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Some recent mathematical results 
concerning the Navier-Stokes equations(*) 

0. LADYZENSKA y A (LENINGRAD) 

THE WHOLE set of limit-states for the Navier-Stokes equations in a bounded domain of E2 for 
an arbitrary Reynolds number is described. For the three-dimensional case the svlvability of 
the Cauchy problem for the statistical Hopf's equation is established. The results concerning 
the unique solvability of an initial boundary value problem for viscous incompressible inhomo
geneous liquids and of some problems with free (unknown) boundaries are enumerated. Some 
new equations describing the dynamics of viscous incompressible liquids with large gradients 
of velocities are discussed. 

Przedstawiono pelny uklad stan6w granicznych dla r6wnan Naviera-Stokesa w obszarze ograni
czonym przestrzeni £ 2 dla dowolnej liczby Reynoldsa. Wykazano rozwi(lzalnosc problemu 
Cauchy'ego w przypadku tr6jwymiarowym dla statystycznego r6wnania Hopfa. Podano wyniki 
dotycl(lce jednoznacznosci rozwi(lzania problemu pocl(ltkowo-brzegowego dla lepkich, nie
scisliwych, niejednorodnych cieczy oraz niekt6rych zagadnien ze swobodnymi (nieznanymi) 
brzegami. Przedyskutowano niekt6re nowe r6wnania dynamiki lepkich niescisliwych plyn6w 
z du:iymi gradientami prctdko8ci. 

PaccMaTpHBaeTcH noJIHaH CHCTeMa npe,D;eJibHbiX coCTOHHHH ,D;JIH ypasHeHHH Hasbe-CToi<ca 

B orpaHWieHHOH o6nacrH npocrpaHCTBa £ 2 ,D;JIH npOH3BOJibHoro '4Hcna PeiiHOJih,D;ca. ,Ilnn Tpex

MepHoro cnyqan ,D;OI<a3aaa pa3peweHHOcTb ypasaeHHH Xoncf>a. TipHBO,D;HTCH pe3yJihTaTbi B o6-

naCTH O,ll;H03Ha'4HOCTH pemeHIDI Ha'4aJibHO-I<paeBOH 3a,D;a'4H .l{JIH BH3I<HX HeC>KHMaeMbiX HeO,l{

HOpO,IUlbiX >KHAJ<OCTeH H AJIH Hei<OTOpbiX 3a.l{a'4 CO CB060,IUlbiMH (HeH3BeCTHbiMH) rpaHHUaMH. 

06cy>K.l{alOTCH Hei<OTOpbie HOBble ypaBHeHHH ,l{HHaMHI<H BH3I<HX HeC>KHMaeMblX >KH.l{I<OCTelt

I1pH 60JiblllHX rpa,l{HeHTaX CI<OpOCTH. 

1. Introduction 

WE SHALL describe some results concerning the Navier-Stokes equations 
n 

(1.1) v,-vLlv+ };vkvx" = -grade+f, 
k=l 

(1.2) divv = 0, 

for the cases n = 2 or 3. Here x = (x1 , ••• , Xn) is a point of the Euclidean space En with 
the Cartesian coordinates xk, v = (v 1 , ••• , vn)- the velocity field, v, and Vx- the deriva-

n 

tives of V, Llv = l, Vxkxk- the Laplacian of V, e the pressure, V = const > 0- the 
k=l 

coefficient of the viscosity, and f = (/1 , ••• , fn) --the external forces. Let x belong to 
a bounded domain Q c En and v satisfies the boundary condition 

(1.3) vla.o = 0 

(*) This pap~r was accepted as a Sectional Paper for the 1976 IUTAM Congress. 
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218 0. LADYZENSKAYA 

(the cases of the inhomogeneous and periodic boundary conditions are treated in a similar 

way). We shall use three Hilbert spaces: L 2 (.0), i(.O) = Y and H(.Q). The space Lz{.Q) 
consists of all vector-functions u(x), square-summable over the domain !J. The scalar 
product and the norm in it is defined as follows: 

n 

(u, v) = J .J; uk(x)vk(x)dx, !lull = (u, u)112
• 

D k=l 

Y is the subspace of L2 (.Q) and it is defined as the closure in the norm of L 2 (.Q) of the set 

i(.Q) of all smooth solenoidal vector-functions u(x), which is zero near the boundary an. 
Last H(.Q) is the closure of the set i(.O) in the norm of the Dirichlet integral 

llulll = (f 2, ufxt(x)dxr
12

• 
D i,k=l 

The scalar ptoduct in it is 
n 

(u, v) 1 = J }.; uixt(x)v~x"(x)dx. 
D i,k=l 

We shall make use of some results concerning the spectral problem 

(1.4) 
-L1u+gradq = Au, 

divu = 0, ulan = 0. 

It is known (see LADY.tENSKAYA [3]) that the spectrum of this problem consists of an ac

countable set of positive numbers {At}~ 1 , which may be ordered in such a way: 0 < A1 ~ 
~ Az ~· .... Each At has a finite multiplicity and At goes to infinity when k-+ oo. The 
corresponding eigenfunctions { q;<t>(x) }~ 1 form an orthogonal basis in Y and in H(.Q) 
and may be normalized in such a way that 

(cpt,cp1
) = dL (cpt,cp1)t = At di. 

The letter are infinitely differentiable in !J and their smothness near the boundary a!J 
depend on the smoothness of an. 

2. On the limit-states of tbe problem (1.1)-(1.3) for tbe case n = 2 

We want to know what kind of regimes could be observed in the problem (1.1)-(1.3) 
~'after a long time" if the f = f(x) and n (with smooth a.Q) are fixed and the initial data 

(2.1) vlt=o = a(x) 

is an arbitrary element of Y. Let us take the ball YR = {a: llall ~ R} in Y. If its radius 
R ~ R0 = {A1v)- 1 1lfll, then from each point a of KR will come out a unique trajectory 
Vt(a), t ~ 0, (i.e. the solution v(x, t) of the problem (1.1)-(1.3), (2.1)) and this trajectory 
never leaves the ball KR (see [3]). Let us follow the immage KR(t) of KR under the nonlinear 
transformator Vt. It is obvious that KR(t2) c KR(t1) for !2 > t 1 • The sets KR(t), t > 0 
are compacts in Yand their elements are smooth vector-functions if/and iJ.Q are sufficiently 

http://rcin.org.pl
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smooth. Consider the intersection 9Jl = n r~oKR(t). The elements of ID1R are the velocity 
fields observed in the flow _"after infinite interval of time". 

The following properties of9JlR have been proved (LADYZENSKAYA [4]): I) IDlR = 9JlRo 
for all R ~ R0 ; 2) the set IDlR is compact in Y; 3) IDlR consists of those and only those 
elements a(x) of YR for which Eqs. (1.1)-(1.3), Eq. (2.1) are uniquely solvable both for 
t e [0, oo) and fortE (-oo, 0]; 4) the set IDlR is an invariant of Eqs. (1.1)-(1.3) that is, 
if a E: 9JlR, then the full trajectory V1(a), t E (- oo, oo) belongs to IDlR; 5) the problem 
(1.1 )-(1.3) defines a dynamical system over IDlR. In particular, the trajectories V,(a), 
V,(a') starting at different points a and a' never cross (i.e. V,(a) =I= V1(a') for all t) and 
V,(a) depends on a continuously over any finite interval of time. 6) Moreover, the dynam
ical system (1.1)-(1.3) "behaves on 9Jl as a finite-dimensional one", this means that numbers 
v, llfll and some characteristics of Q define some number m such that if one considers the 
m-dimensional linear subspace y<m> of the space Y spanned on the first m eigenfunctions 
{ cpk}, k = 1 , ... , m, of the spectral problem ( 1.4), and if one denotes by Pm the orthogonal 
operator projecting ym onto y<m>, then projection Pm V1(a) of any complete trajectory 
V,( a), t E (- oo, oo ), belonging to 9JlR defines the trajectory V1(a) itself. Besides, if Pm V1(a) 

is a time-independent, w- periodic or almost periodic function oft, sb is V1(a). 
The set IDlR definitely contains all stationary, periodic and almost periodic solutions 

of the problem (1.1)-(1.3). According to the Bogolyubov-Krylov theory there exist in
variant measures which may be determined with the help of the procedure described by 
these authors. The structure ot the set IDlR essentially depends upon the Reynolds number. 
In particular, fm a small Reynolds number IDlR consists of one point- the unique station
ary solution of Eqs. (1.1)-(1.3). 

3. A statistical approach to the study of the Navier-Stokes equations 

All attempts to prove the unique solvability "in the large" (i.e. for all t ~ 0 and for 
an arbitrary Reynolds number) of the problem (1.1)-(1.3) (2.1) for the case n = 3 failed. 
Therefore, it was natural to try to investigate this problem statistically, studying the evolu
tion p,1 of the probability measure p, determined on the set of the initial data (2.1). This 
approach was suggested by E. ·HoPF [2]. The stistical Hopf's equation can be written in 
the form 

· oo oo oo 

(3.1) 8§" - . \"1 ~ () a.~ . \"1 -l,k,m() az §' . \"1 f, () (9; at - -'V L.,; ILm m ao -l L.,; u- m a() j ao k + l L.,; m m:#' 
m= 1 J,k,m= 1 m 

for the characteristic function §' (8, t) of the measure p,1 • Here 8 = (0 1 , () 2 , ••• ) and t 
are the arguments of the §"(8, t), Ah A2 , ••• -the eigenvalues of the problem (1.4), 

fm = (f, <pm) and aJk,m = ((cpl,v)cpm, cpk)- the known constants. For the equation 
(3.1) it is necessary to solve the Cauchy problem with the initial data: 

(3.2) §'(8, t)lr=o = J exp[i(8, a)]dp,(a), 
y 

00 

where (8, a) = }; Omam, am = (a, cpm). 
m=l 
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220 0. LADYZENSKAYA 

Formally, Eq. (3.1) is simply derived from the law of the evolution of measures 

(3.3) 

and from the system of the ordinary differential equations 
00 

(3.4) dvm(t,a) _ , ( ) ~ Jk,m ·( ) ( ) 1,"' dt - -YAmVm t,a + ,L_; a vJ t,a vk t,a + m' m=1,2, ... 
J,k= 1 

for the Fourier coefficients vm(t, a) = (Vt(a), cpm) of the solution Vt(a) of the problem 
(1.1)-(1.3), (2.1). If we knew that the "sufficiently good" evolution operator Vt of the 
problem (1.1)-(1.3) does exist, then the unique solution ~(8, t) of the Cauchy problem 
(3.1 ), (3.2) would be given by the formula 

(3.4) ~(8, t) = J exp[i(8, Vt(a))]d,u(a) = J exp[i(8, a)]d,ut(a). 
y y 

But we do not dispose of such a "good" operator Vt. Instead of it we have proved (LADY

ZENSKAYA [5]) that there exist the operators wts, s = 1, 2, ... , which give, for Vt E [0, T], 
the measurable transformations of a O'~algebra r (YR) defined on the ball YR(R ~ Ro' -
see Point 2), considered as a metric space (in details, see [5]). For each wts the function 

(3.5) ~<'>(&, t) = J exp[i(8, Wls>(a))]d,u(a) 
YR 

has all derivatives incoming in Eq. (3.1) and satisfies Eq. (3.1) for all 8 EH and t E !/, 
where !7 is a set of [0, T], having the Lebesque's measure T. All sums of Eq. (3.1) are 

convergent. (Here H is the Hilbert space of all sequences 8 = (01 , 02 , ••• ) with 11811H = 

= <.,~, Am0:0)112 < oo ). The functions~<·> (8, t) are continuous on H x [0, T) and satisfy 

the condition (3.2). We have thus found, generally speaking, many solutions ~<8>(8, t) 
()() 

of the problem (3.1), (3.2). The sum .~4(6, t) = 2; tXs~<s>(&, t) with arbitrary tX,;;::: 0, 
S= 1 

()() 

satisfying the condition 2; tXs = 1, is also the solution of the problem (3.1 ), (3.2). Each 
S=l 

solution ~cx(e, t) determines the evolution ,u~ of the initial measure ,u. If the problem 
(1.1)-(1.3), (2.1) really has more than one weak (Hopf's) solution, then the problem (3.1), 
(3.2) has not a unique solution either and it is necessary to find some additional principle 
which would choose among all solutions ~ of Eqs. (3.1 ), (3.2) the only one. 

From the physical point of view it is reasonable to seek for a principle which would 
select not the unique solution of Eqs. (3.1) and (3.2) but the unique averaging velocity 

field (v( ·, t)) = J ad,ur(a). (Let us note that each averaging velocity field (~( ·, t)) = 
YR 

= J ad,u~(a) satisfies its own Reynolds equations). OQ.e of such principles has been 
YR 

proposed by C. FOJA~ and G. PRODI [1]. For the case when Eq. (3.1) has the "stationary" 
solutions, i.e. the solutions for which ,u~ = ,ucx does not depend on t, the principle of Foia~ 
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and Prodi make it imperative to take among the (y.t) such a one which minimizes the 
3 

Dirichlet integral .f }; vfx (x)dx. Since the set {,u~} of all stationary (invariant) measures 
n j,k=l k 

is convex, this variational problem is uniquelly solvable. For the general case, when the 
measures {,un depend on t, it is also desirable to find the principle which would select 
among the averaged velocity fields (y.t( ·, t)) the only one (v( ·, t)). Besides, choice must 
not depend on the length T of the time-interval [0, T] of the observation, i.e. if (v( ·, t ))r 

1 

and (v( ·, t))r
2 

are the selecting averaged velocity fields for the time-intervals [0, T1 ] 

and [0, T2] and T 2 > T1 , then (v( ·, t))r
1 

= (v( ·, t))r
2 

for t e [0, T1]. The principles 
suggested in [1] do not satisfy the last property. 

4. The investigation of the unique solvability of the boundary value problems for viscous 
incompressible inhomogeneous fluids 

In the paper [6] submitted by V. A. SoLONNIKOV and the author, the problem 

(4.1) 

n 

e [v,+ }; vkvxt] -vL1v = - Vp+ef, 
k=l 

n 

diVV = 0, (.Jr+}; Vk(.Jxt = 0, 
k=l 

vlon = 0, vl,=o = a(x), elr=o = !?(x) > 0, 

in a bounded Q c: En, n = 2, 3 was considered. Here f, a and e are known functions and 
(!, v, p have to be found. In the main, our results concerning the unique solvability of 
this problem are the same as for the problem (1.1)-(1.3), (2.1): a) for n = 2 the problem 
( 4.1) is uniquely solvable "in the large"; b) for n = 3 the problem ( 4.1) has a unique solution 
for all t ;:::: 0 if oQ and the known functions are "sufficiently smooth" and if a and f are 
"sufficiently small". If a and f are not "small", then the unique solution exists for some 
positive time-interval [0, T]. I shall not give here the exact formulations of our theorems 
and shall mention only that we have considered the problem ( 4.1) in the functional spaces: 

V E Wi· 1(Qr), Vp E Lq(Qr); Qr = Q X (0, n, q > n, (! E C 1(Qr). The same may be done 
in other functional spaces and for unbounded domains Q and under the inhomogeneous 
or periodic boundary conditions. 

5. On the solvability of some problems with the free (unknown) boundaries 

In the last years some problems for the stationary and non-stationary Navier-Stokes 
equations in which the boundary S = fJQ of the domain Q, occupied by the fluid, or one 
part S1 of S is unknown have been investigated. On S1 we have to satisfy n + 1 (n = 2 or 3) 
boundary conditions and on S2 = S""S1 n boundary conditions (for example: vls

2 
= a). 
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Some years ago I proposed the following program for the investigation of stationary 
problems: at the beginning one should solve the "auxiliary" problem 

n 

-vLJv+ .J: vkvx" = - Vp+f(x), 
k=l 

(5.1) divv = 0, vls2 = a, 

t-n(t, n)ls, = b, (v, n)ls, = d, 
n 

in a fixed d9main !J. Here t = (t1 , ••• , tn), ti = }; tiknb t,k = -p~~+v(vkx,+vix~c) and 
k=l ' 

n = (n1, ... , n ) - the unit outer normal to S. After that one uses the (n + I )th boundary 
condition on the sl for the determination of sl. The realization of this program made 

it necessary to prove that the problem (5.1) has the solution V E C<2 + 0'>(Q), Vp E C<a.>(Q) 

if SE C<3 +a.>, a e C<l+a.>(S2 ), bE C<l+a> (S1), ex e C<2 +a>(S1), f E c<a>(Q). This fact had 
been proved by V. A. SOLONNIKOV [13] for the case when S1 r.S2 = 4> (in [13] only the 
linearized problem (5.1) had been considered; the nonlinear problem (5.1) is investigated 
following the same method which I used in [3] for the system (5.1) with the first boundary 
condition (2.1)) and was used by V. V. PUKHNACHOV [10, 11, 12], myself and V. OsMoLo
VSKII [7] for some problems with an unknown part S 1 of the boudary S. In all these prob
lems we searched !J, v and p slightly distinguishing from the known !J0 , V0 and p0

• But in 
many real situations the condition S1 r.S2 = 4> of the Solonnikov's theorem is not satitisfied 
and it is very interesting to understand the exact dependence of the smoothness of the 
solutions of the problem (5.1) in the vicinity of S 1 r.S2 = 4> on S 1 , S 2 and on known 
functions. 

V. A. SOLONNIKOV [14, 15] also studied the non-stationary problem in which besided 
v(x, t) and p(x, t), the domain !J, occupied by the fluid at the moment t > 0 has to be 
found. He proved the unique solvability of this initial-boundary value problem for a small 
interval of time t e [0, T] if c!J0 , v(x, 0) and external forces f(x, t) are smooth enough. 

6. Some generalizations of Navier-Stokes equations 

The system (1.1), (1.2) has been proposed for the description of the motion of fluids 
when the derivatives 1Vx11 are "comparatively small". It is known that in some cases an 
equation or a system, derived from some physical principle under a hypothesis that some 
characteristics of the medium are small enough, prove to be applicable for somewhat 
larger values of these characteristics and have sufficiently good properties from the mathe
matical point of view. For a long time it was believed that the Navier-Stokes equations 
belong just to that sort of equations and that the presence in Eq. (1.1) of the term -vLiv 
with v > 0 eliminates the possibility of the infinite increase of the lvx"(x, t)l on a finite 
interval of time (if a!J, v(x, 0), and f(x, t) are smooth) and thereby guarantees the unique 
solvability of the problem (1.1)-(1.3), (2.1) "in the large". It is really so for the case n = 2 

(see [3]). But for the case n = 3 when the Reynolds number is not small, the solvability 
of the problem (1.1)-(1.3), (2.1) for all t ~ 0 has been proved only in a class of discontin-
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uous functions. For its weak (Hopf's) solutions the integral llv( ·, t)ll 1 may be equal 
to 00 for some times (in spite of the smoothness of an' a and f) and the theorem of unique
ness for them is not true (see LADYZENSKAYA [8, 3]). I think that the system (1.1), (1.2) 
really allows infinite values of llv( ·, t)ll 1 for some times and its solutions may be branched 
out. In Point 3 I have explained one of the possible ways to search a principle which could 
give together with the system (1.1)-(1.3) a deterministic description of the dynamics in 
fluids. But for the real fluids, as it seems to me, it is necessary to change Eqs. (1.1) when 
lvxa:l or llvll1 are large. 

In the papers [9] (see also [3]) I have suggested the systems (1.1) which satisfy the 
Stokes postulates and for which the same as for Eq. (1.1), initial-boundary value ptoblems 
are uniquely solvable "in the large". One class here for the incompressible fluids in E3 

has the form 
3 3 

(6.1) Vt+ .};vkVxk- .2 O~k [,8(v 2)V;k]= -Vp+f, 
k= 1 i,k=l 

3 

Where V2 = L (Vixk+Vtx1)
2 and ,8(T) is a non-decreasing function of T ~ 0 satisfying 

i,k=l 

the inequalities v0 + c0 T" ~ ,8( T) ~ v1 + c1 TP, T ~ 0 with positive! numbers Ph ci and 

ft ~ { -. In particular, {J( T) may be constant on an interval T E [0, To] and thereby the 

equations (6.1) coincide with Eq. (1.1) for v2 ~ To. 
The other class here has the same form as Eq. (6.1), but the ,8(v2

) in it is replaced by 

y(llvjj 2), Where llvll2 = f v2(X, t)dx and y(T) is a non-decreasing function Of T ~ 0 
n 

satisfying the inequalities Y0+c0T ~ y(T)~ Y1 +c1 T, T ~ 0, with positive numbers vh c 1• 

The function y( T) may also be constant for T E [0, To) and for this our equations coincide 
with Eq. (1.1) when llv(x, t)ll 2 ~ T 0 • 

From the system for v, p and the temperature T derived from the Boltzman equation 
and some physical hypotheses on the connection between the coefficients tt(T) and x(T) 
which enter in this system, two-sided estimates for T may be done (see [9]). These estimates 
show that it is reasonable to take the function ,8( T) in the form Y0 (1 + n)", where the 
positive numbers v0 , e, 11- depend on the character of molecule interaction. 
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