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NOTE ON A RECURRING FORMULA FOR σ (w).

By J. IV. L. Glaisher.

Value of a recurring formula, §§ 1—3.

§1. In Vol. xx. (1884), p. 116, of the Quarterly Journal 
it was shown that if n ≡ 7, mod. 8, then

σ (n) — 2σ (η — V) + 2σ (n — 16) — 2σ (n — 36) + &c. = 0,*

σ (z?) denoting the sum of the divisors of n.
As the arguments decrease more rapidly in this series 

than in any of the other recurring formulae for σ (rc), 
it is interesting to examine the restriction with respect to the 
form of n.

It will be shown that the formula holds good for all uneven 
values of n which are not expressible as the sum of three 
squares; and as no number which ≡ 7, mod. 8, is so ex-
pressible, the theorem is necessarily true for numbers of this 
form.

§2. In the first place, suppose n =3, mod. 4. We find 
that, for such a value of n, the expression

σ (n') - 2σ (n - 4) + 2σ (n — 16) - 2σ (n — 36) + &c.

is equal to a quantity derived from the compositions of n as 
a sum of three squares in the following manner.

Consider any composition of n as the sum of three squares, 
all of which must be uneven since n ≡ 3, mod. 4. Such a 
composition must be of one of the three forms

(i) a, + b2 + c8, (ii) a, + b^i + b1, (iii) a’ + d2 ÷ αβ, 

α, b, c being different uneven numbers.

* In Euler’s original formula,

σ (η) — σ {n — 1) — σ (n — 2) + σ (n — 5) + σ (n — 7) — «fee. = 0,

where σ (0) = n, the argument of the (2r + l)th term is less than that of the first 
by ⅛ (3r2 + r); in the formula,

σ (n) — 3σ (n — 1) + 6σ∙ (» — 3) — 7σ (n — 6) + &c. = 0,

where σ (0) = ∣n, the diminution is 2r2 + r∙. while, in the formula in the text, it 
is 16r2.

For example, the eleventh term in the three series is

σ(n-40), 21σ(n-55), 2σ(n-400)
respectively.
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From (i) we form the quantity

(- ι)⅜(α~1> sa + (- 1 )*<i^1> 85 + (- l)*(c-1> 8c, 

from (ii), (—l)^σ~υ4α + (— l)i(6_1)85,

and from (iii), (— l)it"-υ4α.*

We then add together the quantities so derived from all the 
compositions of n. This sum is equal to the above σ-expression.

As an example, let n = 27, which is ≡ 3, mod. 8.
The compositions of 27 as a sum of three squares are

5, + T + 12, 32 + 32 + 3iι.

The quantity formed from them is

20 + 8 -12 = 16.

The theorem therefore is

σ (27) - 2σ (23) + 2σ (11) = 16,

viz. 40 — 48 + 24 = 16.

As additional examples, let n = 59 and 75 which are both 
= 7, mod. 8.

The compositions of 59 and 75 as sum of three squares are 

72 + 32 +l2, 52 + 5a + 32,

and 72 + 52 + 12, 52 + 52 + 5*,
respectively.

The quantities formed from them are
- 56 - 24 + 8 + 40 - 12 = - 44,

and — 56 + 40 + 8 + 20 = 12
respectively.

The corresponding σ-theorems are therefore 

σ (59) - 2σ (55) + 2σ (43) - 2σ (23) = - 44,

and σ (75) - 2σ (71) + 2σ (59) - 2σ (39) + 2σ (11) = 12, 

viz. 60- 144+ 88 -48 =-44,

and 124- 144+ 120- 112 +24 = 12.

* In the formation of these numbers, we only take into account different squares 
occurring in the same composition, and the square root is multiplied by 8, when 
the other two squares in the composition are different from each other, and by 4 
when they are the same.
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Si n c e  a  n u m b e r  ≡  3,  m o d.  4  c a n o nl y b e  t h e s u m of  t h r e e 
s q u a r e s if it i s al s o ≡  3, m o d.  8,  it f oll o w s f r o m t h e a b o v e  
t h e o r e m t h at if n  ≡  7,  m o d.  8,  t h e σ - e x p r e s si o n i s n e c e s s a ril y  
e q u al  t o z e r o.

§ 3. If n ≡l, m o d.  4,  t h e q u a ntit y w hi c h  r e p r e s e nt s t h e 
v al u e  of  t h e σ - e x p r e s si o n m a y  b e  c al c ul at e d a s  f oll o w s.

W e  w rit e  d o w n all t h e c o m p o siti o n s of  n a s a s u m of  
t h r e e s q u a r e s. T w o  of  t h e s e m u st  b e  e v e n (i n cl u di n g 0 * a s  
a n  e v e n  s q u a r e) a n d o n e  u n e v e n. T h e  diff e r e nt  f o r m s a r e

(i) α a +  ∕ Sa +  7 a , (ii) α a +  ∕ 3a  +  0 a ,

(iii) α a +∕ 3 a +  ∕ 3a , (i v) α a + 0 a +  0 β ,

w h e r e  a i s a n u n e v e n s q u a r e, a n d β,  y a r e e v e n s q u a r e s  
diff e r e nt  f r o m e a c h  ot h e r.

F r o m (i), w e  f o r m ( —  l)ii" ^1, 8 α,  f r o m (ii), ( —  1  ) 4( “ - 1) 4 α  ; 
f r o m (iii), (— l)i( a_ 1)4 a ; a n d  f r o m (i v), (- 1) 4( α- 1) α: a n d w e  
a d d  t o g et h e r t h e q u a ntiti e s  s o d e ri v e d  f r o m all  t h e c o m p o siti o n s.

F o r  e x a m pl e,  l et n  =  2 5. T h e  c o m p o siti o n s a r e  

5 a +  0 2  +  0 a , 3 2  +  4 2  +  0 a ,

f r o m w hi c h  w e  f o r m

5- 1 2  =- 7,

a n d  t h e t h e o r e m i s

σ( 2 5)-  2 σ( 2 1)  +  2 σ( 9) =-  7,

vi z.  3 1-  6 4 +  2 6  =- 7.

A s  a d diti o n al e x a m pl e s, l et n  =  5 3 a n d 6 5. T h e  c o m -
p o siti o n s  a r e

7 a + 2 a +  0 2 , la +  6 2  +  4 2 ,

a n d  7 a  +  4 8  +  0 a , 5 a +  6 2  +  2 8 , l8  +  8 8 + θ ∖

r e s p e cti v el y, gi vi n g

- 2 8 +  8  =- 2 0,

a n d  - 2 8  +  4 0 +  4  =  1 6.

T h e  c o r r e s p o n di n g σ-t h e o r e m s  t h u s a r e 

σ  ( 5 3) - 2 σ  ( 4 9) +  2 σ  ( 3 7) - 2 σ  ( 1 7) =  - 2 0,

a n d σ  ( 6 5) - 2 σ  ( 6 1) +  2 σ  ( 4 9) - 2 σ  ( 2 9) +  2 σ  ( 1) =  1 6,  

vi z.  5 4  - 1 1 4 +  7 6 - 3 6 =  - 2 0,

8 4-  1 2 4  +  1 1 4  - 6 0 +  2  =  1 6.
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Expressions for the value in terms of the function E, §§ 4, 5.

§ 4. The number of the representations of a number n as 
the sum of two squares is equal to 4E(n), where E(n) denotes 
the excess of the number of divisors of n which ≡1, mod. 4 above 
the number of those which ≡3, mod. 4.*

The quantity calculated in § 2 may therefore be expressed 
by the formula

4 {E(n — 1) — 3E(n — 9) + 5E(n - 25) — &c.}.

This formula also expresses the quantity calculated in § 3 
if n is not a square number; but when n is a square 
number ra, we have to include the term (— l)*<r^1,. This 
term may be included by allowing the formula to extend 
to E(tif which then occurs, and putting E(fi) = J.

Taking the examples in §2, by putting w = 27, 59, 75, 
we have the ^-expressions

4 {E (26) - 3E (18) + i>E (2)},

4 {JS,(58) - 37? (50) + 5E(34) - 7^(10)},

4 {E(74) - 3^7(66) + i>E (50) - IE (26)},

giving 4 (2-3+ 5) = 16,

4 (2 - 9+ 10- 14) = -44,

4(2-0+15- 14) = 12,
respectively.

Similarly the corresponding expressions derived from the 
examples in § 3 are

4 {jE,(24) - 3E(16) + 52*7(O)},

4 {^£7 (52) - 37?(44) + 5^(28) - 7jE(4)},

4 {E (64) - 3^7 (56) + 5J? (40) — 7JE, (16)},

giving 4 (0 - 3 + ∣) = - 7,

4 (2 - 0 + 0 - 7) = - 20,

4(1-0+10-7) = 16,
respectively.

* The function JS,(n) is considered in Proc. Lond. Math. Soc., vol. xv., 
PP∙ 104—122. A table of E(n) up to n = 1000 is given on p. 106 of that paper.
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It will be noticed that when n=l, mod. 4, all the 
arguments n — 1, n — 9, n - 25, ... are ≡ 0, mod. 4. We may 
therefore divide all the arguments throughout by 4, ex. gr., 
we may replace the above expressions by

4{^(6)-3jE(4) + 5^(0)},

4 {E(13) - 3^7(11) + 5E (7) - 7^(1)},

4 {E (16) - 3jE7(14) + δ^(10) - lE (4)},

respectively.

§ 5. By equating the σ- and ^-formulae, we find for all 
uneven values of w,

σ (n) — 2σ (n — 4) + 2σ (n - 16) — 2σ (n - 36) + &c.

= ⅛{E(n-l)- 3E(n - 9) + 5E(n — 25) — &c.},

where -E,(0) = ⅛.
Considering separately the cases when n ≡ 3 and = 1, 

mod. 4, we deduce the results:

(i) if n = 3, mod. 4, then

σ (rι) — 2σ (n — 4) + 2σ (n — 16) — 2σ (n — 36) + &c.

= 4 {E(nl) - 3E (w1 — 4) + 5E (nl -12y)-7E(nl - 24) ⅛ &c.},

where nλ = ⅜ (n — 1), and the numbers 4, 12, 24, ... are the 
quadruples of the triangular numbers. If w≡7, mod. 8, 
w1≡3, mod. 4, so that all the Z7-terms vanish, and the 
σ-expression is equal to zero.

(ii) if n ≡ 1, mod. 4,

σ (n) - 2σ (n - 4) + 2σ (n — 16) — 2σ (n — 36) + &c.

= 4 {E(n2^) - 3E(n2 - 2) + 5E(ni - 6) - 7E(nt- 10) + &c.,

where wj = ⅛(w-l) and the numbers 2, 6, 12, ... are the 
doubles of the triangular numbers.

The formula (i) was given in vol. XX., p. 129, of the
Quarterly Journal.

The number of representations of a number as a sum 
of three squares, §§ 6—9.

§ 6. There is no simple function depending upon the 
divisors of n (corresponding to the function E(n) in the case 
of two squares) by means of which we may express the 
number of representations of n as a sum of three squares.
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Tt is easy to see that this number must be equal to the 
sum of the series

4 {E(n) + 2E (n — 1) 4- 2E (n ~ 4) + 2E (n — 9) + &c.},

for the first term is equal to the number of representations in 
which the square 0li occurs, the second is equal to the number 
in which l2 occurs, the third to the number in which 22 occurs, 
and so on.

We may, however, obtain an ^-series in which the arguments 
descend more rapidly, when n is uneven. For if rc≡3, mod 4, 
the three squares in each composition must be all uneven, and 
the number of representations is, therefore, evidently equal to

8 {E(n- 1) + E(n — 9) + E(n — 25) + &c.}.

This expression is also deducible at once from the preceding 
formula since in this case the alternate terms E(n)f E(n-⅛)i &c. 
vanish. If n≡7, mod8, all the terms vanish.

§7. Referring to the examples n=27, 59, and 75, 
considered in § 2, we see that the numbers of representations 
are 24 + 8 = 32, 48 + 24 = 72, and 48 + 8 =56 respectively, 
while the above formula gives in the respective cases

8 {^,(26) + JT(18) + TΓ(2)},

8 {F∕(58) + jE,(50) + ^(34) + iτ(10)j,

and 8 {E (74) + E (66) + E (50) + E (26)J j

that is
8 (2 + 1 + 1) = 32,

8(2 + 3+2+2) = 72,

and 8 (2 + 0 + 3 + 2) = 56.

§8 When w≡l, mod 4, we can obtain a series in which 
the arguments descend much more rapidly, for in this case 
two squares must be even and one uneven, and it is easy to 
see that the number of representations must be equal to

6 {E(w) + 2E (n - 4) + 2E(n - 16) + &c.j.

Now it can be shown that

E (n) — 2E (n — 4) + 2E (n - 16) — &c.
is equal to zero if n is not a square number, and is equal to 
(— l)4+''~1) if 77 is a square number.
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We may therefore express the number of representations 
of n by either of the formulae

12 {E(n) + 2E(n -16) + 2E(n - 64) + &c.} - [(- l)*<v"-1>6√n], 

or
24 {E(n - 4) +E(n - 36) +E(n - 100) + &c.} + [(-1 )i<yn^1>6√w],

in both of which the final term, enclosed in square brackets, 
occurs only when n is a square number.

§9. The arguments in these series diminish very fast. 
Taking the second formula, the squares which occur in the 
arguments are the quadruples of the uneven squares, 
viz. 4, 36, 100, 196, 324, 484, 676, 900, ..., so that for 
example, only eight terms are required in order to express 
the number of representations of a number = 1, mod. 4, 
which is intermediate to 900 and 1156.

Taking the examples w = 25, 53, and 65 considered in § 3, 
we see that the numbers of representations are

6 + 24 = 30, 24 + 48 = 72, 24 + 48 + 24 = 96, 

and the second formula gives, for these values of n,

24^(21) + 6×5 =0+ 30 = 30,

24 {J57 (49) + jE, (17)} =24 (1 + 2) = 72,

24 {E(61) + E (29)} = 24 (2 + 2) = 96.

The first of the two formulae gives in these three cases

12 {^(25) + 2E (9)} - 6 × 5 = 12 (3 + 2) - 30 = 30,

12 {JE,(53) + 2E (37)} = 12 (2 + 4) = 72,

12 {E (65) + 2E (49) + 2E (1)} = 12 (4 + 2 + 2) = 96.

Taking as another example a larger square number, 121, 
the second formula gives as the number of representations

24 {7Γ(117) + 2Γ(85) + 7Ξ, (21)} — 6 x 11 

= 24 (2 +4 + 0)-66 = 78.

The compositions of 121 are

lla + 0a + 08, 9, + 6s + 4*, 7i + 6s+6,,

giving 6 + 48 + 24 = 78 representations.

www.rcin.org.pl



DR. GLAISHER, A RECURRING FORMULA FOR σ (ft). 129
Relations between E-formula, § 10.

§ 10. By comparing the ^formula of §§ 6 and 8, we see 
that if n = 1, mod. 4,

2 {E(n) + 2E(n — 1) 4 2E(n — 4)+&c.}

= 3{E (n) + 2E (n — 4) + 2E (n — 16) + &c.}

= 6 {E (w) + 2E (n -16) + 2E (n - 64) + &c.} - [(- l)4^"-,>3√ft]

= 12 {E(n - 4) + E(n - 36) + ^(ft-100)+<fcc.}+[(-l )*<vn-1>3√∕l],

the additional term, enclosed in square brackets, which occurs 
in the last two formulas, being only included when n is a 
square number.

Formula connecting the functions σ and ∆', § 11.

§11. It can be shown that, if Δ, (ft) denotes the sum of 
those divisors of n whose conjugates are uneven, then

Δ' (w) - 2Δ' (n - 1) + 2∆' (w — 4) — 2∆' (n - 9) + &c.

is equal to zero or (- l)n^1 n according as n is not, or is, 
a square number.

If n be uneven ∆' (ft) = σ (n), and we may therefore write 
formula, when n is uneven, in the form

σ (ft) ⅛ 2σ (ft - 4) + 2σ (ft - 16) + 2σ (ft — 64) + &c.

= 2 {∆' (ft - 1) + ∆' (ft — 9) + ∆' (n — 25) + &c.} + [(— l)n"1wj,

where the additional term, in square brackets, is only to be 
included when ft is a square number.

Now from § 1,' if « = 7, mod. 8,

σ (ft) — 2σ (ft - 4) -f- 2σ (ft — 16) - 2σ (n - 36) + &c. = 0, 

so that, when n is of this form,

Δ' (w — 1) + Δ' (ft — 9) + Δ' (ft — 25) + &c.

= σ (w) + 2σ (ft — 16) + 2σ (ft — 64) + &c.

= 2σ (ft — 4) + 2σ (n - 36) + 2σ (ft — 100) + &c.

Representations by five squares, § 12.

§12. It may be remarked that if ft≡l, mod. 8, the 
number of representations of n as a sum of live squares is 
equal to

10 {σ (ft) + 2σ (ft — 4) + 2σ (ft - 16) + &c.},
VOL. XXI. K
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a n d t h at, if n  ≡  3,  m o d.  4,  t h e n u m b e r  of  r e p r e s e nt ati o n s i s 
e q u al  t o

2 0  { σ (ιi) +  2 σ  ( n —  4)  +  2 σ  ( n —  1 6)  +  & c.}.

T h u s,  w h e n  w ≡ 7,  m o d.  8,  t h e n u m b e r  of  r e p r e s e nt ati o n s  
i s e q u al  t o

4 0  { σ ( n) +  2 σ  ( n —  1 6)  +  2 σ  ( n —  6 4)  +  & c.j  

=  8 0  { σ ( n —  4)  +  σ  ( n —  3 6)  +  σ  ( n —  1 0 0)  +  & c}.  

A n al yti c al  F o r m ul a e,  § 1 3.

§  1 3. T h e  g r o u p s  of  a n al yti c al  f o r m ul a e f r o m w hi c h  all  t h e 
r e s ult s c o nt ai n e d  i n t hi s n ot e  m a y  b e  d e ri v e d  a r e  t h e f oll o wi n g.

If n  d e n ot e  a n y  n u m b e r  a n d  m  a n y  u n e v e n  n u m b e r,  t h e n

I.

i ∑r0 β ∕}  { ∑ ~ 0 0 / ή i ∑r0 0 (- υ v n * } = ∑ι  <-  ι) * <m ⅛ 2 m, ,

II.

{ ∑ X Λ , =  l +  4 Σ 1 ". E( n) < Λ  

{ ∑ Z0 ∕} J Σ ^ 24Ι =  2 Σ θ^( 4 n +l) ,̂

III.

{ ∑" 0 0 2 η i- γ =  2 Σ 0 °o σ  ( 4 n +  1)

{ ∑ Γ o o q m  ∏ ∑ ~ α , } =  2 Σ 0 °o σ  ( 4 n +  3)  ∕"+ 8 .

I V.

Σ -” ( ^ P =  ∑  “  Δ'  ( w) 2 n .

- = ο 2

T h u s  f o r e x a m pl e,  t h e t h e o r e m i n §  2  m a y  b e o bt ai n e d  b y  

m ulti pl yi n g  t h e s e c o n d f o r m ul a of  III. b y  ∑ ∞ o o ( —  1) V" ∖  a n c ^  

r e d u ci n g t h e l eft- h a n d si d e b y  I. W e  t h u s fi n d

=  2 { ∑ 0 ≈ σ( 4 n  +  3) < r 3 } { ∑ " 0 0 (- l) " g4 n }.
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