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Two invariants-dependent models of granular media 

P. WILDE (GDANSK) 

THE THEORY of plasticity is applied to describe the behaviour of granular materials. It is shown 
that the yield condition of the Granta-Gravel model [5] corresponds to a very simple case of 
density hardening. When the second invariant of plastic strain deviator is considered in the yield 
condition, peaks in the stress-strain diagrams may be explained and the volumetric strains may 
be described in a way which includes the basic features of real behaviour. To illustrate the beha­
viour, the axially symmetric homogeneous stress is considered on the basis of two simple models. 

Do opisu zachowania siC( material6w ziarnistych zastosowano teorie( plastyczno8ci. Pokazano, 
:le warunek plastyczno8ci typu Granta-Gravela [5] odpowiada bardzo prostemu przypadkowi 
wzmocnienia g~sto8ciowego. UzaleZniaj~c warunek plastyczno8ci od drugiego niezmiennika 
dewiatora odksztalcenia plastycmego mo:ina wyjasnic wierzcholki krzywych napr~nie-od­
ksztalcenie oraz opisac odksztalcenie obje(to8ciowe w spos6b zawieraj~cy podstawowe cechy 
rzeczywistego zachowania siC( osrodka. Dla ilustracji rozwafanego zagadnienia zastosowano 
dwa proste modele opisuj~ce jednorodny osiowo-symetryczny stan napr~nia. 

,Iln.a onucaHHH noseAeHHH sepHHCTbiX MaTepuanos npHMeHeHa TeopHH IIJiaCTIAHOCTH. Ilo­
J<asaHo, trrO YCJIOBHe IIJiaCTHtiHOCTH THna rpaHTa-rpaBeJIH (5) OTBetlaeT oqem, npOCTOMy cny­
qaro nnoTHOCTHoro ynpoqseHHH. Cs.asblsa.a ycnosue rmaCTHtmOCTH c BTOpbiM HHBBPHBHTOM 
,rresuaropa IIJiaCTHtieCJ<HX Aefi>opMainrli, Mo>I<Ho BbiHCHllTit nHJ<H BB J<pHBbiX HanpiDKeBHe­
Aecl>opMamm u onucaTL o6'beMHYJO Aefi>opMamuo TaJ<HM o6pasoM, ll1'06b1 OIIHcaHHe COAep>Kano 
OCHOBHbie CBOHCTBa AeHCTBHTeJILHOro llOBeAeHHH cpeAbi. )lnH HJ1JIIOCTP8IUIH paCCM&TPHB&eMOH 
npo6JieMbl npHMeHeHbi ASe npOCTble MOAeJIH, OllHCbiB8lOII.Uie OAHOpoAHoe, oceCHMMfTPH'IHoe 
HanpH>KeHHOe COCTOHHHe. 

1. A~umptions and general relations 

GENERAL remarks on the application of the theory of plasticity to the description of the 
mechanical tehaviour of granular materials may be found in the books written by SzczE­
PINSKI and MR6z [1, 2]. This paper is based on the concepts introduced into soil mechanics 
by RoscoE [3, 4] and developed by WROTH and SCHOFIELD [5]. Its aim is to construct 
a simple model which may be used to discuss structure - subsoil interaction problems. 
The approach to the problem follows the trend introduced by MR6Z [6] in which the 
starting point to soil mechanics is the general theory of plasticity. 

In this paper the behaviour of granular media is discussed within the elasto-plastic 
theory. It is assumed that the strains are small and may be represented as the sum of 
reversible elastic strains and plastic strains. The material is isotropic and for elastic strains 
Hooke's law is valid. 

It is assumed there exists a flow rule given by the following equation: 

(1.1) 
. oF 

e~'~ = ;.--
•J oaii ' 
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800 P. WILDE 

where ef} are the increments of plastic strains, 1 is a scalar function, F is the plastic potential 
which, on account of isotropy, depends upon the invariants of stress and plastic strain. 

In the paper the associated flow rule is assumed. Thus, the function F represents at 
the same time the yield condition. The triaxial test is the basic test for granular materials. 
Thus, until more informations from the true triaxial test are available, it is reasonable 
to assume that the yield condition depends upon the first invariants of stress and plastic 
strain tensors and the second invariants of the corresponding deviators. Therefore, the 
change in the yield condition depends on the plastic strains only. 

It is assumed that the yield condition is given by the following equation: 

(1.2) F = y' 12 + j(/1, sfi', N) = 0, 

where It is the first invariant of the stress tensor, 12 is the second invariant of the stress 
deviator, sfl is the first invariant of the plastic strain tensor, N is the square root of the 
second invariant of the plastic strain deviator. Thus, 

(1.3) 1 1 dev dev 
2 = T aij ~au , 

1 
N2 =- sP.ldevepJdev 

2 I} l}j ' 

where here and in the following summation convention is used for repeated indices and the 
superscript dev denotes deviator. It must be stressed that Eq. (1.2) introduces simplifications. 
It is assumed that F is a sum of the square root of the second invariant of the stress deviator 
and an arbitrary function of the other invariants. To justify the simplification one may 
say that the Mises-Schleicher yield condition has a similar form. 

Substitution of Eq. (1.2) into Eq. (1.1) yields: 

(1.4) . ,, - ~ ( a f ~ . 1 dev) su - of ij+ .;- aij . 
1 2 Jl 12 

It should be noted that in the case 12 is zero, the second expression in the brackets i~ Eq. 
(1.4) is an undefined symbol. This fact results in a corner in the yield surface at the 12 = 0 
point. 

In a standard way i may be calculated from the condition that when there is an increase 
in stress and plastic strain the new stress state is on a new yield surface. Thus, considering 
the total differential ofF expressed by Eq. (1.2) substitution of efJ given by Eq. (1.1) yields 
the following result: 

(1.5) ~ - 1 ( a f ~ 1 _dey) . 
- A o/1 rs+ 2 y' 12 Urs_. C1,, 

where A is a scalar function given by the following equation: 

(1.6) A _ 3 ° f 0 f 1 1 a f dev pl dev 
- - os:! o/1 - 2 J! 12 2N oN C1kt_. 

8
k1 • 

Equation (1.5) may be presented in an alternative form when summations are carried 
out and the definitions of invariants given by Eqs·. (1.3) are taken into account. It follows: 

(1.7) 
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Two INVARIANTS-DEPENDENT MODELS OF GRANULAR MEDIA 801 

Substitution of i expressed by Eq. (1.5) into Eq. (1.4) yields the following relation 
between the increments of stress and plastic strain: 

(1.8) efJ = ~ ( :f ~ij + ~~- (1tr) ( :f ~,s+ -~- (1~:v) a,s. 
1 2y~ 1 2y~ 

From Eq. (1.8) it follows that the value of the scalar function A plays an important 
role in the description of plastic behaviour. If A goes to infinity the plastic strains go to 
zero and if A goes to zero the plastic strains go to infinity. In the second case it means that 
there is a perfect plastic flow. 

The total strains are the sum of elastic and plastic strains. Thus, when the elastic strains 
are expressed by Hooke's law for isotropic materials it follows: 

(1.9) Eij = AijrJ1rs, 

where 

1 + p ~ ~ p ~ ~ 1 ( a f ~ 1 ...dev) ( a f ~ 1 ...dev) 
A;jrs = -r u;, Ujs- E Ujj Urs+ A o/1 Ujj + 2 V J2 Ujj o/1 Urs+ 2 V J2 Urs 

and E, v are elastic constants. 
By simple but lengthy calculations the inverse relation to Eq. (1.9) may be calculated. 

It follows: 

(1.10) (rij = BijrsBrs' 

where E Ev 
Bijrs = 1+v ~ir~js+ ( 1+v) (1-2v) ~ij~rs 

( 
E of ~ E 1 dev) ( E of ~ E 1 ~ev) 

-i-=2vaJ; ij+1Tv~(1ij T=2VaJ; rs+T+V~ rs 

A+ 3 ( of)2 __£_ + __! __ ___£__ 
oil 1-2P 2 1+v 

From the expression for B;Jrs it can be seen what it means that A is large. If A is large 
compared with E/2(1 +v) the elastic behaviour is dominant. 

For further discussions it is convenient to obtain expressions for eft', the first invariant 
of the increments of the plastic strain tensor. From Eq. (1.8), when the definitions of in­
variants given by Eqs. (1.3) are considered, it follows: 

(1 ) ·pr 3 of 1 ( of I. .. 11·) .11 eu = o/1 A oil- 1 + r 2 . 

It may be seen from Eq. (1.11) that an increase in the value of the second invariant of the 
stress deviator causes a change in volume. 

According to the definition given in Eqs. (1.3) it follows: 

(1.12) 

Substitution of increments of plastic strains given by Eq. (1.8) after simple manipulations 
yields 

(1.13) 
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2. The homogeneous axisymmetric case 

Let us consider in detail the case investigated in the triaxial test. The axes of the Cartesian 
coordinate system are the principal axes of the stress tensor, a" is the vertical principal 
stress and a, = az are the horizontal principal stresses. In this case the stress deviator 
is given by the following matrix: 

2 
0 0 

3 

0 
1 

0 (2.1) loft]= (ax-a,) -T 

0 0 
3 

and the stress invariants are given by the following relations: 

(2.2) 1- 1 
/ 1 = ax+2a1 , 1 12 = yJ lax-a,!. 

It is worthwhile to note that in this case the stress deviator depends only upon (ax-a1). 

The corresponding expressions for the plastic strain are similar. It is necessary only 

to replace a" and a1 by e~1 and e:'. 
It is easy to verify that in this case 

(2.3) aftef]dev = ±2N V l2. 

Substitution of Eq. (2.3) into Eq. (1.13) yields 

(2.4) • 1 ( a 1 · .. 1_!_ ) 

N = ± 2A fJ/1 /1 + y J2 . 

From the theory of plasticity it is known that i is always positive in plastic flow. Thus, 
a comparison with Eq. (1.6) indicates that in Eq. (2.3) the plus sign must be chosen. It 

follows immediately that for V 12 :F 0 the following relation is satisfied: 

(2.5) 
. l . 

N = -i .1.. 

To obtain analytical solutions, it is convenient to choose N as the independent variable. 
Let us consider the case / 1 = const. In this case Eq. (2.4) reduces to the following differen­
tial equation: 

(2.6) dVJ2 - 2A 
dN - . 

To solve the differential equation it is necessary to specify the function /(/1 , efl, V 

The case of hydrostatic pressure needs special consideration. In this case V 12 and N 
are zero. The first invariant of the plastic deformation may be calculated directly from 
the yield condition given by Eq. (1.2) which reduces to the form 

(2. 7) /(/1 , er,') = 0. 
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3. A simplified density hardening model 

Let us assume that the yield condition does not depend upon the second invariant 
of the plastic strain deviator. For very small elastic strains, compared to plastic ones, the 
first invariant of the plastic strain tensor is proportional to the change in volume. Thus, 
in this case the hardening depends upon density [5, 6]. 

For density hardening the scalar function A defined in Eq. (1.6) is given by the following 
equation: 

(3.1) of of 
A= -3-a pi~~-· e,.,. v 1 

Let us assume that there exists a critical straight line in the I 1 , y 12 plane on which 
a perfect plastic flow occurs. The equation of the critical line has the following form: 

(3.2) 

where M and care constants. 
To obtain a simple model let us assume that 

of M/1 +c- V 12 
-=(X ' o/1 M/1 +c 

(3.3} 

where <X, x 0 and x1 are constants. 

From the first equation of the set (3.3) it may be seen that A is zero on the critical 
line. The expression in the denominator was chosen in such a way that the expression 
is dimensiopless. The second equation of the (3.3) is a linear function of I 1 • 

The yield ~ondition which satisfies Eqs. (3.3) takes the following form: 

(3.~, 1- r M/1 + c K '] F = 1 12 +(M/1 +c) In Ml~+c - M efi = 0, 

wh~re 1: is a constant of integration. 
The obtained yield condition has the form of the yield condition used in the Granta 

Gravel model developed in Cambridge [5]. One may thus say that this yield condition 
is suitable from the point of view of physical consideration or one may say that it corre­
sponds to a very simple case of density hardening. 

When the second deviator of the stress tensor is zero (hydrostatic pressure) the yield 
condition given oy Eq. (3.4) reduces to the following form: 

(3.5) 
Ml1 +c K pi 

F =In MI*+c - M eu_· 
1 

Thus, there are no plastic strains for / 1 ~I! and this is the physical meaning of the constant 

It. 
Substitution of Eq. (3.4) into Eq. (3.1) yields 

(3.6) A = 3K(MI1 +c-y 12). 
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The plastic volume change may be calculated directly from the Eq. (1.4). Substitution 
of f for the model considered above yields 

(3.7) 

Now, ). is always positive in plastic flow. Thus there is a plastic decrease in volume for 
points below the critical line and plastic increase in volume for points above the critical 
line. 

To discuss the properties of the model let us solve the case / 1 = const in the triaxial 
test. When A expressed by Eq. (3.6) is substituted into Eq. (2.6) the following differential 
equation results: 

(3.8) 

The solution with the initial condition that for N = N0 (initial value of N), y 12 = y:J: 
(value at the initial yield surface) takes the following form: 

(3.9) J/ J2-(M/1+c) = [t1Ji-(M/1+c)]e-6K(N-No>. 

It is seen immediately from the solution that when N goes to infinity the solution approaches 

the critical line. When, for the initial yield condition, the point / 1 , ~ is above the critical 
line the expression in the square brackets on the right side is positive and the solution 
approaches the critical line from above. 

4. Simple two invariants-dependent models 

In the derivation of relations for the two invariants-dependent models, let us assume 
that the new model goes to the density hardening model when N is neglected. Thus let us 
assume that the first equation of the set (3.3) is still valid. In view of the yield condition 
this equation may be written in the following form: 

(4.1) iJf =M M/1 +c+ /(/1 , eF;', N) 
iJ/1 M/1 +c 

Integration with respect to / 1 yields 

(4.2) /(/1, efl, N) = (M/1 +c)[ln(M/1 +c)+G(e~L N)], 

where G( eft', N) is an arbitrary function of the indicated variables. 
As a first approximation, let us consider the case when G is just the sum of a term 

proportional to eft' and a function of N. It follows: 

(4.3) F= y'J2 +(Ml1 +c{ln :::::-! ef;1-g(N)] = 0. 

A comparison of Eq. (4.3) to Eq. (3.4) shows that the yield surfaces in the / 1 , V 12 are 
the same, but in the density hardening model the succeeding yield surfaces correspond 
to unique values of eft'. In the case described by Eq. (4.3) the same yield surface may 
correspond to different pairs of values of eft1 and N. 
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Let us assume that g(N) is chosen in such a way. that: 

(4.4) g(O) = 0. 

In the special case, when during the loading the stress deviator is proportional to a 
constant deviator, for the yield condition described by Eq. (4.3) the scalar function A 

is given by the following equation: 

(4.5) [( 
g'(N)) ~-] A = 3K I+-(:,[( (M/1 +c)-J1 12 • 

If the function g(N) is chosen in such a way that: 

(4.6) lim g'(N) = 0 
N_..oo 

for large values of N, the stress points approach the critical line. However, for smaller 
values of N the stress points may go over the critical line. It is possible that A is equal 
to zero for a certain value of N. Then, there may be there are local peaks in the stress-strain 
diagrams. 

A suitable function g(N) may be found experimentally. To have an insight into the 
possibilities of the model two simple examples of functions g(N) are considered. 

As the first example let us consider g(N) given by the following equation: 

(4.?) g(N) = lgg~ for N ~ Nb 

for N > Nk, 

where Nk is a constant. The graph of the function is shown in Fig. 1. 
Substitution into Eq. (4.5) yields: 

(4.8) A = 13x[( I+ 6%N,) (M/1 +c)-J!' 12 ] for N,;;, N,, 
3K[(Ml1 +c)-yl;] for N > Nk. 

From Eq. (4.8) it may be seen that there are two straight lines in the / 1 , y 12 plane where A 
may be zero (Fig. 2). These lines define three regions. If the values of the invariants at the 

g(N) 

g 

N 

FIG. 1. 

1II 

(1--g- )(MI1 +c)-VJi =0 
6KN~e 

FIG. 2. 

moment the initial yield surface is reached are in the I or 11 region, the stress points may 
approach the upper line but never go over it. For N > Nk the stress points go to the lower 
straight line. It is worthwhile to note that in A it is only important whether N ~ Nk, but 
there is no direct influence of N on the values of A in both regions. At the value N = N" 
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there is a discontinuity in A which means that there is a discontinuity in the first derivative 

of the stress-strain diagram. If, at the initial yield condition, / 1 and y J~ are above the 
upper line, the loads will decrease from the very beginning of the plastic flow. 

The plastic volume changes may be found directly from the yield condition given 
by Eq. (4.3). For N going to infinity it follows: 

(4.9) • pi _ M [ M/1 +c J 
hm eu - -K Jn MI* +1-g . 

N-+oo 1 +c 

Hence, the choice of g has a direct influence on the position of the upper line in Fig. 2 
and on the plastic volume changes. 

To illustrate the behaviour let us solve the axially symmetric case in which / 1 is kept 
constant. Integration of Eq. (2. 7) yields 

yJ2 = 1+-g-
M/1 +c 6KNk 

+ [ yJf _ (1 + _g __ )] e-6K(N-N0 ) 

Ml1 +c 6KNk 

(4.10) y J 2 = ] + _g_ e-6K(N-NII) 

M/1 +c 6KN" 

+ [_i Jt - ( 1 + _g_)] e-6K<N-No> for N > Nb No < N1, 
Ml1 +c 6KN" 

Y J2 _ = 1 + [ Y J2* -1] e-6K<N-No> 

Ml1 +c Ml1 +c 

where N0 is the initial value of Nand y 1: is the value of the second invariant of the stress 
deviator at the initial yield surface. It may be easily seen from the solutions given by Eqs. 
(4.10) that for N0 ~ N" the model goes over to the density hardening model. 

The numerical solutions for c = 0 are shown in Figs. 3, 4, 5 and 6. In the case No = 0 
the choice of the value for Nk fixes the position of the peak. The dimensionless variable 

y 12 /M/1 approaches 1 when N goes to infinity. In the numerical solution gf6KN" was 
chosen equal to 0.4 which corresponds to the assumption that the upper line is given by 

the equation Jf)2 jM/1 = 1 +0.4. 

For different values of yJt f M/1 there are different curves starting from the correspond­
ing point. The choice of the value 6KN" has an influence on the "steepness" of the curve. 
When N0 /N" is not equal to zero the peak moves to the left (Fig. 4). In the case No/N" = 1.0 
the behaviour corresponds to the case of density hardening (Fig. 5). In Fig. 6 the corre­
sponding diagrams for the plastic volume strains are shown. The solutions indicate that 
in the two invariants-dependent model it is possible to obtain volumetric strains which 
correspond to the experimental data. 

As the second example, let us consider the following function: 

(4.11) g(N) = g(l-e-PH). 
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The diagram of the function is shown in Fig. 7. Substitution into Eq. (4.5) yields 

(4.12) A= 3K[{l+ !~ e-PN)(Ml1 +c)-VJ2J. 

N 
FIG. 7. 

For this choice of g(N) the function A is continuous and has continuous derivatives. 
For the axially symmetric case and constant / 1 the following solutions were obtained: 

.. I 12 g*{3 
(4.13) J' 1 = (u-l)e-x+ -- (e-x-e-ex) 

M/1 +c {3-6K 

for {3 =1: 6K and 
;-

(4.14) l 12 -1 = (u-l)e-x+g*xe-x 
Ml1 +c 

for {3 = 6Kwhere x = 6K(N-N0 ), g* = ge-fJNo, 

" = V 1i j(M/1 +c), e = f3/6K. 

It should be noted that N0 has influence on g* only. For large values of N0 , g* approaches 
zero and the behaviour is described by the density hardening model. It is not necessary 
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to discuss the influence of N 0 separately. We may assume that N 0 = 0 and take an appro­
priate value of g*. 

Diagrams for two cases are shown in Figs. 8, 9, 10 and 11. The results are smooth 
curves. The disadvantages in this model are that there are difficulties in explaining the 
influence of the parameters on the solutions. It may be stated, however, that the diagrams 
include the essential features of granular material behaviour. 

5. Conclusions 

In the density hardening model all the solutions approach the critical line, but it is not 
possible to get an appropriate description of the volumetric changes. 

In the case the model depends on two invariants of plastic strain it is possible to consider 
peaks in the strain-stress diagrams and to take into account that at the beginning of loading 
the volume decreases and when the stress deviator increases the volume increases. It is thus 
possible to model the behaviour when hardening is succeeded by a softening of the material. 
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