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On the dynamic flow of granular media 

A. BLINOWSKI (WARSZAWA) 

STATISTICAL methods, developed for the description of the turbulent flow of fluids, are employed 
for describing granular media flow irregularities connected with the final dimensions of grains. 
The general form of the differential equations of motion is obtained in terms of mean quantities. 

Do opisu nieregularnosci przeplywu osrodk6w sypkich spowodowanych skoriczonymi wymia
rami ziaren zastosowano metody statystyczne opisu zjawisk turbulencji w cieczach. Otrzymano 
og61n(l postac r6zniczkowych r6wnan ruchu, wyrazonych przez wielkoSci wrednione. 

CTaTHCTHtieCI<He MeTonbi onHcaHHH 1j'p6yneHrnoro TetieHHH >KHnJ<OCTeH: npHMeHHIOTCH .QJIH onH
caHHH, Bbi3B3HHbiX KOHe'lJHbiMH pa3MepaMH 3epeH, B03Myl.l.{eHHH TetieHHH CblllYtJeH cpenhl. 
IlonytieHbi, a o6l.l.{eM aHne, nK<P<l>epeHqHanbHbie ypaaHeHHH ocpenHeHHoro naH>«eHHH cpenbi. 

1. Introduction 

IN THE FRAMEWORK of most theories devoted to the continuous description of flow problems 
of granular media, these media are considered in fact, as fluids with very special propetries. 
If only a model of such a fluid specified, the further deScription of the flow as a rule is 
confined to the flow patterns with well-defined streamlines. Thus, such an approach is 
related to the description of laminar flow of "true" fluids. However, a simple observa
tion of the real flow ofgranular media can lead to quite a different conclusion. We can easily 
see that any material point e.g. a chosen point of any individual grain moves in a very 
complex way due to the rotation of the finite dimension grains and also due to the irregu
lar Brownian -like motion of each grain as a whole. For these reasons, motion of the 
material particle seems to be more similar to the motion to the material point in the 
case of the turbulent flow of "true" fluids. 

The present paper is an attempt to employ some elementary concepts of the turbulent 
flow theory for the description of flow of granular media. 

In the development of the theories of turbulent flow most authors used two- or more
point correlation functions [1]. However, some authors (see e.g. [2, 3, 4, 5]) prefer to 
deal with one-point correlations only. Such an approach leads to the semi-phenomenolog
ica] theories of anisotropic unsteady turbulent flow. It should be mentioned, however, 
that the results obtained in this way are sometimes so complex that the practical applica
tion or even the experimental verification of the model are in fact not possible. 

It can be expected that for granular media the inertial effects due to the irregular small 
motions are less significant than for liquids. It seems also reasonable to expect that dissi
pation can play a more significant role in our case than in that of liquids. These consider
ations allow us to assume that reasonable accuracy in our case can be achieved by consid
ering only the correlation moments of the lower (not exceeding three) order. 

http://rcin.org.pl



28 A. BLINOWSKI 

On the other hand, however, the situation seems to be more complex than in usually 
considered cases of incompressible fluids with constant viscosity, namely: 

I) velocity, density and stress fields are in our case not differentiable and not even 
continuous functions; 

2) in contrary to the theory of the turbulent flow of liquids we are not able to assume 
any reasonable constitutive equation on the level of small scale motion; 

3) it seems rathers unreasonable to assume the large scale incompressibility of the 
medium. 

2. Averaging, mean values 

We consider the set of moving grains of finite dimensions and assume that all grains 
are made of the same material with constant density, i.e. we assume incompressibility of 
grains (but we do not assume that they are rigid). We assume also that the space between 
the grains is empty. It is our aim to describe the average motion, i.e. we are to find the re
lations between the average values of the density, velocity and stress fields. 

By the term "average" we shall always understand ensemble average, and assume 
that the average fields are continuous and sufficiently smooth. Of course, in the future some 
kind of the ergodic theorem is necessary here, but we are not going to discuss this problem 
in details in the present paper. 

Let us consider a chosen realization of the particular flow; any random field can be 
expressed as the sum of the average term and fluctuation term: 

(2.1) 

e(x, t) = e(x, t)+e'(x, t), 

u(x, t) = u(~, t)+u'(x, t), 

T(x, t) = ~)+T'(x, t), 

by definition e'(x, t) = 0, u'(x, t) = 0, T'(x, t) = 0 where e is the density, u- velocity 
and T, (TT = T) is the stress. 

Now the question arises as to the value of the velocity field for such x that e(x) = 0. 
Of course, for zero density we eau assume any value of the velocity vector; however, we 
will show that there is one particular choice which, not affecting the physical sense of the 
formulae, makes them more compact and clear. 

Let us consider the mean value of the momentum: 

(2.2) 

on the other hand we can write 

(2.3) eu, = (e+e'){U,+ul) = eu,+e'ui. 
1t is seen that in general P, :F eu,. 

For granular media the quantity expressed as n1eu1 is one of the most important char..: 
acteristics, being the measure of the mean mass flux across a unit area normal to n, on 

(1) Throughout the whole paper we use the Cartesian frame only. 
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the other hand, the physical significance of the quantity (j is also obvious. The quantity u1 

depends on the choice of the velocity field for the points for which e = 0. 
It can be easily shown in the case of an ensemble of a finite number of realizations 

that when choosing u1 = ii1 for these points, we obtain 

(2.4) P, = (ju,. 

Indeed, let m+ n be the number of realizations, and for the chosen point x and chosen 
time instant I for m realizations, let (!(X) = (!o(X) where eo(X) denotes the density of grain 
material, let n denote the number of realizations for which e(x) = 0, then, 

(2.5) 

(2.6) 

(2.7) 

m+n 
_ 1 ~1 m 
e = m+n ~ {!(rx) = m+n (!o, 

IX= I 

_ m ( n _ 
U· = - --- u.)+--u1 ' n+m ' n+m ' 

where by (u1) we denote the mean velocity for these realizations for which e "# 0. We can 
see that taking u1 = u1 for these points x for which e(x) = 0, we obtain u1 = (u1); for 
the quantity eu1 we have 

m 

(2.8) _ 1 ~ m __ 
{!Ut = -- Ut(rx)(! = --(!o(u,) = (!U, 

m+n m+n 
CX=l 

i.e. in our case 

(2.9) -,-1 0 e u, = , 
and our choice yields the simplest form of the mean momentum. By similar considerations 
we also arrive at the following relations: 

(2.10) eu,uk = (ju,uk+(j(u;uk), 

(2.11) eu-:u--;;u; = (ju, uk u, +e< ui uk ul> +(ju,(uk u~) +(juk(u~u~> +(ju, (ui u~), 

where brackets denote the same operation as in Eq (2. 7). For the sake of brevity we denote 

_ df < I ') 
Xtj = UjUj , 

{J- df < I 1 I 

tik = u,uiuk). 

3. Equations of motion and evolution 

We assume now that for fixed region in space containing grains of material the follow
ing balance laws are valid: 

a) balance of mass 

(3.1) j_ J ndV = - J nu·n·dS at ~:::: ~:: 'J J ' 

v av 
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b) balance of momentum 

(3.2) :t J f2UtdV = J Tlin1dS- J eu1u1n1dS, 
v ov av 

c) balance of angular momentum 

(3.3) :t J f2Uixket1kdV = J T1,n1xke11kdS- J eu1u1n1xketikdS,(2). 
V oV oV 

In Eqs. (3.1) to (3.3) n1 denotes the component of the unit normal vector. e11k is the permu
tation symbol and Tii is the symmetric stress tensor, i.e. we assume that the material 
of grains is a classical material. The assumptions (3.1) to (3.3) are rather obvious: if the 
fields under consideration were differentiable, we would easily obtain from Eqs. (3.1) 
to (3.3) usual differential eq.uations of continuous media. 

For continuous media we can also write the following balance law: 

(3.4) :t f (!UtukdV = 2 f (Tijuk)<i,k>n1dS- f (!(U1u1uk)n1dS-2 f (Tiiuk,j)<i,k>dV, 
v av av v 

where A~L~~.z denotes the symmetric part of the tensor: ~ (A1k ... z + Akt. .. z). Equation (3.4) 

is not independent, it can be easily obtained from Eq. (3.2); taking the trace of both sides 
of Eq. (3.4) and multiplying by 1/2 we can obtain the energy conservation law. For these 
materials which are incapable of energy storing, e.g. for perfectly plastic materials, the one 
half of the trace of the last term is equal to the dissipation rate. 

For the case of discontinuous velocity and stress fields the last term has no mathematical 
meaning, even in the class of generalized functions. But it is reasonable to assume that, 
even in this case, it has a certain physical significance. So we can make the following assump
tion: let for every spatial region such a balance law hold 

(3.5) :t f (!UtukdV = f (Tiiuk+Tk1u1)n1dS- f e(u1u1uk)n1dS+ f Jl.tkdV, 
v av av v 

where .II.ti is a symmetric tensor for which we have 

(3.6) 
1 
2 n.u = D ~ 0, 

where D is the dissipation rate per unit volume. (We excluded in this way elastic grains 
from further considerations confining ourselves to the perfectly plastic or rigid grains.) 
Looking from another viewpoint we can consider Eq. (3.5) as a definition of the tensor Jl.ti· 

It seems reasonable to call J1,11 a dispersivity tensor. 
The only assumption about the regularity of Jl.ii is its integrability. We assume of course 

that )t,1 is sufficiently smooth. 

e) We neglected here, for the sake of brevity, the action of mass forces; the introduction of determin
istic mass forces does not change our considerations, introducing merely one additional term. 
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Expressing all the fields in Eqs. (3.1) to (3.3) and Eq. (3.4) by the mean values and 
fluctuation, and averaging, we obtain integral expressions containing only mean values. 
Making use of the assumptions of the regularity of mean values in a usual way, we arrive 
at the following set of differential equations 

(3.7) 
() - -ate= - @uJ),j, 

~(nu.)= T.,1 ·- ro(x··+u,u·)J . () t t: I ,J L~ IJ J .} ' 

T,k = Tkh 

(3.8) 

(3.9) 

(3.10) :t w<Xtk +u,uk)J = (i,1uk + Tk1u,).1+ (T!1 u~ + Tk1u,).1 

- Le(iitukui +utxki+ukxti+ ui~tk + Ptki)L- .D:tk · 

Equations (3.7) to (3.10) are essentially the same as in the case of an incompressible liq
uid (see [1 ]). The form of Eqs. (3. 7) to (3.10) is not quite convenient for further discus
sion. 

Let us introduce the concept of quasi-material derivative, a counterpart of the widely 
used concept of material derivative. We define the quasi-material derivative denoted by an 
asterix as the convective derivative relative to the mean velocity field, e.g. 

(3.11) 

Using this concept we can rewrite Eqs. (3.7) to (3.10) in the following form: 

(3.12) 

(3.13) 

(3.14) 

..! 
(! = -(!Uj,j, 

(!~, = ~j.j-wxij).j, 
Tli = 1j,, 

(3.15) eiik = (f,juk,j+ TkjUt,j)- Ii.tk + (T;ju; + Tkju; -"i!Ptkj),j- (!(U, ,j?tkj+ uk,jxij). 

Now it is easily seen that the only difference between the usual form of the set of equations 
of continuous medium and our set consists in the presence of the term (!xiJ. If xli is equal 
to zero, then we obtain the classical case. Equation (3.15) can be treated as the equation 
of evolution for an additional tensorial internal variable xlk. For completness of the theory 

we need a constitutive equation for T11 , Ji.,1 and for the third-order tensor li,1k defined 
as follows: 

(3.16) 

4. Discussion 

The choice of quantities which have to be determined from the constitutive equations 
is of course, to some extent, a matter of convenience, however, if we rewrite our set of 
equations in integral form, for quasi-material regions, i.e. for such regions which can be 
considered as material region in mean (for which Un-u · n = 0 at every point of the 
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boundary) (3), our choice of the terms which should be determined from the constitutive 
equation would look more natural. 

Rewriting Eqs. (3.12), (3.13) and (3.15), we obtain 

) d J-(4.1 di edV = o, 
y 

(4 3) d 1 J-- dV 1 J (-,-, -,-, -p- ) dS · di2 'l"'" = 2 TIJuk+ T"1ui-e '"i n1 
ay 

+ ~ f (i,1uk,1 +T"J~i.1 -Ji.,")dV- ~ f e(iljuk,J+x"1u,1)dV. e) 
y y 

Multiplying Eq. (3.13) by 1/2 u" and integrating we can also obtain 

.(4.4) ~ ~ f eu1ukdV = ~ J [(f,1u"+ f"1u1)-e('e11uk +xk1u,)]n1dS 
v av 

- -~ J (f,1uk ,J + 't1u1,1)dV + ~ J e(ii11u"l+xk,Jut.i)dV. 
y y 

From the other side, using the standard averaging procedures and making use of Eqs. (2.9) 
and (2.10) we can easily obtain the following expression for the mean volumetric density 
·of kinetic energy: 

(4.5) 

i.e. we can see that the mean energy can be subdivided into two parts, the first-due to the 
mean velocity and second-due to the irregular movement of grains. 

Denoting the mass density of energy E<"> le bye<"> we can see that the traces of Eqs. ( 4. 3) 
and (4.4) represent the balances of the energy connected with the irregular "microscale" 
movement and with the "macroscale" mean movement. Adding the traces of Eqs. ( 4.3) 
and (4.4) we can obtain the balance law for the total energy density 

(4.6) ~ f ee<">dV = J (Tkjuk+Ticjulc)njdS- I e(xkjuk+ ~ pkk}) njdS- ~ I Jl.udV: 
v av av v 

Equations (4.3) and (4.4) contain not only information on energy, but can also be consid
ered as the balance equations for the Euler tensor u1 uk and for uti- that is its counterpart 
on the "micro" level. We can see, for example, that some terms cancel each other when 
we add Eqs. (4.3) and (4.4), namely, the term 

(f,1uk1+ f"iu,l)- e('iiiJuk,J +x"Jlit,J) 

e) On the correctness of such a concept see [6]. 
(

4
) We multiplied Eq. (4.3) by l/2for the purpose of further considerations. 
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appears in both equations with the opposite sign; this makes it possible to consider this 
term as the local rate of exchange between the microscale and macroscale motion (5). 
The surface terms represent the energy and momentum exchange due to the stress, and 
due to the transport of moving grains across the boundaries of the region (we recall here 
that the boundaries of such regions can be considered as the boundaries of material region 
only in mean). These arguments suggest that we can consider these terms as fl.uxes, i.e. 

that we have to look for the constitutive equations for Qtki rather than for titki.i· It should 
be mentioned here we will not develop, however, this line in the present paper that we 
can point out some analogy between u1i or its trace and the temperature of the gas; in this 

case the third-order tensor QtkJ can be considered as a tensorial counterpart of the heat 
flux vector. 

5. Final remarks 

According to the author's opinion the validity and the practical . applicability of the 
present considerations as well as the form of constitutive relations could be verified only 
by experiments; however, it is quite possible that some further information can be obtained 
through consideration on the level of individual grains in contact with their neighbours. 
It is also quite possible that the subdivision of the irregular rigid grain movement into rigid 
rotation and progressive motion can also be fruitful. 

Lastly, it may be noted that even in its present form the model under consideration 
can provide some information on the possible form of the constitutive relations, namely, 

a) the matrix iifi should be positively defined; 

b) .Utk = .uki; 

c) QikJ should be symmetric in two first indices and cannot be obtained as an isotropic 

function of x1i, (! and u(l,i> only, i.e. if it appeared from experiments that titkJ should 
be taken different from zero, then it should depend on the gradient of at least one among 
the quantities xfi, (? and u(l.i>; 

d) we can expect that Ji.,1 or JI.~ is sensitive to the deviatoric part of u11 expressing the 
tendency of uli not only to decay in the absence of the gradient of the mean velocity, but 
also to become more spherical. 

The problem of the boundary conditions is not discussed here and remains an open 
question for further investigation. 
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(
5

) Here also another possible interpretation arises: we can consider separately T11 iit,1+ fk 1u1,1 and 

the term f,1u",1+ T~c1 u,,j-JJ.ik denoting the last, e.g. by nT" and considering it as a dispersion on "micro" 
level. 
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