in (2). Doing this, and substituting $2 b c \cos A$ for $-a^{3}+b^{2}+c^{8}$, $2 R \cos A$ for a, and so on, we get

$$
\left(\frac{\cot B}{\cot C}\right)^{\frac{\cos ^{\tau} A}{\sin ^{r}+A} A}\left(\frac{\cot C}{\cot A}\right)^{\frac{\cos ^{r} B}{\sin ^{r}+B} B}\left(\frac{\cot A}{\cot B}\right)^{\frac{\cos ^{r} C}{\sin ^{r}+C} C}<1
$$

where s, r are of opposite signs, and A, B, C the angles of a triangle are such that $A>B>C$, or $B>C>A$, or $C>A>B$. This method gives a large number of results of this class.

NOTE ON THE NUMERATOR OF A HARMONICAL PROGRESSION.

By G. Osborn.

If p is a prime number greater than 3 , the numerator of the harmonical progression

$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{p-1}
$$

is divisible by p^{2}, and not otherwise.
If each factor is omitted in turn from $(p-1)$! the resulting numbers all give different remainders on division by p (as is easily seen by supposing two of the remainders alike), therefore the remainders are

$$
1,2,3, \ldots,(p-1)
$$

in some order.
If we square the original numbers, the remainders become those of the series

$$
1^{2}, 2^{2}, \ldots,(p-1)^{2}
$$

But

$$
1^{2}+2^{2}+\ldots+(p-1)^{2} \equiv 0(\bmod . p)
$$

therefore $\{(p-1)!\}^{2}\left\{\frac{1}{1^{s}}+\frac{1}{2^{2}}+\ldots+\frac{1}{(p-1)^{3}}\right\} \equiv 0(\bmod p)$,
therefore the numerator of

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{(p-1)^{2}} \equiv 0(\bmod . p) .
$$

But the numerator of

$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{p-1} \equiv 0(\bmod p)
$$

(by taking the first and last in pairs, \&c.), therefore the numerator of
$\left(\frac{1}{1}+\frac{1}{2}+\ldots+\frac{1}{p-1}\right)^{2}-\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\ldots+\frac{1}{(p-1)^{2}}\right) \equiv 0(\bmod . p)$,
or of

$$
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{2.4}+\ldots
$$

that is, $\pi_{p-3} \equiv 0(\bmod . p)$, where π_{p-3} means the sum of the products of the first $(p-1)$ integers taken $(p-3)$ together.

Again, we have, identically

$$
(p-1)(p-2)(p-3) \ldots\{p-(p-1)\}=(p-1)!
$$

or

$$
p^{p-1}-\pi_{1} p^{p-2}+\ldots+\pi_{p-3} p^{2}-\pi_{p-2} p=0
$$

but π_{p-3} is divisible by p, therefore π_{p-3} is divisible by p^{9}, which proves the theorem.

It seems very unlikely that this has not been given before, but I have not been able to find it; Mr. A. C. Iixon, whom 1 consulted among others on this point, has obtained the result differently by employing allied numbers.

The Leys, Cambridge.

NUMERICAL FACTORS: A THEOREM.

By Rev. J. G. Birch, M.A.

1. Every partition of any given number N into the sum of two others less than it can be used to throw it into the form of a continuant. Let x be any number less than N, if the fraction $\frac{x}{N-\infty}$ be expressed as a continued fraction thus :-

$$
\frac{x}{N-x}=\frac{1}{a_{0}-1}+\frac{1}{a_{3}}+\frac{1}{a_{3}}+\frac{1}{a_{3}}+\ldots+\frac{1}{a_{\omega}}
$$

then

$$
N=\left|\begin{array}{cccccc}
a_{0}, & 1, & \vdots & \vdots & \vdots & \vdots \\
-1, & a_{1}, & 1, & \vdots & \vdots & \vdots \\
\vdots & -1, & a_{2}, & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & a_{\omega-1} & 1 \\
\vdots & \vdots & \vdots & \vdots & -1, & a_{\omega}
\end{array}\right|
$$

or, as is usually written for shortness,

$$
N=\left(a_{0}, a_{1}, a_{2}, \ldots, a_{\omega-1}, a_{\omega}\right) .
$$

