In a similar manner it can be shewn that if $f(x, y, t)$ be a solution of the equation

$$
\frac{\partial V}{\partial t}=a^{2}\left(\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}\right)
$$

then the expression

$$
\frac{1}{t} e^{-\frac{x^{2}+y^{3}}{1 a y^{2}}} f\left(\frac{x}{t}, \frac{y}{t},-\frac{1}{t}\right)
$$

is also a solution. In particular, we have the solution

$$
\frac{1}{t} e^{-\frac{x^{2}+y^{2}}{4 a^{2} t}}\left\{E\left(\frac{x+i y}{t}\right)+f\left(\frac{x-i y}{t}\right)\right\},
$$

given by Earnshaw in his Theory of Germs. It was in attempting to test the generality of the results given by Earnshaw that I discovered the above theorem.

ON SOME SQUARE ROOTS OF UNITY FOR A PRIME MODULUS.

By H. W. Lloyd Tanner, M.A., F.R.A.S.

1. An example of the square roots in question is the power $x^{2(p-1)}$, where p is the prime modulus and x is any of the numbers $1,2, \ldots, p-1$; the value 0 being excluded. This power is ± 1 for all the values of x considered; viz., it is 1 when x is a quadratic residue, mod. p, and -1 when x is a non-residue. In the following paper it is proposed to determine all the expressions

$$
A+B x+C x^{2}+\ldots+D x^{p-2},=F x
$$

which have a similar property, viz. $F x \equiv \pm 1$ for every proper (i.e. non-vanishing) value of x. The distribution of the signs \pm of F_{x} for the different values of x is however arbitrary, and every such distribution gives rise to a particular form of $F x$. Since there is a choice of two values for $F 1$, for $F 2, \ldots$, and for $F(p-1)$, there are 2^{p-1} different forms of $F x$.*

[^0]2. The $p-1$ coefficients of F_{x} are given by the $p-1$ linear congruences,
\[

$$
\begin{aligned}
& A+B \cdot 1+C \cdot 1^{3}+\ldots+D \cdot 1^{p-2} \equiv F 1, \bmod \cdot p, \\
& A+B \cdot 2+C \cdot 2^{2}+\ldots+D \cdot 2^{p-2} \equiv F 2,
\end{aligned}
$$
\]

where the values $F^{\prime} 1, F^{\prime} 2, \ldots$, are supposed to be known.
The system is consistent; for its determinant, being the product of the differences of $1,2, \ldots, p-1$, cannot be 0 . (It is in fact ± 1, being a square root of the discriminant of $x^{p-1}-1$). It follows that a square root, $F x$, actually exists for every one of the $2^{2^{p-1}}$ different arrangements of signs in $F^{\prime} 1, F^{\prime} 2, \ldots, F^{\prime}(p-1)$.
3. There is an interesting modification of this process.

We can write $F x$ in the form

$$
\begin{aligned}
F x & =a+b x^{2}+\ldots+c x^{p-3}+x^{q}\left(\alpha+\beta x^{8}+\ldots+\gamma x^{p-8}\right) \\
& =f\left(x^{2}\right)+x^{q} . \phi\left(x^{2}\right)
\end{aligned}
$$

where q is an odd number, namely the greatest odd factor of $p-1$; so that

$$
p=2^{\lambda} \cdot q+1 .
$$

The definition of $F x$ gives

$$
\begin{equation*}
\left(f x^{2}+x^{8} \cdot \phi x^{2}\right)^{2} \equiv 1, \bmod . p \tag{1}
\end{equation*}
$$

and, since this congruence is true also for $-x$,

$$
\left(f x^{1}-x^{q} \cdot \phi x^{2}\right)^{2} \equiv 1
$$

By subtraction, we get

$$
\begin{equation*}
x^{4} \cdot \phi x^{2} \cdot f x^{2} \equiv 0 \tag{2}
\end{equation*}
$$

From (2) and (1) it follows that for every proper value of x either
or

$$
\begin{aligned}
& \phi x^{2} \equiv 0, \text { and } f x^{8} \equiv F x, \\
& f x^{2} \equiv 0, \text { and } \phi x^{2} \equiv x^{-q} F x .
\end{aligned}
$$

It is obvious that the former case, $\phi x^{2} \equiv 0$, arises when

$$
F x \equiv F(-x),
$$

and the latter, $f x^{2} \equiv 0$, when

$$
F x=-F(-x)
$$

Now suppose that $f x^{y} \equiv 0$ when $x= \pm g, \pm h, \ldots, \pm k(2 r$ values $)$, and ϕx^{2} when $x= \pm s, \pm t, \ldots,(p-1-2 r$ values $)$. Then $f x^{2}$ is divisible by $\left(x^{2}-g^{2}\right)\left(x^{2}-h^{2}\right) \ldots\left(x^{2}-k^{2}\right)$, that is to say

$$
f x^{2}=\left(x^{2}-g^{2}\right)\left(x^{2}-\lambda^{3}\right) \ldots\left(x^{3}-k^{2}\right) f_{1} x^{2} \ldots \ldots \ldots(8) .
$$

To calculate the $\frac{1}{2}(p-1)-r$ coefficients of $f_{1} x^{8}$, we have the congruences

$$
\left(x^{2}-g^{2}\right)\left(x^{2}-h^{2}\right) \ldots\left(x^{2}-k^{2}\right) f_{1} x^{2} \equiv F^{3} x,
$$

when $x^{3}= \pm r, \pm s, \& c$. When $f_{1} x^{2}$ is found, $f x^{2}$ is given by (3). In the same way ϕx is obtained, and thus $F x$. It will be observed that in this process only $\frac{1}{2}(p-1)$ coefficients have to be calculated from congruences instead of $p-1$.

Although it is so easily explained, the property indicated by (2)-that for each value of x, the value of $F x$ is determined solely by the even powers of x or solely by the odd powersstrikes me as worthy of remark. In the particular case of $x=1$ it gives the theorem that in any square root $F x$, the sum of the coefficients of the even powers, or the sum of the coefficients of the odd powers is divisible by y. The sum which is not so divisible is $\equiv \pm 1$, mod. p.
4. A third method is based on the remark that $F x, F_{1} x$ being two square roots, then $F(\alpha x)$ (where $\alpha=1,2, \ldots$, or $p-1$), $F\left(x^{n}\right)$, and $F x \times F_{1} x$ are also square roots. Now we have

$$
\begin{aligned}
(\chi x=)\left(x^{p-1}-1\right) /(x-1) & \equiv-1, \text { when } x=1 \\
& \equiv 0, \text { when } x=2,3, \ldots, p-1 ;
\end{aligned}
$$

therefore

$$
\begin{aligned}
a \chi x+b & \equiv-a+b, \text { when } x
\end{aligned}=1 .
$$

Thus, putting $a=2, b=1$, we find that

$$
2 \chi^{x}+1,=3+2 x+2 x^{2}+\ldots+2 x^{p-1},=F_{2} x \text { say },
$$

is a square root of $1, \bmod . p$. The distribution of signs may be denoted by

$$
F_{1} x=-++\ldots+
$$

meaning that $F_{1} x=-1$ when $x=1$, and $=+1$ for other values.

Another square root of 1 is

$$
F\left(a^{-1} x\right)=3+2 a^{-1} x+2 a^{-2} x^{2}+\ldots+2 a x^{p-2} .
$$

Now $F_{1}\left(a^{-1} x\right) \equiv F_{1}(1) \equiv-1$, when $x=a$ and is + for all other values of x.

Hence

$$
F_{1}\left(a^{-1} x\right)=+++\ldots-\ldots+
$$

the solitary - occurring in the $a^{\text {th }}$ place.
To obtain a square root whose sign symbol contains - in the $a^{\text {th }}, b^{\text {th }}, \ldots$, and $c^{\text {th }}$ places, and nowhere else, we form the product

$$
F_{1}\left(a^{-1} x\right) F_{1}\left(b^{-1} x\right) \ldots F_{1}\left(c^{-1} x\right)
$$

It is clear that in this way all the forms of $F x$ can be calculated.
5. It would be very laborious to perform the multiplications indicated; but an artifice gives the result without much trouble.

For all proper values of x,

$$
\begin{aligned}
& \left(1+x+\ldots+x^{p-2}\right)\left(\alpha+\beta x+\ldots+\delta x^{p-2}\right) \\
& \quad \equiv\left(1+x+\ldots+x^{p-2}\right)(\alpha+\beta+\ldots+\gamma), \text { mod. } p .
\end{aligned}
$$

For, when $x \equiv 1$ the two sides become identical in form, and when x is not $\equiv 1$ the first factor of each side vanisbes, mod. p.

Now $\quad F_{1} x=1+2\left(1+x+x^{2}+\ldots+x^{p-2}\right)$.
Hence $\quad F_{1} x \times\left(\alpha+\beta x+\ldots+\gamma x^{p^{2 x}}\right)$

$$
\begin{aligned}
& \equiv \alpha+\beta x+\ldots \gamma x^{p-8}+2 \sigma\left(1+x+\ldots+x^{p-1}\right) \\
& \equiv \alpha+2 \sigma+(\beta+2 \sigma) x+\ldots+(\gamma+2 \sigma) x^{p-3},
\end{aligned}
$$

where σ is the sum of the coefficients $\alpha, \beta, \ldots, \gamma$.
The sum of the coefficients of $F_{1}(a x)$ is F_{1}, a and this is +1 save in the useless case when $a=1$. Hence, the product

$$
F_{1} x . F_{1}(a x)
$$

can be written down by adding 2 to each of the coefficients of $F_{1}(a x)$. In this change x into $b x$, where b may or may not be equal to a. The sum of the coefficients, $=F_{1} b . F_{1}(a b)$, is 1 (unless b or $a b$ is 1). Therefore the product

$$
F_{1} x, F_{1}(b x) F_{1}(a b x)
$$

is formed by adding 2 to each of the coefficients of the previously found product $F_{1}(b x) \cdot F_{1}(a b x)$. Thus, by alternately replacing x by a suitable multiple, and adding 2 to each of the coefficients, we can obtain any one of the products required in the preceding paragraph. There is a certain range of choice in the multipliers a, b, c, \ldots, and the derivation of $F(a x)$ from $F x$ is facilitated by processes on which it is not necessary to eularge.
6. The function

$$
F_{1}\left(x^{8}\right),=1+2 \delta\left(1+x^{d}+x^{23}+\ldots+x^{p-1-\delta}\right),
$$

which will be indicated by $F_{\delta}(x)$, has properties similar to those of $F_{1} x$. It may be used as a multiplier for functions of x^{3}, the product being formed by adding $2 \delta \sigma$ to each coefficient of the multiplicand, σ being, as before, the sum of these coefficients. Thus all the square roots, $F\left(x^{d}\right)$, can be independently found. These can now serve as multiplicands for $F_{1} x$, and probably this would be the most rapid process for obtaining the complete set of roots.

In illustration, the square roots, $F x^{2}$, for modulus 11 are here determined.

We have

$$
\begin{aligned}
F_{2} x & =5+4 x^{2}+4 x^{4}+4 x^{8}+4 x^{8} \ldots(A) ; \\
F_{3}(2 x) & =5+5 x^{2}+9 x^{4}+1 x^{8}+3 x^{8} \ldots(B) ;
\end{aligned}
$$

therefore
therefore $\quad F_{2} x \cdot F_{2}(2 x)=9+9 x^{2}+2 x^{4}+5 x^{8}+7 x^{8} \ldots(C)$;
therefore $F_{9}(2 x) \cdot F_{2}(4 x)=9+3 x^{2}+10 x^{4}+4 x^{8}+8 x^{8} \ldots(D)$, and $\quad F_{2}(4 x) \cdot F_{2}(8 x)=9+1 x^{2}+6 x^{4}+1 x^{8}+6 x^{6} \ldots(E)$.

The powers of x are here arranged with the indices in geometric progression, (mod. 10), to take advantage of the fact that $(p-1) / \delta$ is in this case a prime number. The substitution of $2 x$ for x is effected by multiplying the last four coefficients by $4,5,3,9$ respectively. It so happens that this is the only substitution required. But if it were required to multiply x by any other number the multipliers would still be a cyclic substitution of $4,5,3,9$. For instance, to get (E) independently, we might proceed thus:

$$
F_{2}(6 x)=5+1 x^{2}+3 x^{4}+5 x^{8}+9 x^{8},
$$

the multipliers being $3\left(\equiv 6^{2}\right), 9,4,5$;
therefore

$$
F_{8} x \cdot F_{2}^{\prime} 6 x=9+5 x^{2}+7 x^{4}+9 x^{8}+2 x^{6} ;
$$

therefore $\quad F_{2} 8 x \cdot F_{8} 4 x=9+1 x^{2}+6 x^{4}+1 x^{8}+6 x^{6}$,
the multipliers being $9\left(\equiv 8^{2}\right), 4,5,3$.
To complete the determination, in each of the functions marked A, B, C, D, E, replace x by x^{2}, (2 being a primitive root of $1, \bmod .5)$, and repeat the operation.

It is seen that this is equivalent to a cyclic transposition of the last four coefficients.

For example, (B) gives the functions whose coefficients are $(5 ; 9,1,3,5),(5 ; 1,3,5,9)$, and $(5 ; 3,5,9,1)$. There are thus four distinct functions implied in (B), and as cach
may have either sign prefixed, B gives 8 square roots. So likewise $(C),(D)$ give $8 ; E, 4$; and $A, 2$.

There are also the trivial roots ± 1; and in all we have

$$
3 \times 8+4+2+2=32
$$

square roots. This is the full number, 2^{5}, of square roots, mod. 11 , which are functions of x^{2}.
7. The square roots for $p=3,5,7$ are given below. The numbers appended indicate the number of square roots implied by the formula on the same line. In explanation it may be added that an expression

$$
f\left(x^{2}\right)+x^{q} \cdot \phi\left(x^{2}\right)
$$

may be affected with \pm; x may be replaced by $-x$, so that the sign of the second term may be changed independently of the first; and when $(p-1) / 2=q$, ($=$ an odd number), $f x^{3}$ and ϕx^{2} may be interchanged, this being equivalent to multiplying by $x^{k^{(p-1)}}$ which is a square root of 1.* These are the only changes unexpressed in the following list, and they give either 2,4 or 8 roots for each formula.

$$
\left.\begin{array}{llr}
p=3, & \pm 1, \pm x & 4, \\
p=5, & \pm 1, \pm x^{2} & 4, \\
& x\left(3+x^{9}\right), x\left(1+3 x^{2}\right) & 4, \\
3+2 x^{2}+x\left(2+2 x^{2}\right) & 4 \\
& 2+2 x^{2}+x\left(1-x^{2}\right) & 4, \\
p=7, & \pm 1, \pm x^{3} & 4, \\
5+4 x^{2}+4 x^{4} & 4, \\
& 5+2 x^{2}+x^{4} & 4, \\
5+x^{2}+2 x^{4} & 4, \\
& \left(3+2 x^{2}+2 x^{4}\right)+x^{3}\left(2+2 x^{8}+2 x^{4}\right) & 8, \\
& \left(3+x^{2}+4 x^{4}\right)+x^{3}\left(2+x^{2}+4 x^{4}\right) & 8, \\
& \left(3+4 x^{2}+x^{4}\right)+x^{3}\left(2+4 x^{4}+x^{4}\right) & 8, \\
& \left(2+2 x^{2}+2 x^{4}\right)+x^{3}\left(+3 x^{2}-3 x^{4}\right) & 8, \\
& \left(2+x^{2}+4 x^{4}\right)+x^{3}\left(2 x^{2}-x^{4}\right) & 8, \\
& \left(2+4 x^{2}+x^{4}\right)+x^{3}(& \left.x^{2}-2 x^{4}\right)
\end{array}\right)=64 .
$$

[^1]Univ. Coll., Cardiff.

[^0]: * Similarly, if δ is any factor of $p-1\left(\delta \delta^{\prime}-p-1\right.$ say), there are $\delta^{p} 1$ different $\delta^{\text {th }}$ roots of unity, mod. p. Also there are $2^{\delta^{\prime}}$ different square roots of the form $F\left(x^{2}\right)$ and δ^{δ} different $\delta^{\text {tb }}$ roots of the form $F\left(x^{\delta}\right)$.

[^1]: * It may be noted that, when $q=\frac{1}{2}(p-1),+f x^{2}+\phi x^{2}$ is a square root, a theorem which gives an easy check upon the calculations. The roots for $p=7$ furnish examples.

