
MESSENGER OF MATHEMATICS.

ON ARITHMETICAL SERIES. 

By Professor Sylvester.

Th e first part of this article relates to the prime numbers 
(or so to say latent primes) contained as factors of the terms 
of given arithmetical series; the second part will deal with 
the actual or, say, visible primes included among such 
terms. Both investigations repose alike upon certain 
elementary theorems concerning the u index-sums ” (relative 
to any given prime) of arithmetical series, whether simple and 
continuous as in the case of series ordinarily so called or 
compound and interstitial as such before named series become 
when subjected to certain periodic and uniform interruptions.

Pa r t  I.

§ 1. Preliminary Notiona.
Consider any given sequence

m + 1, m + 2, m + 3, ..., m + n,
in relation to any given prime number q.

Let r be the sum of the indices of the highest powers of q 
which are contained in the several terms of the natural 
sequence

1, 2, 3, ..., n,
s the sum of the indices of the highest powers of q contained 
in the given sequence.

Then it is almost immediately obvious that s = or > r, 
t. e. a > r — 1.

For the index-sum of the natural sequence will be repre-
sented by

r=£(;)+r(?)+<-)+···’
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2 PROF. SYLVESTER, ON ARITHMETICAL SERIES.

and the index-sum of the given sequence by

«= <ψ)+<-⅛-n)+Xv>∙∙

-e (?) -e (?) -e (?) -∙

= or>^ (?) (1) ,E (?-,) +..∙,

ι, e. s = or > r.
But there is another and more important theorem, less 

immediately obvious, and more germane to the subject- 
matter of the following section, which I proceed to explain.

Suppose σ,, σ1, σa, ..., σn to be the several exponents of 
the highest powers of q which are contained in

x + 1, x + 2, x + 3, ..., x + n,
and let σ be that one of these n exponents which is not less 
than any other of them.

Call any term in the sequence
x + 1, # + 2, x + 3, ..., x + n

which contains qσi say P, a principal «/-term.
On one side of Pthe terms are less, on the other greater 

than P; in lieu of any term substitute the difference between 
it and P, then I say that the (/-index of such altered term 
will be the same as when it was unaltered.

For let the principal term, or the chosen principal term 
if there are more than one, be λqσ, and let μqP be any 
other term.

If p < σ, ∖qσ ~ μqp will obviously have p for its <∕-index ; 
also ifp = σ the same will be true, i.e. supposing μqP-∖qP 
to be positive, p will be its (/-index: for if we write 
∖ = aq + b and μ = cq + d, where b<q and d<q,a and c must 
be equal, since otherwise between ∖qp and μqp there would be 
a term fα+l)^.5P containing a higher power of q than 
the principal term : hence μ-∖=d-b and does not contain q. 
In like manner if ∖qP — μqP is positive, p is its «/-index for 
the same reason as before.

Hence the index-sum, qu& any prime q, of the two 
sequences

«1 + 1, m + 2, ..., P — 1, P+ 1, P+2, ..., m + n - 1, τn + n 
is the same a3 the sum of the index-sums of

1, 2, 3, ..., P-m-l, 
1, 2, ..., m÷ n -P,
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PROF. SYLVESTER, ON ARITHMETICAL SERIES. 3

Call tbe sums of these two index-sums β', then
∙,= <fsF2)÷xfrF)÷<-

÷ -

= or<£ (ΪΖ*) +£ (2∑r1) +£ (^) +..,

= °r<* (?) +E (») + £ (1) + .,.

= or <r,

Hence s'≈ or <r, but the original index-sum of the 
sequence is diminished by σ on account of P being omitted.

Hence s — σ [= s'] = or < r.
Thus we have s>r - l,s-σ<r+l.

But this is not all: we may for certain relative values 
of »t, n, and q (without regard to the situation of the principal 
term) establish the inequality s — σ < r.

I premise the obviously true statement that if f+g <A, then
MiM⅛+∙→^(IH(>∙∙

<Mi)+⅛)+-∙

Let now h be the number of terms in the natural sequence 
from 1 to n which contain q.

Then in the given sequence the number will be

and the sum of the number of terms divisible by q in the 
partial sequences on each side of P will be A + e -], where 
e=l or 0; let· the respective numbers be ∕, g. Then 
∕+ y = A — l+e, where e=0 or 1, and, using the same notation 
as before,

,-σ=∕+i(Z) + r(∕)+,.. ■
+*+4⅛)+*(i¾) +∙∙∙-

r = Λ + ig) + ^)+....

B2

and
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4 PROF. SYLVESTER, ON ARITHMETICAL SERIES.

Hence if e = 0, s - σ < r,
if e= 1, s— σ <r+ 1,

the former inequality subsisting whenever

-'f ' √-'Ι '

If for example m≈n, s - σ <r when

which it is easily seen happens whenever El — 1 is an even 
number. '

§ 2. Proof that (m + 1) (m 4- 2)...(?u + ri) when m > n — 1 
contains a prime not contained in 1.24J.<.w*

The universal condition independent of the relation 
between wι, n, y, above found, viz., s — σ = or < r will be 
found sufficient to establish the theorem which constitutes 
the object of this section and which is as follows:—

“ If the first term of a sequence is greater than the number 
of terms in it, then one term at least must be a prime or a 
multiple of a prime greater than that number.”

When the first term exceeds by unity the number of terms, 
the sequence takes the form τu, m-∖∙ 1, m + 2, ..., 2m— 1, and 
since no term in this sequence can be a multiple of u, the 
theorem for such case is tantamount to affirming that one 
term at least is a prime number which is in accord with 
and an easy inference from the well-known “ postulate of 
Bertrand,’’ that between m and 2m — 2 there must always be 
included some prime numbers when m > ∣.

Suppose if possible that nι+ 1, m + 2, .... m + n contains 
no other primes than such as are not greater than w, and 
which therefore divide some of the numbers from 1 to n.

Let q be any such prime, and P a principal term of 
the sequence

m + 1, m + 2, ..., m -+ u, qua q.
Then, by virtue of the proposition above established,

(wι ∙+∙ 1) (w 4- 2)...(iw + u)
———p

1

* It will readily be seen that, if this theorem is true, for n any prime, it 
will be so a fortiori when n is a composite number.
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PROF. SYLVESTER, ON ARITHMETICAL SERIES. 5

will contain no higher power of q than does 1.2.3...n, and 
consequently if P be the least common multiple of the principal 
terms in respect to the several primes, say v in number 
[unity not being reckoned one of them], none greater than ni 
we may infer that

(nι + 1) {m + 2)...(m + n)

will be wholly contained in, and therefore not greater than 
1.2.3...n if the sequence m + 1, ?n + 2, ..., m + n contains no 
prime or multiple of a prime greater than n. To fix the 
ideas let us agree to consider that term in the sequence which 
contains the highest power of q, and is the greatest of all that 
do the same (if there be more than one), the principal 2,-term. 
The least common multiple cannot be greater than the 
product of the principal terme which are distinct from each 
other, and since even if they were all distinct their number 
cannot exeeed v (the number of primes other than unity less 
than w+l), it follows that P cannot be greater than the 
product of the highest v terms in the given sequence. Hence 
we may infer that unless

(m + 1) (/» + 2)...(m + n - v)
is less than 1.2.3.some prime greater than n must 
divide one term at least of the sequence

m + 1, m + 2, ..., m + n.
We might go further and say that unless 1.2.3...n is 

greater than
[m ■+ 1) [m + 2)...(in + n - v) Di

where D = Yfq ∖2∕ ∖qJ ∖ ? ∕j
[q being made successively each of the v primes between 
2 and n inclusive and ∏ being used in the ordinary sense of 
indicating products], this same conclusion must obtain.

Conversely the theorem is true when either of these 
inequalities is denied. The denial of the first of them, which 
is sufficient for’the object in view, is implied in the inequality

(w + 1) (?n + 2)...(nι + n — v) > 1.2.3...n, 
which, since v depends only on n, may be written under the 
form F(m, n) >«1.2.3...w. This will be referred to hereafter, 
in this section, as the fundamental inequality*

* The subsistence of the fundamental inequality for any given value of n implies 
for that value of re the truth of the theorem to be established: but the converse 
does not necessarily hold. The theorem may be true when the fundamental 
inequality is not satisfied.
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6 PROF. SYLVESTER, ON ARITHMETICAL SERIES,

Since F (τn, n} increases with nι, the theorem if true for m 
must be true for any greater value of τn, when n remains 
constant.

From this it will be seen at once that the theorem must 
be true when m has any value exceeding n1 and w > 7.

For when n = 8 the number of primes in the range from 
1 to 8 is 4 and is equal to ⅜n : but as n increases the number 
of new primes being less than the number of odd numbers 
must be less than ⅜n.

Hence if n > 7 and m > n,,
F(m1 n) > mn~', > (rit)i" > nn> 1.2.3...n.

This result enables us to prove that the theorem is true when 
13<w<3000.

The theorem it will be borne in mind is true if some prime 
number occurs in the sequence m + 1, m +2, ...t m + n1 or in 
other words if the above sequence does not consist exclusively 
of composite numbers. But Dr. Glaisher has found* that the 
highest sequence of composite numbers within the first 
9000000 contains only 153 terms, viz. the sequence 4652354 
to 4652506 (both inclusive). Hence if the theorem is not true 
wheu n < 3000, in which case n'2 + n < 9000000, we must have 
n = or < 153, and there ought to be a sequence of n composite 
numbers in which the first term is less than (153/which is 23409. 
But the longest sequence of composite numbers under 23409 
is that which extends from 19610 to 19660 containing 51 terms, 
the square of 51 is 2601 and the longest sequence under 
this number is that which extends from 1328 to 1360 com-
prising 33 terms. The square of 33 is 1089, the longest 
sequence below which is from 888 to 906 comprising 19 terms; 
the square of 19 is 361, the longest sequence below which 
stretches from 114 to 126 comprising 13 terms. Hence the 
theorem is true for all values of n not greater than 3,000 and 
not less than 13.

It is easy to show that the theorem is true for all values 
of n not greater than 13.

1°. Suppose n— 13, which gives v = 6.
The theorem must be true when m is taken so great that 

(wι + I) (?n + 2) (τn + 3) (m + 4) (in + 5) (τn + 6) (zn + 7)
> 1.2.3.4.5.6.7.8.9.10.11.12.13, 

which is easily seen to be satisfied when m = or > 100.

See table at end of this section.
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PROF. SYLVESTER, ON ARITHMETICAL SERIES. 7

But there is no sequence of 13 composite numbers till we 
come to the sequence 114—126, so that when m < 100 the 
theorem must be true as well as when m = or > 100.

2°. Suppose n = 11, for which value of n, v = 5.
The theorem is true if

(m + 1) (tn + 2) (wι + 3) (wι + 4) (wι + 5) (τw + 6)

> 1.2.3.4.5.6.7.8.9.10.11,

which is obviously satisfied as before when wι = 100, but there 
is no sequence of 11 which precedes the sequence before 
named from 114 to 126. Hence the theorem is true generally 
for n = 11.

When n = 7, v = 4 and the theorem is true for all values 
of m which make

(nι + 1) [m + 2) (m + 3) > 1.2.3.4.5.6.7, i. e. > 5040,

which is obviously the case if m = or > 20, but there is no 
sequence of 7 composite numbers till we come to 89-97. 
Hence the theorem is proved for n = 7.

λVhen n==5, r = 3 and the condition of the theorem is 
satisfied if

(m + 1) (m + 2) > 2.3.4.5,’f.e. > 120,

as is the case if m = or > 10, but the first composite sequence 
of 5 terms is 24 to 28. In like manner when n = 3, r = 2 and 
the theorem is true when m + 1 = or > 1.2.3, i.e. m = or > 5, 
but 8,9, 10 is the first composite sequence of 3 terms. Similarly, 
when 7i = 2, v=l and the condition m + 1 => 2 is necessarily 
satisfied since »» = or > rc by hypothesis.

Finally, the theorem 13 obviously true when n = l, because 
m + 1 whatever may be, contains a factor greater than 1.

Being true for the prime numbers not exceeding 13, the 
slightest consideration will serve to prove that, as previously 
remarked in a footnote, it must be true a fortiori for all 
the composite numbers between them. Hence the theorem 
is verified for all values of n not greater than 3000, and it 
only remains to establish it for values of n exceeding that
limit.

To prove it for this case we must begin with finding a 
superior limit to v, when n > 3000, under the convenient

form of a multiple of i----- .r logn
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8 PROF. SYLVESTER, ON ARITHMETICAL SERIES.

If we multiply together the first 9 prime numbers from 
2 to 23 and divide their product by that of the natural 
numbers up to 9 increased in the ratio of 1 to 2β, the quotient 
will be found to exceed unity; and since the following primes 
are all more than twice the corresponding natural numbers, 
if we denote by y>1,y>l, ∕>3, ..∙, the prime numbers 2, 3, 5, ..∙, 
we must have

Λ∙A∙A......... pv> 2"(1.2.3...v),

[provided that v > 22, as is the case if n = or > 89], 

or log (1.2.3...v) + (log2) v < log (p1.^,.^8..........pv∖

But by Stirling’s theorem (Serret, Cours d'Alg. Sup.∣ 
Ed. 4, Vol. ll., p. 226),

v logr — v — ⅛ logr + ⅜ log2∙7Γ< log (1.2.3...v), 
and by Tschebyscheff’s theorem (Serret, Vol. ll., p. 236) ,*

tog(Pι∙P.∙P.∙∙∙∙l⅛)<w'> wherθ 
5

√=⅝√⅛n+4lθ-gξ (logw)i + ∣ logn + 2, and A = ,921292 ... t 

Hence
(log v) (v - ⅜) - (1 - log 2) (v - ⅜) + (⅛ log 2ττ - ⅛ log ⅛e) < √, 

and h fortiori

log (* - ⅛) O' “ i) “ (log⅛e) O' - ⅜) < n', 

or f 0'-⅛)lθg^O'-⅛)} <2√,

2
Hence, if we write μ log ∕x = - n = nl €

we shall have v — ∣ < jeμ.

Bot '*=⅛t-

and therefore

log P∙ = log nx - log log μ = log n1 - log (log n1 - log log μ)
> logw1 — log log¾1.

? For greater simplicity I have left out the term — 4n^, and thereby increated 
the superior limit.
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ΓROF. SYLVESTER, ON ARITHMETICAL SERIES. 9

Hence μ < ι-----------r1—τ------logrc1 - log logn1 
2 η

< ~e 2 
log η' — log logn' + log-

β

and y "i 2 logn'— loglogn'-(1 — log2) ’

lienee, observing that 1, ⅛l, <⅛⅛' , ⅛⅛ all 
1 uuu log u

decrease as the denominators increase [provided as regards 
the second of these fractions that u>e, as regards the third 
that n>e*, and as regards the fourth that u >eeJ, we may find 
a superior limit to v in the case before us, where n > 3000, by 
writing in the numerator of v — ⅜,

(log3000)a log 3000 n 2
3000 m, ’ 3000 3000 n'

for (logn)’ , logn , 2,
and in its denominator, first, logn—log logn for logn'-log logn', 
and then

log log 3000. . l-log2,
∙⅛8000 1°g,ι aDd ⅛3iwδ 1°S">

for log logn and 1 — log2 respectively.
Making the calculations it will be found that we shall get

v- ⅜ < l∙606 1- .logn
With the aid of this limit it will now be easy to prove 

the truth of the theorem when n = or > 3000.
Let us suppose n = or > 3000.
l.o Suppose m < 2n, then m + n> ∣τn and the theorem 

will be proved for this case, if it can be shown that in the 
range of numbers from m to ∣τn, there is at least one 
prime number when m = or > 3000.

* From this it will be seen that the asymptotic ratio of υ to —is less 
log n

than the asymptotic ratio which any superior limit to the sum of the logarithms 
of the primes not exceeding n bears to n : this perhaps is a new result, at all 
events it is not to be found in Serret nor indeed is it wanted fδr Tschebyscheff’s 
proof of the famous postulate which Serret has so lucidly expounded. The corre-
lative theorem that the asymptotic ratio of v to is always greater than the
asymptotic ratio which any inferior limit to the sum aforesaid bears to n is of 
course an obvious and familiar fact.
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10 PROF. SYLVESTER, ON ARITHMETICAL SERIES.

Thia will be the case (Serret, Vol. ιι., p. 239), if (on 
that supposition) ⅝. ∣n — n, i.e., if

n ,,β x 25(lo⅛∕ 125 ,1 . λ 1 25
Ϊ > 2 + 164 logT + 2Ϊ4 (,°β M + 64 '

where A = ,92l29202 ...,
But when n ≈ 3000, it will be found that the terms on the 

second side of the inequality are respectively less than
134*1641, 66*9773, 47 5546, 4*5227,

whose sum is less than 750.
Hence, the inequality is satisfied, and accordingly the 

theorem is true when m< 2n and n is equal to or greater 
than 3000; for when n satisfies that condition the derivative 
in respect to n of the right-hand side of the above inequality 
will be always less than ∣.

2.o Suppose m = or > 2?z, then it is only necessary to prove 

that log(2n + 1) (2n + 2)... (3n — r)> log(1.2.3...n), 

or, what is the same thing, that

log (1.2.3.4..∙.(3n — r)} > log (1.2.3...n) + log (1.2.3...2n),

v being the number of primes not greater than n, and n being 
at least 3000.

Call the two sides of the inequality P and Q.
Then (Serret, Vol. ll., p. 226).
P> log√(2π) + (3n- v) log (3n — v) — (3n — v) — ⅛ log (3n — v)

> log√(27r)+(3n-v) log3n+(3n-r) log ^1- -3n+v-⅜log3n

> log√(2π) + 3 (logn) n + (3 log 3 — 3) n — (log∕ι) v

+ (1 — log3) v - ⅜ log3 — ∣ logn - r, 

for -(3n- Olθg(l-j‰)

-i'→(a-*(a'→(a,-Ι<∙∙

On the other hand,

φ < log√(27r) + n logn - n + ⅜logn + τ1i 
+ log√(2∙7r) + 2n log2n- 2n + ⅜ log2n ÷j⅛

< {2 log√(27r) + ⅛ log2 + ⅜) +3 (logn) n + (2 log2 — 3) n + logn.
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PROF. SYLVESTER, ON ARITHMETICAL SERIES. 11

Hence P- Q> (3 log3 - 2 log2) n - (logw) v
-1 log n - (log 3) v - j⅛ log (12ττ) + ⅜)

> (3 log 3-2 log 2) n — log n (v — ⅞)
- 2 logrc - log 3 (r - ⅜) - {⅛ log(367r)+⅛}

wher$ v — ⅛ < Γ606 1- n - .
logn

But 3 log3 — 2 log2 = Γ9095415 > l,909.
Hence*

73- Q> (,303)n- (l,606 loδ3) log(367r)⅛⅜j,

say P— Q >∕(n) > 0 when n = 3000.
Also the derivative with respect to n of (logn)∕(w) being

('303) (1 + log») - l∙606 loδ3-⅛- ⅛<⅛L±⅛,

P— Q will increase as n increases and will remain positive 
for all values of n superior to 3000.

Hence the theorem is true, whatever m may be, when 
n = or > 3000, and since it has been proved previously for the 
case of n < 3000, it is true universally.

* It will now be seen why I take separately the two cases of m greater and 
m less than 2n. If we were to take simpliciter m = or > n and were to attempt 
to prove log {1.2.3... (2n — «/)} > 2 log (1.2.3...n) the inferior limit to the difference 
between these two quantities would then have for its principal term, not 
(3 log3 — 2 log2 — Γ606) n but (2 log 2 — V606) n, which would be negative.

Of course there is no special reason except of convenience (in dealing with an 
integer instead of a fraction) for making 2» the dividing point between the two 
suppositions separately considered in the text; κn where κ as far as regards the 
second inequality does not fall short of some certain limit, would have served as 
well: this inferior limit to κ would be some quantity a little greater (how much 
exactly would have to be found by trial) than the quantity 0 which makes 
0 log 6 — (0 — 1) log (0 — 1) equal to the coefficient of p-— in the superior limit to v. 
As regards the first inequality κ would have to be a quantity somewhat less (how
much less to be found by trial) than the quantity η which makes - -----= g,
. . . τ)». e. tj=5, This is on the supposition made throughout of using Tschebyscheff’s 
own limits, but if we use the more general, but less compact, limits indicated in 
my paper in Vol. ιv. of the American Journal of Mathematics, any fraction not 
less than g and not so great as gg⅜gg would take the place of g, and the extreme 
value of ∣∣ would be ⅝⅛⅛⅛i> which is a trifle under 6. By a judicious choice of the 
value given to κ, a value of n could be found considerably less than 3000, which 
would satisfy both inequalities, and this in the absence of Dr. Glaisher’s table 
would have been a matter of some practical importance, but is of next to none 
when we have that table to draw upon. How low down in the seale of number n 
may be taken without interruption of the existence of the fundamental inequality 
for the minimum value of n in the case treated of in this section, it has not been 
necessary for the purpose in hand to ascertain. That it holds good for all values 
of n above a certain limit follows from the fact that 2 log 2 is greater than the 
coefficient of the leading term in the superior functional limit to the sum of the 
logarithms of ζhe primes not greater than n.
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12 PROF. SYLVESTER, ON ARITHMETICAL SERIES.

I subjoin the valuable table, kindly communicated to 
me by Dr. Glaisher, referred to in the text above.

Table of Increasing Sequences of Composite Numbers interposed 
between Consecutive Primes included in the first nine 

million numbers.

Limits to Sequence. Number 
of terms.

7 to 11 3
23 „ 29 5
89 „ 97 7

113 „ 127 13
523 „ 541 17
887 „ 907 19

1129 „ 1151 21
1327 „ 1361 33
9551 „ 9587 35

15683 „ 15727 43
19609 „ 19661 51
31397 „ 31469 71

155921 „ 156007 85
373261 „ 373373 111
492113 „ 492227 113

1349533 „ 1349651 117
1357201 „ 1357333 131
2010733 „ 2010881 147
4652353 „ 4652507 153

The table is to be understood as follows. The lowest 
sequence of as many as 3 consecutive composite numbers is 
that included between 7 and 11: the lowest of as many as 5 
is that included between 23 and 29, of as many as 7 that 
included between 89 and 97 ; between 13 and 17 there is a 
break—this indicates that the lowest sequence of as many 
as 15, or as many as 17 first occurs in the sequence of 17 
interposed between 523, 541. Similarly the break between 
21 and 33 indicates that the lowest sequence containing 
23 or 25 or 27 or 29 or 31 or 33 terms first occurs in the 
sequence of 33 composite numbers interposed between the 
primes 1327, 1361.

It is also necessary to add that in the first nine millions 
numbers there is no succession of more than 153 consecutive 
composite numbers.
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PROF. SYLVESTER, ON ARITHMETICAL SERIES. 13

§3. Relating to irreducible arithmetical series in general.*
Let P be a principal term qua g in any irreducible arith-

metical series whose common difference is i, N any other 
term greater or less than P, and D their difference. If g is 
not prime to f, no term in the series will be divisible by g.

Just as in the case of a natural seqence when there is 
only one principal term in the series it may be shown that 
the index of D qua g will be the same as that of N; when 
there is more than one principal term it appears by the same 
reasoning as before that the index of N cannot be greater 
than that of D: [it will not now necessarily be equal unles3 
g is greater than the common difference i].

The index-sum qua g is zero when g has a common 
measure with i, and we may therefore consider only the case 
where g is relatively prime to on this supposition, by 
virtue of what has been stated above, the index-sum qua g of 
the series whose first term is m + «, and number of terms ni 
will be equal to or less than

-r,(P-m-i∖ r,fP-m-i∖ ~{P-m-i∖7j K⅛-)+j bK⅛H+λ -⅛H+∙∙∙
r√τn + m-P∖ τ,(m+ni-P∖ τ,(m+ni-P∖ ι

-tΛ ⅞ "M ⅞∙ M ∙⅜ j*∙∙∙>
and therefore a fortiori
* »⅛ ιμ)+4⅛-')+4⅛h) +■··

<or-i(2) + ^)÷J5(2l)+...,

i.e. not greater than the index-sum of 2, 3, ..., n qua g.
Consequently, by the same reasoning as that employed

in the last section, the theorem now to be proved, viz. that 
if m [prime to f] =>w, then (wι + f) (τra + 2∕)... (m⅛ m) must 
contain some one or more prime numbers greater than n, must 
be true whenever
{m + f) (w + 2z) (m + 3⅛)...(w+ [n - vt) ∕) > 1.2.3...n ...(θ)f

* An irreducible arithmetical series is one whose terms are prime to their 
common difference.

t If it had been necessary the condition in the text might have been stated 
in the more stringent form that tome aliquot part of the factorial of n (viz. this 
factorial divested of all powers of prime numbers contained in i) would have 
to be greater than

{m + i) (m + 2i)...{m + {n — r,)i} 
if the theorem were not true for any specified values of m, n, i.

It will be noticed that when i is relatively prime to n, κ1 is less than v so that 
w ∙V1 > - v: sθmθ usθ wil1 bθ made of the formula in the text when dealing 
with certain small values of n and m - n towards the end of the section.
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14 PROF. SYLVESTER, ON ARITHMETICAL SERIES.

where v1 is the number of prime numbers not exceeding w, 
and not contained in i, and h fortiori when for v,, we substitute, 
as for the present we shall do, v the entire number of primes 
not greater than n. This I term the fundamental inequality 
for the general case now under consideration.

Suppose n = or > 3000. The logarithm of the first side 
of the fundamental inequality when we write v for r1 is 
obviously greater than the ιth part of the logarithm of

(m + i) (m + i + 1) (nι + i + 2)...{m + (n - r) t},
and the inequality (subject to certain suppositions) to be 
established will be satisfied, if on the same suppositions,

i log [1.2.3... {m + (n — p) f)] > Q + l°g (T2.3...n).

Suppose m = n, and make
lθg[1.2.3...{(i +w)« - fr]J = Ti

(« + 1) log(1.2.3...n)= iζ

F (n, i)= T — U.

Then T> log (2i7γ) + {(f + 1) w - tl·} log {(⅛ + 1) n - iv}

— {(ι + 1) n — iv} — ⅜ log {(« + 1) n - il·},
Cr<(f+1) log √(2i7γ)+(«'+1) n logn-(z+l) n+⅛ (f+ l)logn+τ12 (ι+l).

Hence F(n, i) > — i log√(27r)+ {(i + 1) n — iv} log {(f+1)

+ {(i + 1)m-Λ)

+ iv — (t+l) wlogw—∣log{(⅛+l)n-fp}-⅜ (f+ 1) logn-τ12 («’+!) 

> {(i + l)log(f+l)}n-i{log(f+l)wjv-⅛log{(f+l)n}-∣(f+l)logn

-⅜flog(2ττ) -τ⅛(f+l), 

i.e. >{(f+l)log(f+l)}n-f{log(f+l)n}p-∣(⅛+2)logn-∣log(f+l) 

-⅜∏og(2τr) -⅛(ι + 1), 

so that when n > 3000 and consequently v < ⅛ + (l,606) ∣-— ,

the inequality to be established will be true a fortiori if 

∙F(m,i)> ^(i+l)log(f-∏)-(l∙606)⅛ l + ∣ n—(i+l) logn

~E⅜ (*+1) lθg(* + l) +⅛ (∏og(2π)}+ ⅛(f + 1)]∙..R.
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PROF. SYLVESTER, ON ARITHMETICAL SERIES. 15

When «=1 or 2 or 3 the coefficient of n ia negative; 
consequently the limit to v before found is no longer applicable 
to bring out the desired result.

The case of i — 1 has been already disposed of; that of 
i = 2 may be disposed of, as I shall show, in a similar 
manner; when i — 3, I shall raise the limit n from 3000 
to 8100 of which the logarithm is so near to 9 that it may, 
for the purpose of the proof in hand, be regarded as equal 
to 9 without introducing any error in the inequality to be 
established, as the error involved will only affect the result 
in a figure beyond the 4th or 5th place of decimals, whereas 
the inequality in question depends on figures in the first 
decimal place. When this is done the theorem will be in effect 
demonstrated for the case of f=3 and «>8100. For all 
values of « not greater than 8100 I shall be able to show 
that the fundamental inequality (θ) is satisfied by employing 
the actual value of v1 or v instead of a limiting value of the 
latter.

Thus the fundamental inequality will be shown to subsist 
for all values of n when f=3 and wz = w, and a fortiori 
therefore for all values of m and i not less than « and 3 
respectively.
Case of f = 2.

Suppose n = >3000, and take separately the cases m<=2ni 
m > 2n.

1°. Let m be not greater than 2n so that m + 2« is greater 
than 2m — 1.

By hypothesis m must be odd, and by Bertrand’s Postulate 
m+2, m + 3, m + 4, ..., 2m,

and therefore m + 2, m + 4, m+6, ..., {2m — 1)
(seeing that the interpolated terms are all even) must contain 
a prime, and thus the first case is disposed of.

2°. Since the fundamental inequality has been shown to 
be satisfied when m>ln it will be true a, fortiori when 
m > 2n.

Hence the theorem is established for i=2 when «>3000. 
Finally as regards values of « inferior to 3000, the 
reasoning employed for the case of i = 1 applies a fortiori to 
the case of i= 2.

To see this let us recall the first step of the reasoning 
applicable to the supposition of f = L

Because in the first nine million numbers there is no 
sequence of 3000 composite numbers, from Dr. Glaisher’s 
Table of Sequences (taken in conjunction with the fact that
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16 PROF. SYLVESTER, ON ARITHMETICAL SERIES.

when m > n3, the theorem has been proved to be true what-
ever n may be), we were able to infer that it must be true 
when n does not exceed 153: in the present case, if the 
theorem were not true when 3000 > n > 153, there would be 
a sequence of 153 composite odd numbers and therefore of 
over 305 composite consecutive numbers in the first 9000000 
numbers, whereas there are not more than 153, and so we 
may proceed step by step till we arrive at the conclusion 
that the theorem must be true when n > 13; and when 
w= 13, 11, 7, 5, 3, 2, 1 a like method of disproof (but briefer) 
will apply as for the case of i = 1.
Case of i= > 3.

Let n = >8100. Then we may without ultimate error 
write

l∙1056d____ -_____ 8 — + 5 - ■ θ- 4---- —
, 4log6 8100 2 8100 8100 n λ .tp n

r — ⅛ <---------------- r---------------ϊ------------------i------ < 1'546 i------ ,1 log9 1 — log 2 logn logn
•1 ” ^9 9

and accordingly

∙F(w, 3) > ∣4 log 4 — (3 × Γ546) ^1 n

— 4 logw — (2 log 4 + ∣ log27r + ⅜) 

and 2?(8100, 3) > (5.545 - 5*352) (8100) - 36 - 5*863 > 0.

Hence the Fundamental Inequality is satisfied when 
n = > 8100.

To prove that it is satisfied for values inferior to 8100, 
observe that by virtue of the formula (if) it will be so, 
ex abundantia, for all values of n not less than 'n and not 
greater than √, provided that, calling riv the number of primes 
not exceeding √,

(5*545) 'n - 3 log (4n,) riυ — ∣ logn' — C > 0,

where C = ⅜ + log2 + ∣ log (2σr) = 3*783.

On trial it will be found that the above inequality is 
satisfied when we successively substitute for 'z?, w', and for 
nv (found from any Table for the enumeration of primes) 
the values given in the annexed table:
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PROF. SYLVESTER, ON ARITHMETICAL SERIES. 17

rn n v n

8100 1018 5725
5724 753 4096
4095 564 2967
2966 427 2172
2171 326 1604
1603 252 1200
1199 196 903

902 154 687
686 124 535
534 99 415
414 80 325
324 66 260
259 55 210
209 46 171
170 39 141
140 34 111
110 29 99

98 25 84
83 23 76
75 21 68
67 19 62
61 18 57
56 16 50
49 15 46
45 14 42
41 13 39
38 12 36
35 11 32
31 11 31
30 10 30
29 10 29

The fundamental theorem is therefore established when 
i> 2 for all values of n down to 29 inclusive.

It remains to consider the case where n is any prime 
number less than 29.

Calling μ the difference between n and the number of 
primes (exclusive of I) not greater than n, to

w=2, 3, 11, 17, 23
will correspond

μ = l, 1, 6 , 10, 14
VOL. XXI. C
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18 PROF. SYLVESTER, ON ARITHMETICAL SERIES,

and for each combination of these corresponding numbers 
it will be found that

1.2.3.. .w = or <(m+3)(h  6)...(k + 3μ).

Hence the theorem is proved for these values of nf 
whatever n may be, when i=> 3. To

n = 13, rc= 19
corresponds

μ = l 1 μ = ll,

and for these combinations of n and μ it will be found that

1.2.3.. .n < (n + 4) (w + 7)...(w + 1 + 3∕z-), 

so that the theorem is true for
n = 13, 19,

except in the case where
m = 13, 19.

That it is true in these excepted cases follows from 
inspection of the series,

16, 19, 22, 25, &c.,
22, 25, 28, 31, &c,,

where 19 > 13, 31 > 19: or it might be proved, but more 
cumbrously, by the same method as that applied below to 
the only two values of n remaining to be considered, viz.

n = 5, n = 7,

for which we have respectively
μ — 2, μ —— 3.

If ∏ = 5 and i has no common measure with 2.3.4.5, 
i must be not less than 7, but 1.2.3.4.5 < 12.19.

On the other hand, if i has a common measure with 
2.3.4 5, then what we have called rl, in formula (θ), is less 
than r, so that n — vl > 2, but

1.2.3.4.5 <8.11.14.

These two inequalities combined serve to prove that, 
whatever i may be, the inequality (θ) is satisfied, and the 
theorem is consequently proved for n = 5.

So again, when n — 7, if i has no common measure with
2.3.4.5.6.7 it must be 11 at least. In that case the inequality
2.3.4.5.6.7 < 18.29.40, and in the contrary case the inequality
2.3.4.5.6.7 < 10.13.16.19 serves to prove the theorem.
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PROF. SYLVESTER, ON ARITHMETICAL SERIES. 19

When n = 1 the truth of the theorem is obvious: hence 
combining the results obtained in this and the preceding 
section, it will be seen we have proved that whatever n and 
whatever i may be, provided that m is relatively prime 
to i and not less than n, the product

(τn + ι) [m + 2∕)...(m + m)

must contain some prime number by which 2.3...n is not 
divisible, and the wearisome proof is thus brought to a close. 
It will not surprise the author of it, if his work should sooner 
or later be superseded by one of a less piece-meal character— 
but he has sought in vain for any more compendious proof. 
He has not thought it necessary to produce the figures or 
refer in detail to the calculations giving the numerical results 
inserted in various places in the text: had he done so the 
number of pages, already exceeding what he had any previous 
idea of, would probably have been more than doubled.

New College, Oxford 
June 6, 1891. '

End of Part 7.*

* The author was wandering in an endless maze in his attempts at a general 
proof of his theorem, until in an auspicious hour when taking a walk on the 
Banbury road (which leads out of Oxford) the Law of Ademption flashed upon 
his brain: meaning thereby the law (the nerve, so to say, of the preceding 
investigation) that if all the terms of a natural arithmetical series be increased by 
the same quantity so as to form a second such series, no prime number can enter 
in a higher power as a factor of the product of the terms of this latter series, 
when a suitable term has been taken away from it, than the highest power in 
which it enters as a factor into the product of the terms of the original series.

In Part ιι I shall be able to apply the same method to demonstrate a theorem 
showing that it is always possible to split up an infinite arithmetical series, if 
not in the general case, at least for certain values of the common difference, into 
an infinite number of successive finite and determinable segments such that one 
or more primes shall be found in each such segment: a theorem which is, so to 
say, Dirichlet’s theorem on arithmetical progressions cut up into slices.

The whole matter is thus made to rest on an elementary fundamental equality 
(Tschebyscheff’s) which, with the aid of an application of Stirling’s theorem, 
leads (as the former has so admirably shown) inter alia to a superior limit to the sum 
of the logarithms of the primes not exceeding a given number, from which as 
has been seen in §2, a superior limit may be deduced to the number of such 
primes. With the aid of this last limit together with an elementary fundamental 
inequality and a renewed application of Stirling’s theorem, all iny results are 
made to flow. Thus a theorem of pure form is brought to depend on con-
siderations of greater and less, or as we may express it, Quality is made to 
stoop its neck to the levelling yoke of Quantity.

Long and vain were my previous efforts to make the desired results hinge 
upon the properties of transposed Eratosthenes’ scales: now we may hope to 
reverse the process and compel these scales to reveal the secret of their laws 
under the new light shed upon them by the successful application of the 
Quantitative method.

C2
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