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Two invariants-dependent models of granular media

P. WILDE (GDANSK)

THE THEORY of plasticity is applied to describe the behaviour of granular materials. It is shown
that the yield condition of the Granta-Gravel model [5] corresponds to a very simple case of
density hardening. When the second invariant of plastic strain deviator is considered in the yield
condition, peaks in the stress-strain diagrams may be explained and the volumetric strains may
be described in a way which includes the basic features of real behaviour. To illustrate the beha-
viour, the axially symmetric homogeneous stress is considered on the basis of two simple models.

Do opisu zachowania si¢ materialow ziarnistych zastosowano teorie plastycznoéci. Pokazano,
7e warunek plastycznoséci typu Granta-Gravela [5] odpowiada bardzo prostemu przypadkowi
wzmocnienia gestosciowego. Uzalezniajac warunek plastycznosci od drugiego niezmiennika
dewiatora odksztalcenia plastycznego mozna wyjasni¢ wierzcholki krzywych napre¢zenie-od-
ksztalcenie oraz opisa¢ odksztalcenie objgtosciowe w sposOb zawierajacy podstawowe cechy
rzeczywistego zachowania si¢ ofrodka. Dla ilustracji rozwazanego zagadnienia zastosowano
dwa proste modele opisujace jednorodny osiowo-symetryczny stan naprezenia.

Jna onucaHus NOBeJCHHS 3EPHHCTHIX MAaTEPHANIOB NpPHMEHEHA TeopuA IUIacTHuHocTH. Ilo-
Ka3aHO, YTO YCJIoBMe IacTHuHocTH Tna [panTa-I'paBena [5] oTBeuaeT oueHs MPOCTOMY CITy-
YAl IUIOTHOCTHOTO yNpouHeHus, CBA3BIBAA YCIOBHE ILUTACTHYHOCTH ¢ BTOPHIM HHBADHAHTOM
JICBHAaTOpa IUIACTHYECKHX AcdopMaimii, MOYKHO BbISCHMTH ITHKM HA KPHBBLIX HalpmKEHUE-
nedopmarma 1 omicats oGbemMHyIo Nedopmaiio Takum 06pasom, ITo6EI OIMECAHME COREPIKANO
OCHOBHEIe CBOICTBa [eiCTBHTENLHOTO NoBeleHHA cpe/ibl. JUIA WLTIOCTpALHE PACCMATPHBACMOH
npoGNeMEl IPEMEHEHE! IBE NMPOCTHIE MOMENH, ONHCHIBAIOILME OMHOPOHOE, OCECHMMETPHUHOE
HANpPAYKEHHOE COCTOAHME.

1. Assumptions and general relations

GENERAL remarks on the application of the theory of plasticity to the description of the
mechanical tehaviour of granular materials may be found in the books written by Szcze-
PINskT and MROz [1, 2]. This paper is based on the concepts introduced into soil mechanics
by RoscoE [3, 4] and developed by WrOTH and SCHOFIELD [5]. Its aim is to construct
a simple model which may be used to discuss structure — subsoil interaction problems.
The approach to the problem follows the trend introduced by MRrOz [6] in which the
starting point to soil mechanics is the general theory of plasticity.

In this paper the behaviour of granular media is discussed within the elasto-plastic
theory. It is assumed that the strains are small and may be represented as the sum of
reversible elastic strains and plastic strains. The material is isotropic and for elastic strains
Hooke’s law is valid.

It is assumed there exists a flow rule given by the following equation:
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where &7/ are the increments of plastic strains, 1 is a scalar function, Fis the plastic potential
which, on account of isotropy, depends upon the invariants of stress and plastic strain.

In the paper the associated flow rule is assumed. Thus, the function F represents at
the same time the yield condition. The triaxial test is the basic test for granular materials.
Thus, until more informations from the true triaxial test are available, it is reasonable
to assume that the yield condition depends upon the first invariants of stress and plastic
strain tensors and the second invariants of the corresponding deviators. Therefore, the
change in the yield condition depends on the plastic strains only.

It is assumed that the yield condition is given by the following equation:

(1.2) F=yL+fU, e, N) =
where I, is the first invariant of the stress tensor, J, is the second invariant of the stress
deviator, &J} is the first invariant of the plastic strain tensor, N is the square root of the
second invariant of the plastic strain deviator. Thus,

1
(1_3) I, = oy, ev IGJ“, N2 = ?spldevsﬂl‘dﬂ,

where here and in the following summation convention is used for repeated indices and the
superscript dev denotes deviator. It must be stressed that Eq. (1.2) introduces simplifications.
It is assumed that F'is a sum of the square root of the second invariant of the stress deviator
and an arbitrary function of the other invariants. To justify the simplification one may
say that the Mises-Schleicher yield condition has a similar form.

Substitution of Eq. (1.2) into Eq. (1.1) yie[ds:

(1.4) - (af B gd")

|/ 2
It should be noted that in the case J; is zero, the second expression in the brackets iz Eq.
(1.4) is an undefined symbol. This fact results in a corner in the yield surface at the J, = 0
point.

In a standard way 4 may be calculated from the condition that when there is an increase
in stress and plastic strain the new stress state is on a new yield surface. Thus, considering
the total differential of F expressed by Eq. (1.2) substitution of &} given by Eq. (1.1) yields
the following result:

(1.5) i= ( 47 3 ]/'_ a:'::) e
where A4 is a scalar function given by the following equation:

_ of of 1 1 af i
(1.6) A= =32 31~ 2y7, 2N oN e

Equation (1.5) may be presented in an alternative form when summations are carried
out and the definitions of invariants given by Eqs. (1.3) are taken into account. It follows:

(1.7 R o (;{11+]/J2)
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Substitution of 4 expressed by Eq. (1.5) into Eq. (1.4) yields the following relation

between the increments of stress and plastic strain:
wpl 1 af 1 ev af ]' ev) »
(1.8) Efj=j(a—h aij+'2_,7f ij )(“é'ﬂ 5u+2'/—Tz°fa)°'rs-

From Eq. (1.8) it follows that the value of the scalar function A4 plays an important
role in the description of plastic behaviour. If 4 goes to infinity the plastic strains go to
zero and if A goes to zero the plastic strains go to infinity. In the second case it means that
there is a perfect plastic flow.

The total strains are the sum of elastic and plastic strains. Thus, when the elastic strains
are expressed by Hooke’s law for isotropic materials it follows:

(19) éij = Ai_fra&r:s
where

Apgey = 1+" i dyu— 3 Oy Brat (af Bl e )( of ot~

and E, v are elastic constants.

By simple but lengthy calculations the inverse relation to Eq. (1.9) may be calculated.
It follows:

(1.10) 0ij = Bijrstys,
where E Ey
By, = TS by, Ojs+ m 0y

E of E | I E of E 1 %
(‘1_—2,,73;—1 it T 25 )( =2 "t e o5 ™ )
E 1 E

P P TR s

From the expression for Bj;,, it can be seen what it means that 4 is large. If 4 is large
compared with E/2(1+%) the elastic behaviour is dominant.

For further discussions it is convenient to obtain expressions for &f/, the first invariant
of the increments of the plastic strain tensor. From Eq. (1.8), when the definitions of in-
variants given by Egs. (1.3) are considered, it follows:

of 1 [ af
(1.11) i =35 (a; 11+1/12)

It may be seen from Eq. (1.11) that an increase in the value of the second invariant of the
stress deviator causes a change in volume.
According to the definition given in Egs. (1.3) it follows:

(1.12) N =

o'::')

6!‘!

i)

ldevy pldev

2N81’ &jj .

Substitution of increments of plastic strains given by Eq. (1.8) after simple manipulations
yields

(1.13) N=———

1 ev pldev af F T
J_IG':’J ﬁ'rj (—é'j:;'ll'l'VJz .
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2. The homogeneous axisymmetric case

Let us consider in detail the case investigated in the triaxial test. The axes of the Cartesian
coordinate system are the principal axes of the stress tensor, o, is the vertical principal
stress and ¢, = o, are the horizontal principal stresses. In this case the stress deviator
is given by the following matrix:

2
5 0 0
1
@1 [0 = (@—0)| O =5 O |,
1
0 0 -3

and the stress invariants are given by the following relations:

—
(2.2) I = 0.+20,, V7= 7 lox—a,l.

It is worthwhile to note that in this case the stress deviator depends only upon (o, —ay,).
The corresponding expressions for the plastic strain are similar. It is necessary only
to replace o, and o, by &2' and &8’
It is easy to verify that in this case

(2.3 olfveplY = +2N Y/ 7,.
Substitution of Eq. (2.3) into Eq. (1.13) yields

8 1 3f . e
(24) N= i-ﬂ(«m—ifﬂ ;/Jz).

From the theory of plasticity it is known that A is always positive in plastic flow. Thus,
a comparison with Eq. (1.6) indicates that in Eq. (2.3) the plus sign must be chosen. It
follows immediately that for 1/ J, # 0 the following relation is satisfied:

. 1 .
2.5) N=A

To obtain analytical solutions, it is convenient to choose N as the independent variable.
Let us consider the case I, = const. In this case Eq. (2.4) reduces to the following differen-
tial equation:

ay7
.6 — T _—24.
(2.6) N =24
To solve the differential equation it is necessary to specify the function f(Z,, f/, V

The case of hydrostatic pressure needs special consideration. In this case J'J, and N
are zero. The first invariant of the plastic deformation may be calculated directly from
the yield condition given by Eq. (1.2) which reduces to the form

(2.7 Sy, &) =0.
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3. A simplified density hardening model

Let us assume that the yield condition does not depend upon the second invariant
of the plastic strain deviator. For very small elastic strains, compared to plastic ones, the
first invariant of the plastic strain tensor is proportional to the change in volume. Thus,
in this case the hardening depends upon density [5, 6].

For density hardening the scalar function 4 defined in Eq. (1.6) is given by the following
equation:

of of

Let us assume that there exists a critical straight line in the 7, 1/7; plane on which

a perfect plastic flow occurs. The equation of the critical line has the following form:

(3.2 Ml —}Jy+c =0,

where M and c are constants.
To obtain a simple model let us assume that

o Mt VT,
oI, MIi+c ’

of
Oeff

where «, %, and x, are constants.

(3.3

= %o+, 14,

From the first equation of the set (3.3) it may be seen that A is zero on the critical
line. The expression in the denominator was chosen in such a way that the expression
is dimensionrless. The second equation of the (3.3) is a linear function of I;.

The yield condition which satisfies Eqs. (3.3) takes the following form:

MIi+c K ,]_0

. _ _:"i-_ Rkt SRS o8
B.a, F=yJ,+(MI,+c¢) l-ln MIF+c M el

where I is a constant of integration.

The obtained yield condition has the form of the yield condition used in the Granta
Gravel model developed in Cambridge [5]. One may thus say that this yield condition
is suitable from the point of view of physical consideration or one may say that it corre-
sponds to a very simple case of density hardening.

When the second deviator of the stress tensor is zero (hydrostatic pressure) the yield
condition given by Eq. (3.4) reduces to the following form:

Mhite K
MI¥+c M
Thus, there are no plastic strains for /, < I'T and this is the physical meaning of the constant
i
Substitution of Eq. (3.4) into Eq. (3.1) yields
(3.6) A = 3K(MI, +c—yT)).

3.5) F=In
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The plastic volume change may be calculated directly from the Eq. (1.4). Substitution
of f for the model considered above yields
Ml +c—VJ,

Ml +c¢ ~
Now, iis always positive in plastic flow. Thus there is a plastic decrease in volume for
points below the critical line and plastic increase in volume for points above the critical

line.
To discuss the properties of the model let us solve the case I, = const in the triaxial
test. When A expressed by Eq. (3.6) is substituted into Eq. (2.6) the following differential

equation results:
(3.8) _dﬁz =6K(MI, +c—V ;).

The solution with the initial condition that for N = N, (initial value of N), }/J, = }/J%
(value at the initial yield surface) takes the following form:

(39) V5= (MIy+¢) = [V TF = (MI, + ) e K =N,

It is seen immediately from the solution that when N goes to infinity the solution approaches

the critical line. When, for the initial yield condition, the point 7, , )/J* is above the critical
line the expression in the square brackets on the right side is positive and the solution
approaches the critical line from above.

3.7 &= 3iM

4. Simple two invariants-dependent models

In the derivation of relations for the two invariants-dependent models, let us assume
that the new model goes to the density hardening model when N is neglected. Thus let us
assume that the first equation of the set (3.3) is still valid. In view of the yield condition
this equation may be written in the following form:

of _ . Mli+c+fy, e, N)
4.1) = M M, +c .
Integration with respect to I, yields
4.2) Sy, e, N) = (MI, +¢)[In(MI, +¢)+G(%, NI,

where G(ef!, N) is an arbitrary function of the indicated variables.
As a first approximation, let us consider the case when G is just the sum of a term
proportional to &ff and a function of N. It follows:

MI, +c K
e 4 ti-s | 0.

A comparison of Eq. (4.3) to Eq. (3.4) shows that the yield surfaces in the I, |/, are
the same, but in the density hardening model the succeeding yield surfaces correspond
to unique values of &ff. In the case described by Eq. (4.3) the same yield surface may

correspond to different pairs of values of &f' and N.

4.3) F =y J,+MI, +c) [ln
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Let us assume that g(N) is chosen in such a way that:
(4.9) g(0) = 0.

In the special case, when during the loading the stress deviator is proportional to a
constant deviator, for the yield condition described by Eq. (4.3) the scalar function 4
is given by the following equation:

@.5) foom 3K[(l g (N))(Mf,+c) Y Jz]
6K
If the function g(N) is chosen in such a way that:
(4.6) limg'(N) =
N-+

for large values of N, the stress points approach the critical line. However, for smaller
values of N the stress points may go over the critical line. It is possible that 4 is equal
to zero for a certain value of N. Then, there may be there are local peaks in the stress-strain
diagrams.

A suitable function g(N) may be found experimentally. To have an insight into the
possibilities of the model two simple examples of functions g(N) are considered.

As the first example let us consider g(N) given by the following equation:

N
g N;
g for N> N,,
where N is a constant. The graph of the function is shown in Fig. 1,

Substitution into Eq. (4.5) yieldS'

/
(4.8) A= SK[( 6KN, )(MII +€)— lr-"z] for N<N,,
3K[(MI, +¢)— /7] or N> N

From Eq. (4.8) it may be seen that there are two straight lines in the I, , |/ Ja plane where 4
may be zero (Fig. 2). These lines define three regions. If the values of the invariants at the

for N< N,
Cx)) gN) =

vz | f‘f-“—N)fﬂff +c)-VI; =0

MIy+C “{3_2"0

=y
Lo

FiG. 2.

moment the initial yield surface is reached are in the I or II region, the stress points may
approach the upper line but never go over it. For N > N, the stress points go to the lower
straight line. It is worthwhile to note that in A4 it is only important whether N < N, but
there is no direct influence of N on the values of 4 in both regions. At the value N = N;
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there is a discontinuity in 4 which means that there is a discontinuity in the first derivative
of the stress-strain diagram. If, at the initial yield condition, 7, and )/J* are above the
upper line, the loads will decrease from the very beginning of the plastic flow.

The plastic volume changes may be found directly from the yield condition given
by Eq. (4.3). For N going to infinity it follows:

49 i LM Ml +c
4.9 Nl_t.r;sﬁ =% lnm-l-l-g ‘
Hence, the choice of g has a direct influence on the position of the upper line in Fig. 2
and on the plastic volume changes.

To illustrate the behaviour let us solve the axially symmetric case in which 7, is kept
constant. Integration of Eq. (2.7) yields

ﬂ__’_., s fopsan
Ml +c 6KN,
i ]/Jf = (l+—-—g—-—— o~ SK(N=-No) for N <Ny, No <Ny,
MI, +c 6KN,
4.10) Vb _ . 8 o~ 6K(N—Ni)

Ml +c = Y6k,

| }/“' 2 g | —=6K(N=Ng)
+ 1| = =, + < N, ’
M!l+c (l 6“&) 4 fOl’ N > M$ N{I k

o [

Ml +c MI, +c

- ]]e““”'”“’ for Ny = N,

where N, is the initial value of N and J/J# is the value of the second invariant of the stress
deviator at the initial yield surface. It may be easily seen from the solutions given by Eqgs.
(4.10) that for N, > N, the model goes over to the density hardening model.

The numerical solutions for ¢ = 0 are shown in Figs. 3, 4, 5 and 6. In the case N, = 0
the choice of the value for N, fixes the position of the peak. The dimensionless variable
I/-Tz)"MIL approaches 1 when N goes to infinity. In the numerical solution g/6KN, was
chosen equal to 0.4 which corresponds to the assumption that the upper line is given by
the equation V'};fMIL = 1+04.

For different values of /' J¥/MI, there are different curves starting from the correspond-
ing point. The choice of the value 6KN, has an influence on the “steepness™ of the curve.
When N, /N, is not equal to zero the peak moves to the left (Fig. 4). In the case No/N;, = 1.0
the behaviour corresponds to the case of density hardening (Fig. 5). In Fig. 6 the corre-
sponding diagrams for the plastic volume strains are shown. The solutions indicate that
in the two invariants-dependent model it is possible to obtain volumetric strains which
correspond to the experimental data.

As the second example, let us consider the following function:

4.11) g(N) = g(1—e=).



V3,
V| wi:)
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The diagram of the function is shown in Fig. 7. Substitution into Eq. (4.5) yields

4.12) A= 3K[(1 + % e—ﬁN) (ML, +¢)—y .Tz] )
gin) A
g
-
Fig. 7.

For this choice of g(N) the function A4 is continuous and has continuous derivatives.
For the axially symmetric case and constant I, the following solutions were obtained:

VE i BB s e
(4.13) MI,+cHI = (x—1)e +‘ﬁ~6K (eF—e™®)
for f # 6K and
V7 ) _
(4.14) Il = (x—1)e *+g*xe™*

Ml +c
for f = 6K where x = 6K(N—N,), g* = ge o,
x = YJ¥/(MI,+c), &= p/6K.
It should be noted that N, has influence on g* only. For large values of Ny, g* approaches
zero and the behaviour is described by the density hardening model. It is not necessary

oy
Ml
25 [ o024 g=14

Fic. 8. FiG. 9.
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Keelh
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to discuss the influence of N, separately. We may assume that Ny = 0 and take an appro-
priate value of g*.

Diagrams for two cases are shown in Figs. 8, 9, 10 and 11. The results are smooth
curves. The disadvantages in this model are that there are difficulties in explaining the
influence of the parameters on the solutions. It may be stated, however, that the diagrams
include the essential features of granular material behaviour.

5. Conclusions

In the density hardening model all the solutions approach the critical line, but it is not
possible to get an appropriate description of the volumetric changes.

In the case the model depends on two invariants of plastic strain it is possible to consider
peaks in the strain-stress diagrams and to take into account that at the beginning of loading
the volume decreases and when the stress deviator increases the volume increases. It is thus
possible to model the behaviour when hardening is succeeded by a softening of the material.
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