x02 are the global coordinates of the axis of the composite element. Let r., 
cp denote the local polar coordinates (Fig. 1 b), i.e. 

x 1 = r cos cp, x 2 = r sin cp . 

We consider the following displacement distributions in the composite element. In 
the fibre let the displacement vector u~1> have the form 

(2.1) u~l) = u&PI1 +it V'lilt +i2V'2il1 +xfcptlilt +x~cp22ilt +xtx2fP12tl1· 

uM>, 'Pa.i• fPa.pt. (a, fJ = 1, 2; i = 1, 2, 3) depend on x01 , x02 , x3 and on timet. 11 means 
that the value is taken in Point I (Fig. 2). If r, cp are used instead of X00 it is possible to write 
Eq. (2.I) in the form 

(2.2) 

where 

up>jt = CV'ult +SV'2ilt, 

vp>lt = C2ffJuilt +S2ffJ22t!t +SCcp12ilt, 

C = coscp, S = sincp. 

Analogously with Eq. (2.2) we shall assume the vector of displacement in the matrix jacket 
uf2> in the form 

(2.3) 

u&i>l 2 refers to the displacement on the circumference of a composite element in the-point 
of local coordinates r2, cp, i.e. in Point 2 (Fig. 2) and depends on x01 , x02 , x3, r2, cp and t. 

FIG. 2. Two adjoining composite elements. \ 

U?>, Vl2> depend on x01 , x02 , x3, cp and t, not depending, however, on r, and will be 
determined from the continuity of the vector of displacement at the interfaces. 

Let us consider two adjoining composite elements (Fig. 2). The elements with the 
centres in Points I and 3, respectively touch in Point 2 of the local coordinates r 2 , cp (refer-
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red to Point 1 ). First, we shall express the condition of continuity of displacement in Point 4 
of local coordinates r1 , cp. Using Eqs. (2.2) and (2.3), we obtain 

(2.4) (rt-r2)Uf2>lt +(rt-r2)2Vf2>lt = u&Pit-u&1>12+rtUP>It +riVP>It· 

We shall further write the continuity condition of displacement in Point 5 (Fig. 2) 

U~0 1s = U~ 2 >ls · 

From Eq. (2.2) written for the fibre with the axis in Point 3 we obtain in Point 5 

ufl>ls = u~P13-raUl 1>13+dVP>IJ, 
where 

up>j3 = C1f'lil3 + S1J121I3, 

v,u>j3 = C2cp11;l3 + S2cp22i13 + SCcpt2il3 · 

For r = 2r2 -r1 Eq. (2.3) yields 

ul2>1s = u~~>l2 + (r2- r1) Uf2>lt + (r2 -rt)2 Vl2>lt· 

The continuity condition of displacement in Point 5 is, therefore, 

(2.5) (r2-rt)Ul2>lt+(r2-rt)2 Vl 2>lt = u&P13-u&1>12-rtUP>IJ+rfVP>I3· 

Let us note that for simplification purposes we have assumed in deducing Eq. (2.5) that 
the distance of the axes of adjoining composite elements is 2r2 instead of 2/ (see Fig. 2). 
Equation (2.4) is valid identically for all cp. The composite element with a centre in Point 1 
adjoins six composite elements (see Fig. la). Consequently, the continuity condition (2.5) 

. I'd "" . 1 . n 2 4 5 F h IS va 1 .or stx ang es, VIZ. cp0 , cp0 + T' cp0 + 3 n, cp0 + n, cp0 + 3 n, cp0 + 3 n. rom t e 

macroscopic point of view, however, no angle cp0 is preferred and we shall require that 
Eq. (2.5) be valid in the same way as Eq. (2.4) for all cp. Let us note that u~ 2 > changes 
smoothly in the transition to the adjoining composite element (i.e. over Point 2 in Fig. 2). 
The sum and the difference of Eqs. (2.4) and (2.5) yields U?>l 1 , Vl2 >j 1 in the form 

(2.6) 
2(rt -r1.) u,<2>lt = u&Pit -u&Pb +rt (Ull)lt + Uf1>13)+rf(VP>It- vp>j3), 

2(rl- r2)2 Vf2>lt = u&Pit +u&P13 -2u&1>b +rt(Ufl>lt- up>j3)+rf(V?>It + vp>j3). 

So far u&P, u&i>, up>, U/ 2>, vp> and Vl 2> have been defined in the axes or on the sur
faces of composite elements only. Our aim is to describe the microscopically heterogeneous 
material continuously. We assume that in every macroscopic point both phases and material 
boundaries exist simultaneously and it is necessary that Eqs. (2.1)-(2.6) be valid in every 
point. Therefore, we shall replace u&P, uM>, up>, Ul2>, vp>, V?> with continuous functions 
depending on the continuous variables x1 , x 2 instead of the discrete variables Xo 1 , Xo2. 

Now we can express all functions in Points 2 and 3 by means of Taylor's expansion by the 
values of these functions and their derivatives in Point 1. After that, Eq. (2.6) will acquire 
the form 

(2.7) 
Ul2> = CG1i+SG2;+C2r2G1 ;, 1 +S2r2G2i, 2+SCr2(Gti.2+G2;,t), 

V,< 2> = H;+Cr2H;,t +Sr2Ht,2 

+C2
[ ;. G"·' +K, .. ] +S2

[ ;. G., .• +K•••]+sc[ ~· (GH .• +G.,,,)+2Ku,], 
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where 

H 1 ( (1) (2)) 
i = ( )2 Uot - Uoi , r2-rt 

- 1 ( 2 1 (2) ) 
Ka.pi- n'2 'f) (/Ja.pi- 2Uot.~{J ' 

IX,{J= 1,2, i= 1,2,3. 

All functions are taken in Point 1. The comma with the following index denotes a partial 
derivative with respect to the corresponding global Cartesian coordinate. To express U?>, 
V,< 2

> in Eq. (2.7) as many terms in Taylor's expansion were taken as were required to obtain, 
by substituting Eq. (2.7) into Eq. (2.3), u1 2> with the accuracy of small quantities of the 
second order (in r2). Thus Eqs. (2.2), (2.3) and (2.7) represent an approximation of the 
second order. 

Apart from the conditions of the continuity of displacement also the conditions of the 
continuity of the stress vector should be satisfied at the interfaces. We could supplement 
Eq. (2.3) with the term 

(r-r2)3W?>I 1 

and determine, from the conditions of the displacement continuity and stress vector conti
nuity in Points 4 and 5. twelve functions u&i>, U?>, Vl 2>, Wl 2> in dependence on u&P, V'a.h 

CfJa.fJi. We should obtain, however, very complicated expressions. It was found in [2] that 
in the second-order theory of laminated materials the effect of the stless boundary condi
tions at the interfaces on the dispersion curves was negligible. For this reason. and for 
the sake of simplicity, we shall neglect the stress boundary conditions at the interfaces in 
our case as well. 

In technical practice, as a rule, all fibres have a rigidity of a higher order than the 
matrix. For this case another simplification of the second-order approximation can be 
made. In [3] a second-order approximation of the displacement in the layers of a laminated 
material was considered. Figure 4 in [3] shows that for longitudinal waves propagating 
along the layers the distribution of the displacement across the thickness of the layers 
with the rigidity of a higher order appears in this approximation approximately linear 
(although, according to Fig. 5 in [3], the accurate solution for the third mode is by far not 
linear). It seems also that tor a fibrous material with very rigid fibres the assumption 

(2.8) vp> = o 
will not result in any major errors. If we accept the condition (2.8), the number of independ
ent kinematic quantities will be reduced by 9, as Eq. (2.8) means that 

(/Ja.{Ji = 0, IX, f3 = 1' 2; i = I' 2, 3. 

Let us note that if we applied, apart from Eq. (2.8), also 

(2.9) 

we would obtain the approximations (2.1) and (2.2) given in [4]. If Eqs. (2.8) and (2.9) 
hold, we see from Eq. (2.6h that with the accuracy of the infinitely small quantities of the 

http://rcin.org.pl



194 M. HLAVACEK 
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first order it follows from the conditions of the continuity of displacement in Point 4 and 
5 that 

(2.10) 

Thus the a priori assumption (2.1 0) made for the linear approximations (2.1) and (2.2) 
in [4] is substantiated. However, for the second-order approximation Eq. (2.10) cannot 
be generally accepted. 

Further on we shall confine our calculations of dispersion curves on the wave propa
gating in the direction of x3 , i.e. along the fibres. If Eq. (2.8) holds, then Eqs. (2.2), (2.3) 
and (2.7) for the motion in the direction of x 3 will be simplified to the form 

(2.11) 
u~l) = u&P+rU?>, 

u~ 2 > = u~7> + (r- r2 ) U?) + (r- r2)
2 V/ 2>, 

where 

v:(2) 1 ( (1) (2)) 
i = ( )2 Uoi - Uoi , rz-rl 

'YJ 
Ga.i = - -, 'Pa.i' 

'YJ 

C = cosq;, S = sing;, 

ln Eqs. (2.11) there are twelve independently variable kinematic quantities u~p, uM>, VJ1 , 

VJ2 i; i = 1, 2, 3. For the motion in the direction of x 3 the second-order approximation 
(2.11) differs from the linear approximation in [4] by that 

v?> ~ o 
and u~P, u&7> are independent. 

3. Equations of motion 

The strain energy per unit volume of the composite medium is defined by 

w = w<1> + w<2>, 

(3.1) w<a.> - -
1-ff [!;. e<!X> e(a.) +"' e(~) e<~>] dX dx - nri 2 a. ia kk a. iJ 11 1 2, 

p(a.) 

1 
e1<~> = -(u$a.) + u<a.>) ~ = 1, 2. } 2 lo} }ol ' 

Here differentiation is taken with regard to the local coordinates x1 , x1 , x_,. Summation 
of pairs of identical Latin indices over 1, 2, 3 is implied. p(l> in Eqs. (3.1) is the part of 
the cross-section of the composite element belonging to the fibre, F<2 > is that belonging 
to the matrix. 
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The kinetic energy per unit volume of the composite material is defined by 

K = K< 1>+K< 2>, 
(3.2) 

K<a.> = n~if.f ~ ea.u1a.>itfa.>dx1dx2 ; rx. = 1, 2. 
p(rx.) 

The dot above a quantity denotes the derivative with regard to time. 
Using Eqs. (2.11) we obtain W(l>, W<2> from Eqs. (3.1) in the form 

w(l> 2{ A1 [< )2 <1>2 2 <1> ( ) d ( 2 2 >] = rJ 2 "Pu +"P22 +uo3,3+ uo3,3 "Pu +"P22 + -~r "Pt3,3+"P2J,3 

+ [ 2 + 2 + (1)2 + 1 ( + )2 + 1 ( + (1) )2 + 1 ( (1) )2 ftt "Pu "P22 Uo3,3 ]. "P12 "P21 2 1J1t3 Uot,3 T "P23 + Uo2,3 

d ( 2 2 I 2 1 2 1 2 1 2 )]} + 4 "Pt3,3 +"P23,3 + 2"Pu.3 + "f"P12,3 + 2 V'21,3 + 2 "P22,3 , 

(3.3) W<2> = A; {(3V-rJ 2)("Pf1 +"P~2)+(2V-rJ2)1J1u"P22+V(VJ12+V'2t)2 . 
- 2r] 2u&~.3("P11 +1p22)+ Y(VJf3,3 +"Pi3,3) + (1- rJ 2)u&~~~ +N(VJ13 ,JUt +'1'23,3 U2) 

+ Z(Ui +V~)}+ "; { (3V- rJ2){2tpft + 21f'~2 +V'f2 +1p~ 1 +'PI3 +1p~3) 

+ V(21f'i2 + 21pi 1 +"PI 1 + "P~l +"PI 3 + "Pi3 + 2"P1t"P22 + 21f'12V'21)- 2r]2(1f'12 "P21 

+ u&~~3V'13 + u&~~3V'23) + (1- r]2) (2u&~~~ + u&~~~ + u&~~~) + Y(21f'i3 .3 + 21p~3 ,3 

+V'I1,3 +V'I2,3 +1p~1,3 +VJ~2,3) + P(2u&~3 U3,3 + u&1~3 U1,3 +u&~~3 u2 ,3) 

+Q(2Ui,3+ Uf,3+ Ui .3)+N(VJu.3 U3+V'22,3 U3) 

+R(¥'13 U1.3+V'23 U2,3)+Z(3Ut+3U~+3Vi)} 
and K from Eqs. (3.2) in the form 

(3.4) 

x 1 { 2'<1>'<1> (1 2)'<2>'<2> I(' . · • ) p'<2>u· Qu· u·} = 2 !!1rJ Uoi Uoi +e2 -rJ uoi uoi + V'liV'li+V'2i"P2i +e2 Uoi i+e2 i i . 

We have introduced the notation 

1 
N = - 3 17(1 +31]), 

Q = /5 n'(I +5n), 

2 

Y = ~~ n'(1 + 3rJ), 

1 
p = 31]'(1 +31]), 

1 
R = 3 n(l-3n), 

1 r] 2 1 
V= 4 17'2 lg1}, 

z = 1+3r] !L_ 
31]' d ' 

http://rcin.org.pl



196 M. HLAVACEK 

Let V denote a fixed regular region and t 1 , t 2 fixed times. For independent variations 
of c5u&,>, c51pcc1(<X = 1, 2; i = 1, 2, 3) for which 

c5u&,> = !5'1/)ai = 0 

on the surfaceS of the region V, Hamilton's principle is of the form 

'2 
(3.5) c5 J J (K- W)dVdt = 0. 

t1 V 

The sought equations of motion of the composite material are the Euler equations for the 
variational principle (3.5) which have, in this particular case, the form 

(3.6) aw __ a_( aw) + -~ ( ax) = 0 of ox3 of.3 at aj · 

In Eq. (3.6) f represents the twelve functions u~,>, "Pai (a = 1, 2, i = l, 2, 3). 

4. Wave propagation results 

The principal aim of this paper is to find the approximate dispersion curves for plane 
harmonic wave propagation along the fibres, i.e. in the direction of x 3 • 

Let us assume the solution of the equations of motion (3.6) in the form 

(4.1) 

<X= 1,2, J= 1,2,3. 

U~j>, IJI«i are constant amplitudes, k is the wave number, c is the phase velocity and i stands 
for the imaginary unit. After substituting the relations ( 4.1) into the equations of motion 
(3.6), we obtain a homogeneous system of linear equations for U~j>, 'Pai. The system of 
twelve equations decomposes into four systems corresponding with the individual waves. 
The first system contains U&\l, U~~>, 'P13 , the second U~~> U&lf, 'P23 , the third UM>, UJ~>, 
IJ'11 , 'P22 and the fourth 'P12 , 'P21 • The first two systems of equations describe the 
transverse waves, the third represents the longitudinal wave and the fourth the twisting 
microwave. 

For the transverse waves the dispersion relations turn out to be 

(4.2) 

where 
Cg, 

c, = [r'l' + {~ (I+ s'l) ].u,, 
c = 1'}2(1 + 31)) (!5 + 1)1!2_ 

3 31)' 2 rf ' 

Cs 

c11 +k2 c10 -k2c21 

c. = { Y'l' + ~ [( d,- 2)(1+ 3'})+ (I- 3'}))} /l2' 

= 0, 
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c, = [ ~' + i~ (I+ 571) ]e,. c. = i~ (3+ 5'1)e,, 

c, = [(1-'12}- ;5 '1'(2+ 51))]1'2• 

c8 = { -1)2- ~ [(~2 -2)(1 +3'1))}p2, 

c. = [ (1-'1')- ~5 11'(2+ 5'1)] e,, 

Cto = '1 ['I'd, Y + d,;' (I+ 3'1)] 1'2, 

Cu = (712(y -1)+4V]p,, J = '1 [ ~2+ r (I +31))]e,, 

_o. = R!_ '11 = 1!_!_ .!l _ 2(1-voc} Acx 1 2 
·u· (!2 ' r /12 ' Ucx - 1- 2vcx ' Vex = 2(Acx +floc} ' (X = ' . 

The phase velocity c0 of very long waves is obtained from Eqs. (4.2) fork--+ 0 

(4.3) 

197 

For the longitudinal waves due to axial symmetry with regard to x 3 the dispersion relation 
is 

(4.4) 

where 

d1 -c2d5 +k- 2d3 , 

d2 -c2d6 -k- 2d3 , 

d4, 

d2 -c2d6 -k- 2d3 , 

d7 - c2d9 +k- 2d3 , 

da, 

2d4 I 
2d3 = 0, 

du +k2dto-k2c2JI 

[ r/ ] r/ d5 = 1] 2t?+TI(l+51]) (]2, d6 = 
30 

(3+51])()2, 

d7 = [ (1- 712) d,- I~ 11' (2+ 5'1)] 1'2, 

d8 = - [ 1)2(d2 -2)+ ~(I +3'1) ]p,, 

do = [ (1-'12)- I~ '1'(2+5'1)]e,, d,o = 1 [ '12Y + r (I +3'1)]p,, 

du = 2[1J2(t51y- t52)-n2(y-1)+2V<52]/12· 
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c0 is of the form 

(4.5) 

We shall easily ascertain that these c0 merge with phase velocities of the corresponding 
waves of long wave lengths obtained in the linear approximation in [4] (compare Eqs. (4.3) 
and (4.5) with Eqs. (4.3) and (4.4) in [4]), respectively. 

The dispersion relations (4.2) and (4.4) will be calculated numericaJly for the volume 
fraction of fibres 'YJ 2 = 0.6 and for the material parameters 

'Y = 1!2_ = 100, 
#2 

{) =f!___ __ 3 03 Pt = P2 = · · 
(!z ' 

Instead of c, k and the circular frequency w = ck, the dimensionless quantities will be 
used, viz. 

( )

1/2 

p = c !: , 
Figures 3 and 4 show the calculated dispersion curves of transverse waves, Figs. 5 and 6 
being concerned with longitudinal waves. Solid lines show the dispersion curves of the 
second-order approximations (4.2) and (4.4), dashed hnes those of the first-order approxi
mation [4]. Dotted lines in Figs. 4 and 5 are the results of the calculations from Eqs. (3.16) 
and (3.54) from [5]. The dash-and-dot curves in Figs. 4 and 5 are taken over from [8]. 
In [5] and (8] the parallel fibres were arranged in a quadratic array. 

f] 

t5 

10 r/= o.o 
7J-=3 

5 

~= 100 

v,= Vz"' 03 

1st order approximation 
2nd order approxirna tion 

0~------~------------------
f 2 3 f 

FIG. 3. Dispersion curves for transverse waves. 
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In Fig. 3 the results of both approximations are compared for transverse waves. The 
dimensionless phase velocities {J are plotted against the dimensionless wave numbers~. The 
second-order approximation gives three modes of propagation, the first-order approxima
tion gives only two of them. The first (acoustical) modes, i.e. the lowest dispersion curves 
in Fig. 3, are very near in the first and the second order approximations for small ~ (long 
waves); for ~ --+ 0 the dimensionless phase velocities {J merge. With the increasing ~(i.e. 
with the shortening of the wave length) the differences increase. The remaining (optical) 
mode of the first-order approximation for all ~ is very near the highest optical mode of the 
second-order approximation. The intermediate mode of the second-order approximation 
has no partner in the first approximation. Figure 4 shows in greater detail the acoustical 
modes of the transverse waves. The dash-and-dot curve calculated in [8] by the Ritz method 
has a qualitatively identical course with the second-order approximation curve; however, 
for small ·~ it affords higher values. The dotted curve calculated from Eq. (3.16) in [5] 
has a similar course as the first-order approximation curve; however, for small ~ it affords 
lower values. {J calculated for ~ --+ 0 from both of our approximations corresponds, with 
a high accuracy, to the value calculated by means of the effective static modulus found in 
[10] and the effective dynamic modulus obtained in [11] for the quadratic array of fibres. 
For long transverse waves, {J calculated according to [5] appears too low and {J obtained 
in [8] too high. Figure 5 shows the first (acoustic) modes of the longitudinal waves. The 
second-order approximation curve is very near the curve calculated from Eq. (3.54) in 
[5] and that taken from [8] and represents a great improvement in comparison with the 
first-order approximation curve. For ~ --+ 0 all curves merge. In Fig. 6 the real part of~ 
is plotted against the dimensionless frequency D for the longitudinal waves. In the second
order approximation the first (acoustic) mode is real for all D. The second and the third 
modes are imaginary (standing waves), until cut-off frequencies have been attained after 
which they become real. The two modes of the first-order approximation (dashed lines) 
are near the second-order approximation for long waves (small ~). 

In [9] results of experiments are given with a boron-epoxy composite. The group velocity 
Cg defined by 

(4.6) 
dw de 

Cg = dk = c+k dk 

was measured for a number of frequencies/= w/2n. For the case studied in [9] it is 

r/ = 0.54, y = 88.1, {} = 2.13, v1 = 0.2, v2 = 0.4. 

For these parameters in Figs. 7 and 8 the group velocity Cg [in/ p, s] calculated from Eqs. 
(4.6), (4.2) and (4.4) is plotted in solid lines against the frequency f [MHz]. The dashed 
line in Fig. 7 is taken from [5], Fig. 3. It can be seen that for transverse as well as for longi
tudinal waves the second-order approximation results for f < 5 MHz are in good accord
ance with experimental results. 

The above comparisons show that the second-order approximation of displacements 
in the matrix affords considerably better results for the propagation of waves of shorter 
wave lengths in the direction of the fibres than the linear (first-order) approximation 
presented in [4]. 

http://rcin.org.pl
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FIG. 7. Group velocity vs. frequency for 
transverse waves. 
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FIG. 8. Group velocity vs. frequency for 
longitudinal waves. 
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