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Abstract 
W e  have developed  a theory  for inho m ogeneous  syste ms that allows for incorporation of eff ects 

of mesoscopic fluctuations.  A hierarchy of equations relating the correlation and direct correlation 

functions for the local excess φ(r) of the volu me fraction of particles  ζ has been obtained,  and an 

approximation leading to a closed set of equations for the two-point functions has been introduced 

for the disordered inho m ogeneous phase.  We have solved num erically the self-consistent equations 

for one (1D) and three (3D) dimensional models with short-range attraction and long-rannge 

repulsion  (SALR). Predictions  for all  the qualitative  properties  of the 1D m o del  agree  with the 

exact  results,  but only se mi-quantitative  agreem e nt  is  obtained  in  the  simplest  version  of the 

theory.    The  eff ects  of fluctuations in the  two considered  3D m o dels  are  significantly  diff erent, 

despite  very  similar  properties  of these  m o dels  in the  mean-field  approxim ation.   In  both cases 

we  obtain the  sequence of large  - sm all - large  co m pressibility  for increasing  ζ . The  very  s mall 

co m pressibility is acco m p anied  by the oscillatory decay of correlations  with the correlation  length 

orders of magnitude larger than the size of particles.  Only in one of the tw o considered m o dels for 

decreasing te m p erature the s mall com pressibility beco mes very s mall and the large com pressibility 

beco mes  very  large,  and eventually  van der  Waals  loops appear.   Further  studies  are  necessary 

to determine the nature of the strongly inho m ogeneous phase present for intermediate volu me 

fractions in 3D. 
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I.   INTRODUCTION 
 
 

Ionic systems have been studied for decades and significant progress has been achieved, 

to a great deal thanks to the important contribution by George Stell.  His studies concerned 

in particular the restricted primitive model (RPM). In the RPM equisized hard cores carry 

charges with equal magnitude and are immersed in structureless solvent.  Already in 1976 

George Stell predicted phase separation into ion-poor and ion-rich phases with the associated 

critical point[1].  In 1992 Stell published very strong arguments that despite the long-range 

of the Coulomb potential the critical point in the RPM belongs to the Ising university class 

[2]. The Ising universalty class was confirmed later by field-theoretic methods [3–5] and by 

the hierarchical reference and collective variables theories [6, 7]. The Stell prediction was 

verified by simulations in 2002 [8]. 

In reality the Coulomb potential often competes with the specific van der Waals interac- 

tions and, in particular in the case of charged globular proteins or colloid particles in complex 

solvents, with various solvent-induced effective interactions.  Moreover, the size, shape and 

charge of the positively and negatively charged ions or particles can be different.  This dif- 

ference is moderate in room temperature ionic liquids (RTIL), but in the case of charged 

globular proteins in solvents containing microscopic counterions the size- and charge ratio 

becomes ∼ 10, and it increases even to ∼ 102  − 104 in the case of colloid particles.  The size- 
 

and charge asymmetry, as well as the competing non-Coulombic interactions both may lead 

to spacial inhomogeneities on the length scale larger than the size of ions or charged parti- 

cles. One of the first theoretial observations of the instability of the homogeneous phase with 

respect to periodic charge- or number-density distribution was made by Stell and cowork- 

ers [9–12]. Inhomogeneitis, in particular clusters, networks or layers, or exotic crystals, were 

observed also in experiments and simulations   [13–26].  Instability with respect to periodic 

distribution of particles in space competes with the phase separation, and may lead to quite 

complex phase behavior [4, 10–12, 27]. 

Despite the progress in studies of ionic systems and charged particles, many important 

questions remain open,  because accurate description  of systems with mesoscopic inhomo- 

geneities remains a challenge. Liquid matter theories, such as the generalized mean-spherical 

approximation  or the  self-consistent  Ornstein-Zernike  approximation  (SCOZA)  [28] work 

very  well  for simple  liquids.   In particular,  SCOZA yields  globally accurate  phase  dia- 
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gram [29]. Theories  like  SCOZA and hierarchical reference  theory (HRT)  include  fluctu- 

ations over all length  scales;  the  limitation  of SCOZA and HRT is that  no solutions  are 

found when a uniform state becomes unstable with respect to a modulated phase [30, 31]. 

It is not easy to obtain solutions in the liquid-matter theories for inhomogeneous systems 

with competing interactions, such as the short-range attraction and long-range repulsion po- 

tential (SALR). Nevertheless, some features due to the SALR potential can and have been 

studied  [30–32]. In particular,  enhanced density  fluctuations,  a tendency  towards cluster 

formation  and a growth  of the  compressibility  in a large density  and temperature  inter- 

val close to  the liquid-vapour transition  was observed  by Pini et  al.  in the case of weak 

repulsion [31, 32]. 

The inhomogeneities  that  occur at  the microscopic  length  scale near external  surfaces 

are  successfuly  described  by the  density  functional  theory  (DFT)  [33].  However,  in the 

case  of spontaneously  occurying mesoscopic  inhomogeneities  the  predictions  of the  DFT 

deviate  from the  results  of simulations  more significantly  than  in simple  fluids  [34, 35]. 

This is because fluctuations, such  as displacements,  reshaping, merging or splitting of the 

aggregates play an important role in these systems. 

The  fluctuations  can be taken  into  account  in the  Brazovskii  field  theory  (BFT)  [36] 

relatively easily, but since this theory is of phenomenological nature, neither the equation 

of state  (EOS) nor the  phase diagram in terms  of real  theromdynamic  variables  can be 

determined.  Note that the displacements, reshaping, merging or splitting of the aggregates 

can appear either spontaneously or as a result of external stimuli, and one can expect that 

thermodynamic susceptibilities, in particular the compressibility and the specific heat, are 

much different than in homogeneous systems.  Since the complexity of these systems leads 

to serious technical difficulties, their structural, mechanical and thermal properties are not 

yet fully understood. 

The  aggregates  are  periodically  distributed  in space  in the  ordered phases analogous 

to lyotropic liquid crystals,  but  in the inhomogeneous disordered  phase, analogous  to mi- 

croemulsion, the aggregates are ordered only locally. The SALR and amphiphilic systems 

have similar properties, since as shown  in Ref.[37], both can be described by the Brazovskii 

functional.  (We should mention here that George Stell studied the amphiphilic systems as 

well, in particular in Ref. [38].) However, while the lyotropic liquid crystals in amphiphilic 

systems are quite common [39], only disordered distribution of spherical or elonogated clus- 
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ters  was observed  in the  SALR  system  by confocal  microscopy  [19, 20].  It is unclear if 

the observations  concerned  the  disordered inhomogeneous phase, or just  one state  of the 

ordered phase and after averaging the distribution of the aggragates would be periodic.  The 

ordered hexagonal and lamellar phases were obtained by molecular dynamics simulations, 

but the spherical clusters were not ordered periodically in this simulation [24]. In  recent 

MC simulations  [40] a similar sequence of phases as  in  Ref.[37] was  obtained. 

In Fig.1 we show  a cartoon  with schematic  representation  of a typical  distribution  of 

particles in the periodically ordered inhomogeneous phase, and in the disordered phase that 

is either inhomogeneous (Fig.1b) or homogeneous (Fig.1c) on the mesoscopic length scale. 

“The disordered phase” and “the homogeneous phase” are often treated as synonyms  for 

the phase with the position-independent average density.  However, the position-independent 

average density does not necessarily mean that the structure is homogeneous at the meso- 

scopic length  scale  in the  majority  of states  (see  Fig.1b).  Here  we  call the  phase with 

position-independent average density “the disordered phase”. 

The  ordered periodic  phases in the  SALR  and amphiphilic systems  are  quite  well  de- 

scribed  by the  mean-field  (MF)  theories  [34, 41, 42].  In the  disordered inhomogeneous 

phase, however, the mesoscopic fluctuations play a key role, and its properties are not cor- 

rectly predicted on the MF level.  The aggragates are clearly seen in confocal microscope and 

in simulation snapshots, but due to fluctuations, the average volume fraction of the parti- 

cles, ζ̄(r), is position-independent, ζ̄(r) = const..  For this reason one cannot distinguish the 
 

inhomogeneous and homogeneous structure of the disordered phase based solely on the one- 

particle distribution function.  In this work we propose a theoretical method of investigation 

of the disordered inhomogeneous phase, and apply the formalism to a one-dimensional (1D) 

and a three-dimensional (3D) SALR model with strong repulsion in order to calculate the 

EOS. 

Some information about properties of the disordered inhomogeneous phase was obtained 

in Ref.[43], where a 1D lattice model with nearest-neighbor attraction and third-neighbor 

repulsion was solved exactly.  When the repulsion is strong enough, then clusters consisting 

of three particles separated  by three empty  sites (i.e.  ...ooo...ooo...ooo...ooo...  where “.” 

and “o” denote the empty and ocuppied site repectively) are energetically favourable. The 

volume fraction of particles in this ordered structure, stable only at temperature T = 0, is 

ζ = 1/2.  There are no phase transitions in 1D models with short-range interaction,  but 
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FIG. 1:  Panel  (a) shows a typical configuration  in the ordered  inhomogeneous  phase,  w here  clus- 

ters  of particles  for m a hexagonal  lattice.   In  panel  (b)  a typical  configuration  in the disordered 

inhomogeneous  phase is shown.  The particles  self-asse mble  into clusters,  but the clusters  are  not 

distributed  periodically.  Fluctuations  of the positions lead  to the average  volu me  fraction that is 

position-independent.  Properties of such an inhom o geneous syste m can di ffer fro m the disordered 

phase that is ho m ogeneous on the mesoscopic length scale (panel (c)) despite the sa me value of the 

average volum e fraction of the particles.  In this w ork we are concerned with properties of syste m s 

shown in panel (b), where mesoscopic fluctuations play a do m inant role. 
 
 
 
 

at low T and ζ ≈  1/2 the disordered phase turns out to be strongly inhomogeneous.  In 
 
Ref.[43] it was found that for T > 0 the correlation function exhibits an oscillatory decay 
with the period ≈ 6. For ζ ≈ 1/2 the correlation length increases to very large values and 

 
the compressibility decreases to very small values for decreasing T . The compressibility is 
small for ζ ≈ 1/2, because the increase of ζ leads to shorter separation between the clusters 

 

and to repulsion between them.  Large compressibility was obtained for ζ that is either too 

small or too large for formation of the periodic structure that is favourable energetically. 

The chemical potential µ(ζ ) and pressure p(ζ ) isotherms at low T are much different than 

in simple fluids.  When T decreases, the slope of µ(ζ ) becomes very small for a range of both 

small and large ζ , and very large for ζ ≈ 1/2.  The very small slope of µ(ζ ) was interpreted 
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as pseudo  phase transition between homgeneous very dilute or very dense phase,  and the 
inhomogeneous  phase present for ζ ∼ 1/2.  Interestingly, for ζ ∼ 0.6 the pressure decreases 

 

for increasing T , in contrast to simple fluids.  Properties of the two-dimensional and three- 

dimensional  (3D) systems  can be easily  determined  neither  by exact  calculations  nor by 

simulations, due to large finite size effects and the collective motion of the aggregates.  For 

this reason it is important to develop an approximate predictive theory and test its accuracy 

by comparison with the exact results obtained in the 1D model. 

Development  of a tractable  theory  that  could allow for quantitative  or at  least  semi- 

quantitative description of structural,  mechanical  and thermal properties of systems  with 

mesoscopic inhomogeneities  is our long-term  goal. In Ref.[37,  44–46] we have made first 

steps  in this  direction.   The  general  formalism allows  for investigation  of disordered and 

periodically ordered phases, but the obtained  equations  are very  difficult  and in practice 

approximations  are  necessary.   In order  to  verify  quality of various  approximations,  one 

should  compare the results  with exact  solutions  that  so far exist  only for the  disordered 

phase [43]. Before considering the modulated phases, we limit ourselves to the disordered 

phase to verify various approximate schemes. 

In this work we further develop our theory that combines liquid-matter theory, DFT and 

BFT methods.  The present version of the approximate theory is based to a large extent on 

the derivation described in Ref.[46], and summarized briefly in sec.2.  We focus on a one- 

component system.  In the context of charged particles this means that we integrate out the 

degrees of freedom of the counterions, and consider screened electrostatic potential between 

the charged particles.  The explicit counterions can be considered within our formalism at a 

later stage. 

The  self-consistent  Gaussian appoximation  developed in Ref.[46] is rather  simple  and 

yields results that agree qualitatively with majority of the exact results obtained for the 1D 

lattice model  [43]. Unfortunately,  it turned  out that in the case of the 3D SALR  model 

in continuum  space  our equation  for the  direct  correlation  function  has no solutions  for 

the phase space region where inhomogeneities are expected.  It resembles the above men- 

tioned lack of solution in the SCOZA. To overcome this problem, in this work we develop 

a theory beyond the Gaussian approximation.  In sec.3 a hierarchy of equations relating the 

many-point  correlation and direct  correlation  functions  for mesoscopic volume  fraction  is 

constructed.  We make an approximation for the direct four-point correlations, and obtain 
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an equation relating the two-point correlation and direct correlation functions that together 

with the Ornstein-Zernike (OZ) equation form a closed set of equations.  Finally, we obtain 

expressions for µ(ζ ) and p(ζ ) which contain contributions resulting from the mesoscopic fluc- 

tuations.  In sec.4 the results obtained in the approximate theory for the 1D lattice model 

are compared with the exact  results  of Ref.  [43]. The  agreement  is much better  than  in 

the Gaussian approximation.   In sec.5 we present  results  of our theory for the 3D SALR 

model with both the attractive and the repulsive part of the interaction potential having 

the Yukawa form. We choose two sets of parameters, both favouring periodic distribution of 

particles over the homogeneous state.  In the first model the attraction range is very short 

and the repulsion barrier is small.  For this potential, small clusters are formed and the gas- 

liquid separation is energetically unfavourable  compared to the homogeneous state.  In the 

second model the attraction range and the repulsion barrier are both larger.  Larger clusters 

are formed and the gas-liquid separation is energetically favourable over the homogeneous 

state.  In MF approximation the phase diagrams of the two models are very similar  [41]. 

Here, we ask if the effects of fluctuations on the shape of the µ(ζ ) and p(ζ ) curves depend on 

the range and amplitude of the attractive and the repulsive part of the interaction potential. 

Sec.6 contains summary and discussion. 
 
 
II.   BRIEF SUMMARY OF THE THEORY FOR SYSTEMS WITH MESOSCOPIC 

INHOMOGENEITIES 
 
 

We consider systems with inhomogeneities on a length scale significantly larger than the 
size of molecules σ ≡ 1 (see Fig.1b). In our theory [44–46] a mesoscopic volume fraction is 

 

described by a smooth function ζ (r) equal to the fraction of the volume of the mesoscopic 

region with a center at r that is covered by the particles.  By fixing the mesoscopic state given 

by ζ (r) we impose  a constraint  on the available microstates.   The  grand thermodynamic 

potential  in the presence  of this constraint  is denoted  by Ωco [ζ (r)].  After removal  of the 

constraint mesoscopic fluctuations may appear, and the grand potential is given by [44, 46] 
 

Ω = Ωco[ζ̄ ] − kB T ln 
\ 

Dφe−βHf 

 
 
(1) 

 

 

with β−1 = kB T , kB  the Boltzmann constant, and 

Hf [ζ̄ , φ] = Ωco [ζ̄  + φ] − Ωco[ζ̄ ], (2) 
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1 

1 

n 

1 

n 

n 

n 

where ζ̄  denotes the average volume fraction, and 
 

φ := ζ − ζ̄  (3) 
 
 
is the mesoscopic fluctuation.  The first term in (1) contains contributions from the fluctua- 

tions on the microscopic length scale in the absence of mesoscopic fluctuations.  The second 

term contains the contributions from the fluctuations on the mesoscopic length scale, i.e. 

from different mesoscopic inhomogeneities that are thermally excited with the probability 

e−βHf /Ξ.  When ζ̄  is the average volume fraction, then it follows that (φ) = 0, where 
 

(X ) := Ξ−1 DφX e−βHf (4) 
 
 
and  

 

Ξ = Dφe−βHf . (5) 
 

In the following (φ) = 0 is always assumed. 
 

We introduce the functional derivatives 
 
 

Cn(r1, ..., rn) := 
 

n 

 
 
 
 

δnβΩ 
δζ̄(r1)...δζ̄(rn) 

 
 
 
 
 
= (6) 

C (0) δ ( 
−βHf [ζ̄,φ]

  
 
 
 
where 

n   (r1, ..., rn) − 
δζ̄(r  )...δζ̄(r  ) 

ln 
 
 

C (0)  δ 

Dφe 
 
 
 
βΩco 

n   (r1 , ..., rn) = 
δζ̄(r  )...δζ̄(r . (7) 

) 
 

Cn  and C (0)  are functionals of ζ̄ . 
 

For n = 1, 2 we obtain from (6) 
 

C1(r) = C (0)(r) + ( 

 
 
 
 
 
δβHf 

δζ̄(r) 

 
 
 
 
 

),  (8) 
 
and  

C2 (r1, r2) = C (0)(r1, r2) + ( 
 
δ2βHf 

 

) − (
 
 
δβHf 

 
δβHf 

 

)con (9)  
 
where 

2 δζ̄(r1)δζ̄(r2) δζ̄(r1) δζ̄(r2) 

(X (r1)Y (r2 ))con  := (X (r1)Y (r2)) − (X (r1))(Y (r2)).  (10) 
 
The explicit expressions for C3 and C4 are given in Appendix A. 

 

We make the standard local MF approximation for the grand potential with suppressed 

mesoscopic fluctuations, 
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C (0)
 

C (0)
 

C (0) 

1 

 
Ωco [ζ ] = U [ζ ] − T S[ζ ] − µN [ζ ], (11) 

 
where U [ζ ], S[ζ ] and N [ζ ] are the internal energy, the entropy and the number of particles 

respectively in the system with the mesoscopic volume fraction constrained to have the form 

ζ . The entropy and the internal energy in the local density approximation are given by 

− T S[ζ ] = drfh(ζ (r))  (12) 
 
 
and  

1 
U [ζ ] = 

2 

 

dr1 dr2ζ (r1)V (r1 − r2)ζ (r2).  (13) 
 
In order not to include the contributions to the internal energy from overlapping hard cores 
of the particles,  we assume V (r1 − r2) = u(r1  − r2)θ(|r1  − r2 | − 1), with u denoting  the 

 
interaction  potential.   We  use  volume  fraction  rather  than  density  in (13), therefore  we 
should re-scale the interaction potential u(r1 − r2) by the factor (6/π)2  to obtain the same 

energy as in the standard theory.  We also re-scale the chemical potential, µ = (6/π)µ, so 

that 
 

µN [ζ ] = µ  drζ (r).  (14) 
 
For Ωco defined in (11)-(14) we have 

 

1   (r) =  dr1ζ (r1)βV (r1 − r) + A1(ζ (r)) − βµ (15) 
 

 

2   (r1, r2) = βV (r1 − r2) + A2 (ζ (r1))δ(r1 − r2)  (16) 
 
and for n ≥ 3  

n   (r1, ..., rn) = An(ζ (r1))δ(r1 − r2)...δ(rn−1 − rn),  (17) 
 
where  

 
An(ζ ) = 

 
dnβfh(ζ ) 

dζ n  . (18) 

With the above form of Ωco we can obtain ζ̄  for given T and µ from the requirement that 
Ω takes the minimum, i.e. C1(r) = 0, with C1  given in Eq.(8).  The only difficulty is the 

calculation of the fluctuation correction to the mean-field (MF) equation C (0)  = 0. In order 
to calculate this correction, it is neccessary to perform functional integrals (see (4) and (8)). 

In practice only the Gaussian functional integrals can be calculated.  In order to perform the 

functional integrals in (1), (8) and (9), we have to approximate Hf  by an effective functional 
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2 

2 
1 

that is quadratic in the fluctuation φ, or expand Hf [ζ̄ , φ] in a functional Taylor series w.r.t. 
 

φ. 
 

In Ref.[46] we have made the approximation 
 

1 
βHf  ≈ βHG  = 

2 
dr1 dr2φ(r1)C2(r1, r2)φ(r2) (19) 

 
and obtained from (9) the following approximate equation: 

 

C (r1, r2) ≈ C (0)(r1, r2) + 

 

A4 (ζ̄(r1)) 
2 

 

G(r1, r2)δ(r1 − r2 ) −  

 

A3 (ζ̄(r1))A3 (ζ̄(r2)) 
2 

 
 
G2(r1, r2). (20) 

 

where G(r1, r2) := (φ(r1)φ(r2)) satisfies the OZ equation 
 

 
dr2G(r1, r2)C (r2, r3) = δ(r1, r3)                                 (21) 

and C ≡ C2. From now on we omit the subscript 2 in the case of the two-point correlation 

and direct correlation functions to simplify the notation. Eqs.(20) and (21) have to be solved 

self-consistently.  Eq.(20) is valid for any ζ̄(r), including the modulated phases. 

The above Gaussian approximation is relatively simple, and correctly predicts the main 

qualitative features of the one-dimensional lattice model that was solved exactly in Ref. [43]. 

Unfortunately, it has a serious disadvantage.  In the case of a three-dimensional SALR model 

Eq.(20) has solutions only for a limited range of T and ζ̄  in the disordered phase. This lack 
 

of solution  occurs  because A3 (ζ ) is large for small  or large values of ζ , and the  RHS of 

Eq.(20) becomes negative.  On the other hand, in Fourier representation C̃(k) > 0 for high 
T and never vanishes, since the RHS of Eq.(20) diverges for C̃(k) = 0. The lack of solution 

indicates that the self-consistent Gaussian approximation is oversimplified.  Thus, if we want 

to study a three dimensional system, we have to abandon the elegant and simple Gaussian 

approximation. 
 
 
III.   BEYOND THE GAUSSIAN APPROXIMATION 

 
 

In the first step beyond the Gaussian approximation we expand Hf [ζ̄ , φ] in a functional 
 

Taylor series w.r.t. φ, 

βHf [ζ̄ , φ] = βH0 + β∆H (22) 
 
with  

 

βH0[ζ̄ , φ] = 
2 

 
 
dr1 dr2φ(r1)C (0)(r1 , r2)φ(r2) (23) 
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1 
n 

and  

β∆H [ζ̄ , φ] = drC (0)(r)φ(r) + 
)

 
n≥3 

 

 
A (ζ (r)) 

dr φ(r)n. (24) 
n! 

In practice  the  Taylor expansion  is truncated,  and only terms  up to  φn  are  kept.   For 

stability reasons n must be an even number.  The truncation is justified provided that the 

neglected terms are smaller than the kept terms.  Since A2m+1  vanishes for some value of ζ , 

we compare the terms ∝ φn and ∝ φn+2, and require that Anφn/n! > An+2φn+2/(n + 2)! for 
 

even n. The above necessary condition must be satisfied by the fluctuations φ that yield the 

major contribution to the average quantities.  If for such fluctuations the above condition is 

satisfied, then it should be satisfied by (φ(r)2). 
 

In this work we develop a lowest-order theory beyond the Gaussian approximation, and 

keep terms up to A4 φ4/4! in Hf . The φ4 theory is valid if the Taylor expansion of Hf [ζ , φ] 

can be truncated at the fourth order term for the dominant fluctuations φ. We therefore 

introduce the necessary condition for validity of the φ4 theory, 

(φ(r)2) < 30A4(ζ ) . (25) 
A6(ζ ) 

 

If the criterion (25) is violated, the φ4 theory may be oversimplified.  Before discussing the 
results of our theory for particular models, we shall verify if the results for G(r1, r2) satisfy 

(25) for r1 = r2.  Note that the RHS of (25) depends on ζ , therefore the accuracy of the φ4 

theory can be different for different volume fractions. 

By construction  of the  mesoscopic  theory,  G(r1 , r2) is proportional  to  the  correlation 

function  for the  microscopic  density  at  the  point  belonging  to  a mesoscopic region with 

the center at r1, and at the point belonging to a mesoscopic region with the center at r2, 

averaged over these two mesoscopic regions [44, 45]. In Ref. [44, 45] it was assumed that 

these mesoscopic regions are smaller than the size of the aggragates, and significantly larger 

than σ. 

In this work we limit ourselves to the disordered phase with the average volume fraction 

independent of the space position, ζ̄  = const.  In the disordered fluid 

G = G(r, r)  (26) 
 
is a number indepenent of r.  It increases with increasing deviation from the average volume 

fraction in regions with excess density.  It can be considered as a measure of the inhomo- 

geneity of the system, or compactness of the aggregates. 
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2 

Let us first consider the relation between ζ̄  and µ. When Hf  is truncated at the φ4 term, 

then from (8) we obtain 
 

βµ ≈ ζ̄  
 
drβV (r) + A1 (ζ̄ ) + 

 

A3 (ζ̄) 
2 

 

(φ(r)2) + 

 

A4 (ζ̄) 
3! 

 

(φ(r)3) + 

 

A5 (ζ̄) 
4! 

 

(φ(r)4). (27) 

In order to evaluate µ, we need approximations for (φ(r)n) with n ≤ 4. 
 

Our approach is a generalization of the method developed in Ref.[46].  We calculate the 

correlation function G using the OZ equation (21), and Eq.(9) for C . Since in the φ4 theory 

G depends only on An  with n ≤  4 (see (22), (24) and (4)), in the consistent approach C 
should  be expressed  in terms  of An   with n ≤  4 too.   Thus,  from (9) we obtain  for the 

 

disordered phase 

C (r1, r2) ≈ C (0)(r1, r2) + 

 

A4 (ζ̄) 
2 G(r1, r2)δ(r1 − r2 ) −  

 

A3 (ζ̄)2 

4 (φ(r1)2φ(r2)2 )con. (28) 
 

In order to have a closed set of equations ((21) and (28)), we need an approximation for 

(φ(r1)2φ(r2)2)con.  In Ref.[46] we assumed (φ(r1)2φ(r2)2)con  = 2G(r1, r2)2, but this approxi- 
 

mation turns out to be an oversimplification for 3D systems, as discussed  in sec.2. Thus, we 
must take into account the well-known relation of the four-point correlation function with 

G and the three- and four-point direct correlation functions [33, 47]. The expressions for C3 

and C4 are obtained in our theory from Eq.(6). The approximate forms of C3 and C4 for 

Hf  Taylor-expanded up to φ4 (see (22)-(24)) are given in terms of the correlation functions 

in Appendix A. In order to obtain a closed set of equations for (φ(r1)2φ(r2)2 )con, we neglect 
 

the contribution proportional to C3, 

(φ(r1)2 φ(r2)2)con  ≈ 2(φ(r1)φ(r2))2 (29) 

−  dr′ dr′′ dr′′′ dr′′′′G(r1, r′)G(r1, r′′′)G(r2, r′′)G(r2, r′′′′)C4(r′, r′′, r′′′, r′′′′), 
 

 
and for C4 (Eq.(51) in Appendix A) we make the approximation 

 
 
 

−
( A4    2 

  
C4 (r′, r′′, r′′′, r′′′′) ≈ A4 δ(r′ − r′′)δ(r′′ − r′′′)δ(r′′′ − r′′′′)  (30) 

(φ(r′)2 φ(r′′)2)con δ(r′ − r′′′)δ(r′′ − r′′′′) + δ(r′ − r′′′′)δ(r′′ − r′′′)
)
 

2 
  

+(φ(r′)2φ(r′′′)2 )conδ(r′ − r′′)δ(r′′′ − r′′′′) . 
 
 
Graphical representation of the above equations is shown in Fig.2. We insert (30) in (29), 

and obtain 
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FIG. 2:  Upper panel:  graphical representation of Eq.(29).  The bullets represent the external points 

r1  and r2.  The big shaded square represents C4.  O pen circles represent internal points.  The thick 

line  connecting  points r′ and r′′ represents  G(r′ , r′′).  With  each  internal  point r, an integration 

over r is associated.  The first and second diagra m  represents the first and second term in Eq.(29) 

respectively.   Lower  panel:  graphical  representation  of our approximation (30)  for the four-point 

direct  correlation  function C4.  The  s mall shaded squares  at the vertices  represent  A4 . Thin  line 

e manating  fro m the vertex  at ri represents  the corresponding  argu ment  of C4 (r1 , r2 , r3 , r4).  The 

first  term  is given  in Eq.(17).  The  shaded loop connecting  the vertices  at r′ and r′′ is a solution 

of the self-consistent  equation  (32).   It represents  our approxim ation for (φ(r′)2 φ(r′′)2)con,  and is 

shown in terms of Feyn m an diagra ms in the lower panel of Fig.3. 
 
 
 
 
 
 
 
 
 
 
 
 

+
( A4 

(φ(r1)2φ(r2)2 )con  ≈ 2(φ(r1)φ(r2))2(31) 

− A 4  dr′(φ(r1)φ(r′))2(φ(r′)φ(r2))2 
 
2 

dr′ dr′′(φ(r  )φ(r′))2(φ(r′)2φ(r′′)2)con(φ(r′′)φ(r  ))2 

2 1 2
 

+2
( A4 2 

dr′ dr′′(φ(r  )φ(r′))(φ(r  )φ(r′′))(φ(r′)2φ(r′′)2 )con(φ(r′)φ(r  ))(φ(r′′)φ(r  )) 
2 1 1 2 2

 
 

When only the terms that have a form of convolution are kept, we obtain from Eq.(31) 
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1 2 

2 

2 

2 

3 

a very simple equation for (φ(r1)2 φ(r2)2)con  that in Fourier representation takes the form 
 

 A4    2 ˜ ˜
 

D̃ s(k) = 2D̃ (k) − A4 D̃ (k)2 + 
(

 
2 

D(k)2Ds(k),  (32) 
 
where 

 
D̃ (k) = d(r  − r )e−i(r1 −r2 )·k G(r1, r2)2 (33) 

 

 

is the Fourier fransform of G(r1, r2)2, and D̃ s(k) is the Fourier transform of (φ(r1)2 φ(r2)2)con 
 

defined in the same way. From (32) we easily get 
 

D̃ (k) 
D̃ s(k) =  

1 +  1 A4D̃ (k) 
. (34) 

 
In this approximation Eq.(28) in Fourier representation takes the simple form 

 

C̃(k) = C̃(0)(k) + 
A4 (ζ̄) 

G − 
A3 (ζ̄ ) ˜

 
2 2 2 Ds(k).  (35) 

 
Eqs.(21), (35), (34) and (33) form a closed set of equations for G. This result agrees with the 

results of the perturbation expansion in terms of Feynman diagrams in the self-consistent 

approximation,  where  only 1-loop diagrams  and diagrams  that  have a form of chains of 

loops are included.  The diagrams contributing to the direct correlation function C in the 

approximation equivalent to our theory are shown in Fig.3. 

Note that in contrast to the Gaussian approximation, positive solution of Eq.(35) exists 
when C̃(0)(k) < 0 even for ζ → 0, since D̃ s ≪ D̃ , and the sum of the last two terms on the 

 
RHS is positive and large. Recall that we have neglected the term of order C 2 G5 in Eq.(29). 
Since C3 ∝ A3 , and A3(ζc) = 0 where ζc is the critical density, the accuracy of the solution 
of Eq.(35) decreases for increasing |ζ − ζc|. 

 
Let us return to the chemical potential, Eq.(27). In the lowest-order approximation we 

keep the dominant terms only, i.e. we neglect (φ(r)3)  and assume (φ(r)4)  ≈ 3(φ(r)2)2.  In 
 

this approximation 
 

βµ ≈ ζ̄  
 

drβV (r) + A1 (ζ̄ ) + 
A3(ζ̄) 

G + 
2 

A5(ζ̄) 
8 G 2 . (36) 

 
The fluctuation contribution is given in the last two terms, where G must be obtained from 

 

the solution of Eqs.(21), (35), (34) and (33). Both A3(ζ ) and A5 (ζ ) are negative for small-, 

and positive for large values of ζ (see (18)).  Thus, the fluctuations lead to decreased and 
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FIG. 3:   Upper  panel:   diagram matic  representation  of the fluctuation contribution to C (r1, r2 ). 

The  triangles  and squares  represent  A3  and A4  respectively.   Thin  line  em anating  fro m a black 

vertex  (triangle  or square)  at  ri represents  the corresponding  argu ment  of C (r1, r2 ).  The  thick 

line  connecting  the points r′ and r′′ represents  G(r′, r′′).  The  shaded loop represents  a series  of 

diagra ms  sho w n in the lower  panel.  In  the lower  panel  with each internal  point at r, sho wn as a 

gray square, an integration  over  r is associated.  Finally,  a sym m etry factor 1/2 is associated  with 

each loop.  In the Gaussian approximation only the first term in the series sho w n in the lower panel 

is included [46]. 
 
 
 
 
 
increased µ for small and large ζ respectively, as found already in Ref.[46] in the Gaussian 
approximation.  Note that the leading-order corrections to (36), associated with (φ(r)3) and 
(φ(r)4) − 3(φ(r)2)2, are of the opposite sign to A2n+1 , hence the difference between the exact 

 

and the MF result for µ should be smaller than predicted by (36). 
 

The EOS is obtained from 
 

p = −Ω/V  = pM F  + kB T ln Ξ/V (37) 
 

where V denotes the system volume, Ξ is defined in Eq.(5), and pM F  = −Ωco/V . From (11) 
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2 

A 

2 

n 

2 

we have  
 

pM F  = − 1 Ṽ (0)ζ̄ 2 − f 

 
 
 

(ζ̄ ) + µζ̄ . (38) 
2 h

 

Note that the fluctuation contribution to the pressure p is included already in pM F , if for µ 
 

we use our result (36) to obtain the EOS. 
 

We  want  to  estimate  the  correction  to  pM F   in the  phase-space region where  the  MF 
predicts  instability  of the  disordered phase with respect  to periodic  fluctuations.   In this 

case  C (0) (k)  < 0 for some range  of k > 0, and the  functional  integrals  in the  standard 

perturbation expansion diverge.  To overcome this problem we write ln Ξ in the form 
∞ 

ln Ξ = ln  Dφe−βHG  + ln 
(

1 + (
) ( −β∆HG)  

) 
n! G 

 

 
(39) 

n=1 

where  (...)G  is the  average  calculated  with the  probability  proportional  to  exp( −βHG), 
 

Hf  = HG  + ∆HG, HG  is given in (19), and 
1 ( A4 G 

2 
3 2 2  

con 
∆HG = − 2 dr1dr2φ(r1)φ(r2) δ(r1, r2) −  

2 
(φ(r1) φ(r2) ) 2 

(40) 

+ dr
(

C (0)φ(r) + A3 φ(r)3 + A4 φ(r)4   . 1 3! 4! 

In the first term on the RHS of Eq.(40) the explicit form of C (0) 
− C is used (see(35)). We 

obtain the approximation for pressure using (39) and (40), and keeping only the leading- 

order contribution, 

p ≈ pM F  + 
A4 G 

8 

 
. (41) 

kB T ln 
f 

Dφe−βHG /V is disregarded in (41), since as shown in Ref.[46], this term is negligible 

compared to µζ̄ . 
 

The procedure developed in this section is just the first step beyond the self-consistent 

Gaussian approximation.  Systematic improvement of the accuracy of the results is possible 

within the framework described above, when C3  and the neglected terms of C4  are taken 

into account in Eq.(29), and/or Hf  is truncated at a higher-order term. 
 
 
IV.  RESULTS FOR THE 1D  LATTICE MODEL WITH COMPETING INTERAC- 

TIONS 

 
In this section we verify the theory developed in sec.3 by comparing the results with the 

exact solution of the 1d lattice model with first-neighbor attraction J1  and third neighbor 
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2 

0 C̃(0)
 

2 

C̃(0)
 

repulsion  J2.  For the  comparison  we choose J  = J2 /J1   = 3 [43].  We  shall  verify  if the 

present version of the theory yields better agreement with the exact results than the Gaussian 

approximation. 

Because of the repulsion between the third neighbors, clusters composed of three particles 

separated by three empty sites are favourable energetically.  Such an ordered periodic struc- 

ture is stable only at T = 0. For T > 0 a disordered inhomogeneous phase with oscillatory 

decay of correlations is stable.   The characteristic  properties of the disordered inhomoge- 

neous phase determined for the considered model in Ref.[43] are:  (i) the correlation length 

increases rapidly to very large values for decreasing T and |ζ − ζc|, where ζc = 1/2 is the vol- 
 

ume fraction optimal for the periodic distribution of clusters in this model (it is also equal 

to  the  critical  volume  fraction),  (ii)  compressibility  is very  small  for the  volume  fraction 

optimal for the periodic pattern,  ζ ≈  1/2,  and decreases  significantly with decreasing  T , 
 

(iii) the compressibility is very large for small and large ζ , and increases with decreasing T , 

(iv) the µ(ζ ) line has three inflection points.  Many of the above features are predicted by 

the Gaussian theory [46]. However, in the Gaussian approximation the compressibility for 

ζ ≈ 1/2 is independent of T , and no anomalous decrease of pressure in a heated system is 
obtained for ζ ≈ 0.6, in contrast to the exact results. 

Note that when ζ̄  = const. the only difference between Eq.(35) and Eq.(20) (rewritten 

in Fourier representation) is the replacement of D̃ by D̃ s (see (33) and (34)). Thus, to find 

C we can repeat the procedure described in detail in Ref.[46]. In short, for C̃(0)  defined in 
 

Eq.(16) we make the approximation 
 

 

2   (k) ≈ c0 + v0(k2 − k2 )2.  (42) 
 
 
The parameters c0 , v0, k0  are obtained from the form of the interaction potential and from 
the form of fh  in the lattice-gas model by fitting (42) to (16) for k close to k0 corresponding 

to the minimum of C̃(0)  [46]. For C̃ we postulate the same form i.e. Eq.(42), but with the 

parameters c0, v0 , k0 replaced by the renormalized ones, cr , vr , kr , respectively.  The equations 

for cr , vr , kr  are analogous to the equations (39)-(41) in Ref.[46], but with D̃ (k) replaced by 

D̃ s(k). For the form of D̃ (k) and more details see Ref.[46]. 

We solve the equations for cr , vr , kr  numerically in this part of the phase space, where 
 

MF predicts instability of the disordered phase. The MF line of instability, obtained from 

2   (k0) = 0, is kB T = − Ṽ  (k0)/A2(ζ ), and the interesting thermodynamic states are kB T < 
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FIG. 4:   G describing  the local excess  of the  volum e  fraction over  the average  value  for the  1D 

lattice  mo del with the repulsion to attraction ratio J = 3 for T ∗ = 0.5, 0.6, 0.7, 1 (solid lines, fro m 

top to bottom),  and the RHS of Eq.(25)  (dashed line).  When  the dashed line lies  below  the solid 

line, the φ4 theory may be oversimplified. 
 
 

− Ṽ  (k0)/A2(ζ ).  For such states  inhomogeneous distribution  of particles  is more probable 

than the homogeneous one. Following Ref.[43, 46], we introduce dimensionless temperature, 

T ∗ = kB T /J1, and consider T ∗ ≤ 1, where strong inhomogeneities are predicted by the exact 
 
results.  We first verify if the necessary condition for validity of the φ4 theory, Eq.(25), is 
satisfied for T ∗ ≤ 1. In Fig.4 we compare G (see (26)) with the RHS of Eq.(25) for several 

 
temperatures.  We can see that for all the temperatures the φ4 theory is oversimplified for 
ζ < 0.1 and ζ > 0.9. Moreover, for T ∗ ≤ 0.5 the criterion (25) is violated for 0.25 < ζ < 0.75. 
Thus, we should limit ourselves to T ∗ > 0.5 and 0.1 < ζ < 0.9. The case T ∗ ≤ 0.5 will be 

 

shown to see how the oversimplified theory compares with the exact results. 
 

In Fig.5 the correlation length is presented for a few temperatures.  We can see that the 
correlation length ξ increases with decreasing temperature and/or |ζ − ζc|.  This behavior 

agrees with the exact results.  However, when the necessary condition (25) is not satisfied 

and our φ4 theory is oversimplified, we obtain significantly smaller ξ than found in Ref.[43]. 

The  difference between  our predictions  and the exact  results  increases  for decreasing  T ∗, 
 

because the accuracy of our theory decreases with decreasing temperature (see Fig.4). 
 

In Fig.6a we present the chemical potential for a few temperatures, and in the inset the 

exact results are shown for comparison. In Fig.6b predictions of our theory are compared 
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FIG. 5:  The correlation length for the 1D lattice model with the repulsion to attraction ratio J = 3 

for T ∗ =  0.3, 0.5, 0.6, 0.7, 1 (fro m  top to bottom).   Dashed  lines  correspond  to T ∗ for which the 

criterion (25) is not satisfied and the φ4 theory is oversimplified. 
 
 
 
 
with the  results  of the  MF and Gaussian theories  for T ∗  = 0.7.  By the  MF prediction 

we mean  here  Eq.(36) without  the  fluctuation  contributions  (the  last  two  terms),  but  in 

MF the disordered phase is unstable with respect  to periodic ordering for the considered 

temperatures.    Fig.6a suggests mechanical instabilities for two intervals of ζ at T ∗ = 0.5. 
 

The exact results for very low T ∗, however, show only very large compressibility and pseudo- 

phase transitions (very large change of ζ for very small change of µ) at ζ ≈ 0.25, 0.75. As 
can be seen in Fig.4, for T ∗ = 0.5 the φ4 theory is oversimplified.  Thus, these instabilities 

are artifacts resulting from the truncation of the Taylor expansion of Hf   at the φ4 term. 
Very large compressibility for large volume fractions usually signals an approach to a phase 

transition.  In this model there are no phase transitions for T ∗ > 0, but the properties of the 
 

disordered phase differ significantly from the properties of the disordered phase in simple 

fluids.  We conclude that peculiar behavior, such as the pseudo phase transitions observed 

in Ref.[43], but not necessarily a real phase transition should be expected when mechanical 

instabilities are predicted by our approximate theory, especially when the criterion (25) is 

not satisfied. 

From Fig.6 we can see  significant improvement  of our approximation compared to the 
 

Gaussian theory  [46] for T ∗ > 0.5.  Our theory  and the  exact  results  both  indicate  that 

for increasing ζ the slope of the µ(ζ ) line is small (large compressibility) for ζ ∼ 0.25, then 
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FIG. 6:  The che mical potential µ in our theory (see Eq.(36)) for the 1D lattice model with the re- 

pulsion to attraction ratio J = 3 in kB T units (a) for T ∗ = 0.5 (dashed line) and T ∗ = 0.6, 0.7, 0.8, 1 

(solid lines, fro m top to botto m on the left).  Note that for T ∗ = 0.5 the φ4 theory is oversimplified. 

In  the inset  the exact  results  obtained  in Ref.  [43] for T ∗ = 0.4, 0.7, 1 (top  to botto m line  on the 

left)  are  show n.(b)  µ for T ∗ =  0.7 in our theory  (solid  line),  in MF (dashed  line),  and in the 

Gaussian approximation (dash-dotted line). 
 
 
 
 
 

7 
6 

6 
 

5    4 
 

4    2 
 

3 
0 
0    0.2  0.4  0.6  0.8 

2 
 

1 
 

0 
0.2  0.4  0.6  0.8 

ζ 
 
 
FIG. 7:   The  pressure  isotherms  for the 1D lattice  model  with the repulsion  to attraction  ratio 

J = 3 in kB T units for T ∗ = 0.6, 0.7, 0.8, 0.9, 1 (solid lines, fro m botto m to top on the right).  The 

dashed lines  show the MF result for T ∗ = 0.6, 1.  In the inset the exact results  for T ∗ = 0.4, 0.7, 1 

(botto m to top line on the right) are shown.  Note the corret prediction of the ano malous increase 

of pressure  for decreasing  temperature  for a range  of volu m e  fractions too large  for the optimal 

distribution of the clusters, 0.5 < ζ < 0.7. 
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∗ ∗ ∗ ∗      

increases to much larger values for ζ ≈ ζc (the compressibility decreases), and decreases again 

for ζ ≈ 0.75. The crossover from large to small to large compressibility occurs more and more 
 

rapidly when the temperature decreases, and the sequence of very large - very small - very 
large compressibility is obtained for 0.2 < ζ < 0.8 at low T ∗. The slope of the µ(ζ ) line at ζ = 
0.5 increases with decreasing T ∗, and the lines corresponding to different T ∗ intersect in three 

points, ζ ≈ 0.25, 0.5, 0.75, in agreement with the exact results.  The value of µ at the points 

of intersection, µ ≈ − 2, 2, 6, is only in semiquantitative agreement with µ = −2/3, 2, 14/3 

obtained exactly.  The accuracy of the present approximation decreases for increasing |ζ − ζc| 
 

(see Fig.6 and 7). This should be expected, because as discussed below Eq.(35), for increasing 

|ζ − ζc| the  neglected  contribution  associated  with C3  in Eq.(29) increases,  therefore  the 

smaller is |ζ − ζc|, the better is the accuracy of the present approximation. 
 

We conclude that the effects of fluctuations in our approximation are overestimated, but 
as discussed  in sec.3, we expect  that  better  approximation  for (φ(r1)2 φ(r2)2)con,  and the 

 

higher-order corrections  to µ, should  lead to smaller  deviations of µ from µM F , hence to 

better  agreement  with the exact  results.   The  conseqence of the too small  value of µ for 

ζ < 0.5 is the  negative  value  of pressure,  as can be seen in Fig.7.  Despite  the  negative 

values for small ζ , the shape of the p(ζ ) lines agrees quite well with the exact results [43]. 

In particular, we obtain the anomalous decrease of pressure for increasing T for ζ ≈ 0.6. 
 
 
 

V.     RESULTS FOR A  3D  SALR MODEL 
 
 

We  consider charged  particles  with hard cores  of diameter  σ taken  as  a length  unit. 

The  particles  repel  each other  at  large distances  with screened  electrostatic  interactions, 

and attract  each other  at  short  distances  with solvent-mediated  effective  potential.   The 

reference-system free energy is given by the Percus-Yevick approximation 
 

3ζ (2 − ζ ) 
βfh(ζ ) = ρ ln(ρ ) − ρ + ρ − ln(1 − ζ )  , (43) 

2(1 − ζ )2 
 
where ρ∗ = 6ζ /π is the dimensionless density.  For the interaction potential we choose the 

 

form studied in Ref.[25, 30, 37, 41, 48] 

V (r) = 
  

− 
A1 e−z1 r + A2 e−z2 r 

 
θ(r − 1), (44) 

r r 
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FIG. 8:   Left:   V (r)r2  with V (r) defined in (44)  for Syste m 1 (dashed  line)  and System 2 (solid 

line).  Right: Ṽ (k) (Eq.(45))  for System 1 (dashed line) and Syste m 2 (solid line) 
 
 
where r is in σ units.  In Fourier representation V takes the form 

 
−z2 

Ṽ (k) = 4π  2 
(

z sin k  A  e−z1 
+ cos k  −  z sin k 

+ cos k  . (45) 
2 + k2 k z2 + k2 1    k 

 

Ṽ (k) represents the increase of the system energy per unit volume when a volume-fraction 

wave with the wavenumber  k and unit amplitude is excited  in the initially homogeneous 

system.  We choose two sets of parameters, considered in Ref. [41] in the context of the most 

probable inhomogeneous structures  and in Ref.[48] in the Gaussian approximation of the 

Brazovskii type, i.e. in a linear order in the parameters An, 
 

System 1 : A1  = 1, A2  = 0.05, z1 = 3, z2 = 0.5;  

System 2 : A1  = 1, A2  = 0.2, z1 = 1, z2 = 0.5. (46) 
 

V (r)r2  for both systems is shown in Fig.8a and Ṽ (k) is shown in Fig.8b. In both systems 
the global minimum of Ṽ (k) is assumed for k0 > 0, with k0 ≈ 1.8 in System 1, and k0 ≈ 0.6 

in System 2, and Ṽ (k0) < 0. Thus, the volume-fraction wave with the wavelength 2π/k0  is 
more probable than the homogeneous distribution of the particles. 

In System 1 the attraction strength and range are small, and the repulsion dominates, but 
 

it is not very strong either.  Separation into dilute and dense homogeneous  phases is neither 
 

entropically  nor energetically  favourable when Ṽ (0) > 0.  Because Ṽ (0) > 0 in System 

1, the phase separation is less favourable  than the homogeneous distribution of particles. 

The latter is in turn energetically less favourable than formation of small compact clusters 
 

(presumably  of thetrahedral  shape).   Since the  minimum of Ṽ (k) is shallow,  the  energy 

http://rcin.org.pl

https://iopscience.iop.org/article/10.1088/0953-8984/28/41/414010/pdf


23 

This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication, Journal 
of Physics: Condensed Matter , copyright © IOPscience Online after peer review. To access the finaledited and published 
work see  https://iopscience.iop.org/article/10.1088/0953-8984/28/41/414010/pdf 

 

 

2 

G̃(0) ˜ 

r 

gain associated with density waves with the wavelengths somewhat different from 2π/k0  is 

comparable.  Such waves can be excited with quite high probability. Thus, small clusters at 

different separations for different ζ , rather than transitions between an ordered phase with 

the period 2π/k0  and homogeneous dilute or dense phases should be expected. 

In System 2 the strength and range of attraction are both much larger than in System 
 

1, and clusters larger than in System 1 are formed.  The repulsion is stronger too, and the 

repulsive and attractive parts of the potential compete.  The global minimum of Ṽ (k) at k0 

is deep, and the density waves with the wavenumber k0 are energetically favored over waves 
with different wavenumbers more strongly than in System 1. Thus, we can expect stronger 

tendency for periodic order with the period 2π/k0.  Since Ṽ (0) < 0, the phase separation 
is energetically  favoured  over the homogeneous state.  When  the average volume  fraction 

of particles does not allow for the preferable periodic structure, the phase separation might 

compete with the periodic ordering. 

In MF periodic  ordering  of clusters  or voids  into  lamellar,  hexagonal, gyroid and bcc 

structurs  was found for both  systems  [41].  It is well  known, however that  the  periodic 

order is destroyed by fluctuations for a large part of the MF stability region of the ordered 

phases [36, 49]. Thus, we are interested in the phase-space region below the MF boundary of 

stability of the disordered phase, T ∗ < 1/A2(ζ ), where T ∗ = kB T /|Ṽ (k0)| is the dimensionless 
 

temperature introduced in Refs.[41, 44]. We want to find out how the effects of fluctuations 

depend on the range and strength of the attractive and repulsive parts of the SALR potential. 

Since 1/A2(ζ ) ≤  1/A2(ζc)  ≈  0.024, where  ζc  is the critical  volume  fraction  [48], we shall 
consider T ∗ < 0.02. Note that the temperature scales in the 1D and 3D models, introduced 
in Ref.[43] and Ref.[41] respectively, are different. 

We make the same approximation (42) for C̃(0)  as in the 1D case. With this assumption, 
 

2   (k) = 1/C (0) 
 

(k) in real-space representation has the form 
2 

 
G(0)(r) = A0 e−r/ξ0 

 
 
sin(α0 r) 

r 

 
 
, (47) 

 
where  the  parameters  are  given  in terms  of c0 , v0, k0  in Appendix  B. We  postulate  that 

C̃(k)  = cr  + vr (k2 − k2 )2.  With the  above assumption  G in real-space  representation  is 
 

given by Eq.(47), but with ξ0, α0, A0  replaced by ξr , αr , Ar  expressed  in terms of cr , vr , kr 

by equations analogous to Eqs.(52)-(54) in Appendix B. The expression for D̃ (k) (see (33)) 
 

can be easily obtained, and is also given in Appendix B. We solve numerically the equations 
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for cr , vr , kr  that follow from Eqs.(21), (35), (34) and (33), using the procedure described in 
 

sec.3, and in more detail in Ref.[46]. 

In fact  C̃ 
 

should  be determined  by solving  directly  the  integral  equations  (21), (35), 

(34) and (33), because the assumed functional form of C̃ 
 

is appropriate only for systems 
 

with strong mesoscopic inhomogeneities and isotropic correlations.  As shown in Ref.[49, 50], 

anisotropic correlations may appear in systems with competing interactions.  Moreover, as 

argued in Ref.[46], Eq.(42) can be a fair approximation when Ṽ (k) assumes a deep minimum. 
 

For System 1 this approximation can be too crude. Since solving the full equations is a very 

difficult task, we have decided to make all the above simplifying assumptions to obtain 

preliminary results. 
 
 

A.  System  1 
 
 

Let us first verify if the necessary condition (25) for validity of the φ4 theory is satisfied 
for the interesting temperature range. In Fig. 9 G is shown together with 30A4/A6  calculated 

 

for the Percus-Yevick approximation (43), with An  defined in (18). We can see that in the 

absence of the particle-hole symmetry the necessary condition (25) is and is not satisfied 

for large and for small volume fractions respectively.  The accuracy of the approximation 

increases with increasing temperature, when the inhomogeneities measured by G decrease. 

The necessary condition for validity of the φ4 theory is satisfied for the whole range of ζ 
when T ∗ > 0.015. 

 
The correlation length, the chemical potential and pressure are shown in Figs.10-12. Note 

a very large correlation length for T ∗ ≤ 0.003. At T ∗ = 0.0015 the necessary condition (25) 
is satisfied for ζ > 0.25, and we can see that ξ ∼  103 for volume fractions ζ ∼  0.3. The 

 

oscillatory decay of correlations with the mesoscopic period and the very large correlation 

langth is a signature of the mesoscopic inhomogeneity for the corresponding thermodynamic 

parameters. 

The results for µ(ζ ) and p(ζ ) show large slope (indicating small compressibility) for ζ ≈ ζc. 
The  slope of µ(ζ ) and p(ζ ) increases  with decreasing  T ∗ (the  compressibility  decreases). 

The slope of µ(ζ ) and p(ζ ) is small (large compressibility) for ζ ≈  0.1 and decreases with 

decreasing  T ∗ (the compressibility  increases).  For ζ increasing from ζ ≈  0.2 the slope of 
µ(ζ ) and p(ζ ) decreases  a little,  but neither increasing  ζ nor decreasing  T ∗ leads to very 
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FIG. 9:   G (Eq.(26))  describing  local deviations  fro m the average  volu me  fraction for Syste m 1, 

as a function of the volum e  fraction ζ for T ∗ = 0.0015, 0.002, 0.003, 0.015 (solid  lines,  fro m top to 

botto m),  and the RHS of Eq.(25)  (dashed  line).   When  the dashed line  lies  below  the solid line, 

the φ4 theory may be oversimplified. 
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FIG. 10:   The  correlation  length  ξ for Syste m 1 in σ-units as a function of the volum e  fraction. 

T ∗ = 0.0015, 0.002, 0.003, 0.007 (solid lines, fro m top to bottom) 
 
 
 

large compressibility in this system.  Even for very small T ∗, where our theory is expected to 
overestimate the effects of mesoscopic fluctuations, the compressibility at ζc is significantly 

larger, and for ζ ∼ 0.3 the compressibility is significantly smaller than in the 1D system with 
 

strong repulsion.  Note that because the repulsion barrier is small, the increase of the volume 
fraction for ζ ≈ ζc does not require very large increase of µ or p, therefore the compressibility 
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FIG. 11:  The che mical  potential  isother ms in kB T units in our theory  (see  Eq.(36))  for Syste m 1 

as a function of the volum e  fraction.  (a) T ∗ = 0.0015, 0.002, 0.003, 0.007 (solid  lines,  fro m top to 

botto m on the right).  b) The che mical potential in our theory (solid line) and in MF approximation, 

i.e.  with the last two terms in Eq.(36)  neglected (dashed line) for T ∗ = 0.002. 
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FIG. 12:  The pressure isotherms for Syste m 1 in kB T /σ3  units as a function of the volum e fraction. 

T ∗ = 0.0015, 0.002, 0.003, 0.007 fro m top to bottom  line on the right.  Note the ano malous increase 

of pressure for decreasing T for ζ > ζc, similar to the ano maly obtained exactly in Ref.[43] for the 

1D model. 
 
 
is not very small.  Our results show no sign of the phase transition or pseudo phase transition 

between the inhomogeneous and the dense homogeneous phase for ζ > ζc for the considered 

range of T ∗. Recall that in System 1 the attraction range is very small and Ṽ (0) > 0. For 
 

this reason if the volume fraction is too large for formation of the periodic structure with the 
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FIG. 13:  G (Eq.(26)) describing local deviations fro m the average volu me fraction for Syste m 2 as a 

function of the volu me fraction for T ∗ = 0.005, 0.007, 0.009.0.015 (solid lines, fro m top to botto m ), 

and the RHS of Eq.(25) (dashed line).  When the dashed line lies below the solid line, the φ4 theory 

m ay be oversimplified. 
 
 
 
wavenumber k0, instead of the (pseudo)phase transition to the dense phase a decrease of the 

separation between the small clusters takes place.  We cannot predict if a phase transition 

(or a pseudo phase transition found for the 1D model in Ref.[43]) between dilute gas and 

inhomogeneous fluid can occur for ζ < ζc, because our φ4 theory is oversimplified for ζ < ζc 

and T ∗ < 0.015. 
 
 
 

B.  System  2 
 
 

We first verify for which thermodynamic states our φ4 theory is not oversimplified.  As 
shown in Fig.13, we obtain very similar behavior of G as in System 1, namely the φ4 theory 
is oversimplified for small ζ whose range increases with decreasing temperature.  For T ∗ ≥ 

 

0.015, however,  the  necessary  condition  (25) is satisfied  for the  whole range  of ζ .   The 

correlation length is larger than in System 1 for the same dimensionless  temperature, as can 

be seen by comparison of Figs.10 and 14. Thus, the tendency for periodic order is stronger, 

as expected based on the interaction potentials (Fig.8). 

The shapes of the µ(ζ ) and p(ζ ) isotherms  in System  2 are much more complex than 
in System  1 (see  Fig.15 and 16).  For T ∗ = 0.015 Eq.(25) is satisfied  for all ζ .  At this 
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FIG. 14:  Correlation  length  for System 2 in σ-units as a function of the volu me  fraction.   T ∗ = 

0.005, 0.007, 0.009.0.015  (solid lines, fro m top to botto m). 
 
 
 
temperature  we obtain  very  small  slope of µ(ζ ) and p(ζ ) (very  large compressibility)  for 

ζ ∼ 0.05 − 0.1,  and significantly larger slope of µ(ζ ) and p(ζ ) (smaller compressibility) that 
weakly  depends on ζ for ζ > 0.15. When  T ∗ is decreased  to 0.009, we obtain a van der 

 

Waals loop for ζ < 0.15, very large slope of µ(ζ ) and p(ζ ) (very small compressibility) for 

ζ ≈ 0.2 and very large compressibility for ζ > 0.3. The theory becomes oversimplified for 
ζ < 0.15 for T ∗ = 0.009 (see Fig.13), and based on the comparison with the 1D model we 

can expect that very large compressibility may be present instead of the van der Wals loop 
obtained in our approximation.  We can only conclude that either very large compressibility 

or a phase  transition  occurs  for low volume  fractions  for T ∗  ≤  0.009.  The  very  small 

compressibility  for ζ ∼  0.2 occurs  together  with the  very  large correlation  length  of the 

correlation function that exhibits oscillatory decay.  For decreasing T ∗ the compressibility 

for ζ ∼ 0.2 significantly decreases, and the correlation length increases.  This behavior may 
 

indicate that when T ∗ decreases, the clusters or layers of particles become more and more 
ordered in space for ζ ∼ ζc, where the inhomogeneous distribution of particles dominates. 

 
To compress such a system one has to decrease the separation between the aggregates, and 
overcome the repulsion between them.  For T ∗ ≤ 0.007 the van der Waals loops are present 

 

for both small and large volume fractions.  It is possible that phase transitions between the 

disordered gas- and liquid phases, and the inhomogeneous  phase stable for intermediate ζ , 

occur for some range of T ∗. What remains unclear is the nature of the phase or phases with 

very small compressibility.  We considered only ζ̄  = const. and isotropic correlations, but in 

http://rcin.org.pl

https://iopscience.iop.org/article/10.1088/0953-8984/28/41/414010/pdf


29 

This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication, Journal 
of Physics: Condensed Matter , copyright © IOPscience Online after peer review. To access the finaledited and published 
work see  https://iopscience.iop.org/article/10.1088/0953-8984/28/41/414010/pdf 

 

 

 
 

1 
 

0.5 
 

0 
 

-0.5 
 

-1 
 

-1.5  
0.1 0.2 0.3 0.4 0.5 

 
 
 
 
 

0.8 
 

0.6 
 

0.4 
 

0.2 
 

0 
 

-0.2 
 

-0.4  
 
0.1 0.2 0.3 0.4 

 
 
 
 
FIG. 15:  The che mical  potential  isother ms in kB T units for Syste m 2 as a function of the volu me 

fraction (a) in our theory  for T ∗ =  0.005, 0.007, 0.009, 0.015 (solid  lines,  fro m bottom to top for 

ζ ≈ 0.1)  and (b) in our theory (solid  line) and in MF approxim ation,  i.e.  with the last two terms 

in Eq.(36) neglected  (dashed line) for T ∗ = 0.009. 
 
 
 

reality periodically ordered phases, or phases with ζ̄  = const. and anisotropic correlations, 

may be stable for some temperature range for intermediate ζ̄ . Further studies are necessary 
before drawing definite conclusions concerning the phase behavior in this 3D system.  Either 

pseudo phase transitions between the dilute and dense phases, and the inhomogeneous phase 

with periodic or quasi-periodic order, or real phase transitions can occur. In any case, when 

the van der Waals loops are obtained in this approximation, we can expect a huge change 

of compressibility with increasing ζ̄ . 
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FIG. 16:  The pressure isotherms in kB T /σ3  units as a function of the volum e fraction for Syste m  

2 (a) in our theory,  Eq.(41)),  for T ∗ = 0.005, 0.009, 0.015 from top to botto m on the right and (b) 

in our theory (solid line) and in MF (dashed line) for T ∗ = 0.015. 
 
 
 
VI.   SUMMARY AND DISCUSSION 

 
 

We have developed the theory for systems with inhomogeneities that form spontaneously 

on the mesoscopic length scale. In this work we have focused on the disordered phase, where 

the particles self-assemble into aggragates that do not form an ordered periodic pattern.  A 

hierarchy of equations relating the direct correlation functions Cn with the correlation func- 

tions for the fluctuations of the local volume fraction of particles, φ(r), has been constructed. 

To obtain a closed set of equations we have neglected the terms associated with C3 in the 

equation  for (φ(r1)2 φ(r2)2)con.   Next,  neglecting  the  higher-order  terms  in the  expression 
for C4, we have obtained and solved a self-consistent equation for (φ(r1)2φ(r2)2)con.  This 

 

result leads finally to a closed set of equations for the two-point correlation and direct cor- 

relation functions, Eqs.(21), (35), (34) and (33). Solutions of our self-consistent equations 

for the two-point functions allow us to calculate the fluctuation-corrections to the chemical 

potential µ(ζ ) and pressure, Eqs.(36) and (41). 

The general framework of our theory allows for systematic improvement of accuracy of 
the results.  One can improve both, the approximation for the Boltzmann factor exp( −βHf ) 

 

that describes the probability of sponteneous appearence of φ(r), and the approximation for 

(φ(r1)2φ(r2)2)con. In our theory Hf  is Taylor expanded in φ, and the expansion is truncated. 
 

We have introduced a necessary condition for validity of a theory with the Taylor expansion 

truncated at the n-th order (see Eq.(25) for n = 4). 
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We  have applied our φ4  theory  to  the  1D lattice  model  with competing  interactions, 

and to  two  variants  of the  SALR  model  in 3D. Following Ref.[46],  we have postulated  a 

functional form of the correlation function G and have solved numerically the equations for 

the  parameters  in the  expression  for G that  follow from our self-consistent  equations  for 

the  two-point  correlation  and direct  correlation  functions.   Next,  we calculated  µ(ζ ) and 

pressure for these models. 

Comparison of the predictions of our approximate theory with the exact results obtained 

for the 1D model in Ref.[43] allows for verification of the accuracy of our approximations. 

The shape of the µ(ζ ) and p(ζ ) lines agrees very well with exact results when the criterion 

(25) is satisfied.  All the qualitative trends are correctly reproduced.  However, we do not 

obtain quantitative  agreement  at this level  of approximation.   When  the criterion  (25) is 

not  satisfied,  i.e.  for low T ∗, van der Waals loops in µ(ζ ) are  predicted  in our theory, 
 

although  in reality  only pseudo  phase transitions  occur in this  model.   Thus,  when the 

necessary  condition  (25) is violated,  the theory is overesimplified  indeed.  We have made 

preliminary calculations for µ(ζ ) in the φ6 theory (not presented here) and obtained very 

similar  shapes  of the  lines,  and reasonably  good quantitative  agreement  with the  exact 

results for 0.2 < ζ < 0.8. In the φ6 theory the van der Waals loops appear for lower T ∗ than 
 

in the φ4 theory.  Thus, systematic improvement of accuracy of the results is indeed possible 

within the general framework of our theory.  In order to obtain better accuracy for ζ < 0.2 

and ζ > 0.8, the term associated with C3 should be included in Eq.(29). 

We applied our theory to two versions of the 3D SALR model (Eq.(44)) described and 
 

discussed in sec.5.   In System  1 the phase separation into  homogeneous dilute and dense 

phases is strongly unfavourable energetically and the periodic structure with the most prob- 

able period is only weakly favoured compared to the homogeneous structure.  In System 2 

the optimal periodic structure  is strongly favourable, and the phase separation  is weakly 

favourable energetically compared to a homogeneous structure with given ζ . The MF phase 

diagrams for the two considered versions of the 3D SALR model are nearly the same [41]. It 

is well known, however that the ordered phases are stable for much lower temperature than 

predicted by MF. Our aim was investigation  of the structure and the EOS in the high-T 

part of the MF instability region of the homogeneous phase, where weakly ordered phases 

are predicted by MF, but in reality a disordered inhomogeneous phase is stable. 

Our results show the anomalous decrease of pressure for increasing T for a range of ζ > ζc 
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in both systems.  Apart from this common feature, the effects of fluctuations depend very 

strongly  on the shape of the interaction  potential.   In the repulsion-dominated  System  1 

and in System 2 where neither repulsion nor attraction dominates, the EOS is qualitatively 

different (see Figs.12 and 16). The disordering effects of fluctuations are much stronger in 

System 1. On the other hand, the shape of the µ(ζ ) and p(ζ ) lines is much more complex 

in System 2. 

In System 1 we do not obtain any rapid change of the compressibility for increasing ζ 
even for very small T ∗. Unfortunately, for small T ∗ the theory is overesimplified, especially 
for ζ < ζc, and we cannot draw definite conclusions concerning the phase transition between 

the dilute gas and inhomogeneous phases. For ζ > ζc we do not obtain large compressibility 

that would indicate an approach to a phase transition between  the inhomogeneous phase 

and the dense liquid even for temperature as low as T ∗ = 0.0015 (in reduced units). 
 

In contrast,  in System  2 the  compressibility  changes rapidly for increasing  ζ even for 
relatively high T ∗, and van der Waals loops occur at sufficiently low T ∗. The van der Waals 

loops suggest that phase transitions or pseudo phase transitions between the gas and liquid 

phases, and the disordered  inhomogeneous  phase stable  for intermediate  volume  fractions 

occur. Based on the comparison with the 1D case, however, we expect that pseudo-phase 

transitions,  indicating  significant  structural  changes in the  disordered phase, occur when 

T ∗ is high.  Note  that within  the stability  region of  the disordered phase the 

gas,   the cluster  fluid  and the percolating  fluid  are distinguished  in  the recent 

simulations  [40].  We cannot rule out the possibility that for intermediate T ∗ and ζ the 

disordered inhomogeneous phase is a thermodynamically distinct phase that can coexist with 
the homogeneous dilute and dense phases. For low T ∗ we may expect stability of the ordered 

periodic phases for intermediate ζ , and transitions between the disordered and the ordered 
phases. 

At present we can only speculate about the phase behavior, because we have considered 

neither  periodic  phases nor phases with orientational  order  (anisotropic  correlation  func- 

tions).  We cannot exclude phase transitions between inhomogeneous  phases with different 

degree of order when T ∗ decreases.  However, such transitions cannot be investigated with 
 

the assumptions of ζ = const. and isotropic correlations that we have made in this work. We 

shall investigate phases with anisotropic correlations and the periodically ordered phases in 

our future studies. 
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( 

We conclude that the theory developed in this work can be a convenient tool for studying 

inhomogeneous systems.   Further  studies  are  necessary  for developing  an approximation 

within our general  framework that would yield more accurate results  on the quantitative 

level. 
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VII.  APPENDICES 
 
 

A.  Explicit expressions for C3 and C4 
 
 

From Eq.(6) we obtain for C3 and C4  
 
δ3βHf 

C3 (r1, r2, r3) = A3δ(r1, r2)δ(r2, r3) + ( δζ (1)δζ (2)δζ (3)) (48) 
 

δ2 βHf 
−   ( 

 

δβHf 
)con + permut(2)   + ( 

 

δβHf  δβHf  δβHf 
)con 

δζ (1)δζ (2) δζ (3) δζ (1) δζ (2) δζ (3) 
 
and 

 
 
 

δ4 βHf 
C4(r1, r2, r3, r4) = A4 δ(r1, r2)δ(r2, r3)δ(r3, r4) + ( 

δζ (1)δζ (2)δζ (3)δζ (4)
)49) 

 

δ3 βHf 
−   ( 

 

δβHf 
)con + permut(3)   −    ( 

 

δ2βHf 
 

δ2 βHf 
)con + permut(2) 

δζ (1)δζ (2)δζ (3) δζ (4) 
 

δ2βHf 
+ ( 

 
 
δβHf  δβHf 

δζ (1)δζ (2) δζ (3)δζ (4) 
 

)con + permut(5)   − ( δβHf  δβHf  δβHf  δβHf 

 
 

)con 

δζ (1)δζ (2) δζ (3) δζ (4) δζ (1) δζ (2) δζ (3) δζ (4) 
 
where we have simplified the notation introducing ζ (i) ≡  ζ (ri) and “permut(n)” means n 

 

different terms obtained by permutations of (1, 2, 3) or (1, 2, 3, 4) in (48) or (49) respectively. 

(X1(r1)...Xn(rn))con  is the part of (X1 (r1)...Xn(rn)) that cannot be represented as a product 
 

of average quantities calculated for disjoint sets of points.  When Hf  is Taylor-expanded, and 
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0 

0 

2 

0 

c 

only terms proportional to An  with n ≤ 4 are kept, we obtain the approximate expressions 
 
 
 

− 
A3 A4 

4 

C3(r′, r′′, r′′′) = A3 δ(r′, r′′)δ(r′′, r′′′) 

(φ(r′)2 φ(r′′)2)con   δ(r′, r′′′) + δ(r′′, r′′′)
) 
+ (φ(r′)2φ(r′′′)2)conδ(r′, r′′) 

+
( A3 

2 

 
3 
(φ(r′)2 φ(r′′)2 φ(r′′′)2)con (50) 

 
and 

 

 
 
 

−
( A4 

2 

C4(r′, r′′, r′′′, r′′′′) = A4δ(r′, r′′)δ(r′′, r′′′)δ(r′′′, r′′′′) 
 
2 
(φ(r′)2φ(r′′)2)con   δ(r′, r′′′)δ(r′′, r′′′′) + δ(r′′, r′′′)δ(r′, r′′′′)

)
 

 

+(φ(r′)2φ(r′′′)2 )conδ(r′, r′′)δ(r′′′, r′′′′) 
 

 
A2 

+    4 
3! 

+ 
A4 

( A3 

(φ(r′)3φ(r′′))conδ(r′′, r′′′)δ(r′′, r′′′′) + permut(3) 
 
 
2 
(φ(r′)2φ(r′′)2 φ(r′′′)2)conδ(r′, r′′′′) + permut(2) 

2 2 

+
( A3 

2 

 
 
4 
(φ(r′)2 φ(r′′)2φ(r′′′)2φ(r′′′′)2)con (51) 

 
 

B.  parameters  ξ0, α0 , A0  in  Eq.(47) and the expression for D̃ in  3D 
 
 
 

1 
A2  , (52) 0 = (4π)2v c 

α2  c0  ξ2
 

0 = 
4v 0 , (53) 

ξ2 v0k0 + 
j

v0 k0 + v0 c0 , (54)

 
2 2   4 

0 = 2 
0 

and for G given in Eq. (47) D̃ (k) defined in Eq. (33) takes the explicit form 
 

D̃ (k) = πAr 
k 

2 arctan 
( kξr 

2 
− arctan 

( (k + 2αr )ξr 
2 

− arctan 
( (k − 2αr )ξr 

2 

 
. (55) 
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