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therefore L SKM≈HKO; that is, OKM touches the confocal 
ellipse which passes through K. Similarly OLN touches the 
confocal ellipse which passes through L. These tangents 
intersect upon TO, which is normal to the given ellipse at Tz 
and hence, by a well-known theorem, K, L lie on the same 
confocal.

It is now easy to infer the truth of Steiner’s proposition, 
for if any two consecutive vertices, such as K, L, of the 
circumscribed polygon are not on the same confocal ellipse, 
we can alter the position of KTL so as to bring K, L upon 
the same confocal, and thus diminish the perimeter of the 
polygon. It is evident that at least one polygon of minimum 
perimeter must exist; and it follows from Poncelet’s theory 
that there is an infinite number of such polygons: that they 
all have the same perimeter may be proved by considerations 
similar to those used in the proof of Graves’s theorem.

The determination of the confocal ellipse on which the 
vertices lie may be effected by the aid of elliptic functions, 
and in the same way an expression may be found for the 
perimeter of any one of the series of circumscribed polygons.

Relatively to the outer ellipse, the polygon is of course 
an inscribed polygon of maximum perimeter. The result is 
rather curious from a statical point of view: namely, if an 
endless elastic string pass through a given number of small 
smooth rings free to move on a fixed smooth elliptic wire, there 
is an infinite number of positions of unstable equilibrium.

It may be observed that if a polygon of minimum peri-
meter be circumscribed to an ellipse, the points of contact 
of the sides will be the vertices of an inscribed polygon of 
maximum perimeter.

ON TWO CUBIC EQUATIONS.
By Professor Cayley.

St a r t ing  from the equations
2 + α = 0a,
2 + ó = c2,
2 + c = α∖

then eliminating 6, c, we find

(a* — 4a2 + 2)2 - (a + 2) = 0,
that is a8-8aβ + 20a4-16us —a + 2 = 0;

www.rcin.org.pl



7 0  P R O F.  C A Y L E Yj  O N  T W O  C U BI C  E Q U A TI O N S.

w e  s ati sf y t h e e q u ati o n s  b y  a  =  b  =  c, a n d  t h e n c e b y  

α 2  - a  —  2  =  ( α —  2)  ( a +  l) =  0;

t h e r e r e m ai n s a s e xti c e q u ati o n b r e a ki n g  u p  i nt o t w o c u bi c  
e q u ati o n s ; t h e o cti c  e q u ati o n  m a y  i n f a ct b e  w ritt e n

( a, —  2)  ( a +  1)  ( α 3  +  a 2 - 2 a-l) ( a 3  —  3 a  +  1)  =  0,  

a n d  w e  h a v e  t h u s t h e t w o c u bi c e q u ati o n s

x 3  +  x 2  —  2i c  - 1  =  0,  x 3  —  3 x  +  1  =  0,

f o r e a c h of  w hi c h  t h e r o ot s ( a, 6,  c) t a k e n i n a p r o p e r  o r d e r  
a r e  s u c h t h at 2  +  a  —  δ 2 , 2  +  b  =  c 2 , 2  +  c  =  d i.

It m a y  b e  r e m a r k e d t h at st a rti n g f r o m y 3  +  y 2  —  2 y  —  1  =  0,  
y t =  x  +  2,  t h e fi r st e q u ati o n  gi v e s ( y 3  —  2 y ~) 2 - ( y 2 —  1) 2 =  0,  
t h at i s y 3  —  5 y i +  6 y 2  — 1 = 0,  w h e n c e

( a  +  2) 3  - 5  ( a  +  2) *  +  6  ( x +  2)  - 1  =  0,  

t h at i s x 3  +  a; 2  —  2 x  —  1  =  0.
A n d  si mil a rl y, st a rti n g f r o m y 3- 3 y  +  1  =  0,  y 2 = x  +  2,  t h e 

fi r st e q u ati o n  gi v e s  ( y j- 3 y} 2-1 = 0,  t h at i s y 3- 6 y 4 +  9 y 2- 1  =  0,  
w h e n c e  ( x +  2) 3  —  6  ( x +  2) 2  +  9  ( a  +  2)  - 1  =  0,  t h at i s

x 8 - 3 a > +l =  0.

T o  fi n d t h e r o ot s of  t h e e q u ati o n x 3  +  x 2  —  2 x  —  1  =  0,  
t a ki n g ω  a n i m a gi n a r y c u b e r o ot of u nit y, a n d w riti n g  
α  =  ̂ { 7  ( 2 +  3 ω)}, β  =  ↑ ∕{ 7  ( 2 +  3 ω 2 )j, w h e r e  o b s e r v e t h at 
2  +  3 < υ, 2  +  3 ω 2 a r e  i m a gi n a r y f a ct o r s of  7,  vi z.

7  =  ( 2 +  3 ω)  ( 2 +  3 ω 2 ),

a n d t h e r ef o r e al s o α 3  +  β 3  =  7,  a β  =  7,  t h e n t h e r o ots of  t h e 
e q u ati o n  a r e

3 α  =  —  1  + « + / 3,

3 b  =  —  1  +  ω α  +  ω 8 ∕3,

3 c  =  —  1  +  ω 2 a  +  ω β  .

I v e rif y  h e r e wit h  t h e e q u ati o n  a 2  =  2  +  c, vi z.  t hi s gi v e s  

( —  1  +  ot  +  β) 2  = 1 8  +  3  ( —  1  +  ω 2 α  +  c o∕ 3),

o r  w riti n g  h e r ei n  2 a∕ 3  =  1 4  t hi s i s

a 8  - ( 2 +  3 ω 8 ) a  +  β i —  ( 2 +  3 ω)  / 3 =  0,

t h at i s a 8  - ⅜∕ 3 3 a  +  β' i - ∣ a s∕3 =  0,

o r  fi n all y ( a2  +  ∕3 2 ) (1  - { a ∕3)  =  0,

s ati sfi e d i n vi rt u e  of  a / 3  =  7.
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For the second equation a;3 -3x + 1 = 0, ω denoting as 
before, the roots are

a = ωj + ωs, whence α3 = ωi + αfτ + 2, = 2 + c, 

b = ωi + ωπ, „ b2 = + ftp + 2, = 2 + α,

c = ωl + ω^, „ cs=ωθ + ft√ + 2, = 2 + 6.

The equation x3 — 5x2 + 6τ — 1 = 0, which, writing therein 
x + 2 for a?, gives xa + x2 — 2x - 1 = 0 is considered in Ilermite’s 
Cours d,Analyse, Paris 1873, p. 12, and this suggested to me 
the foregoing investigation.

NOTE ON MR. KLEIBER’S FUNCTIONS K. AND <7..1 1

By J. W. L. Glaisker.

§ 1. The  expansions of K and G in ascending powers 
of Jι — h given by Mr. Kleiber in § 29 of his paper, (pp. 29, 30 
of this volume) do not agree with those given in Vol. xix., 
pp. 146-150 (February, 1890), and it is easy to see that the 
former are incorrect. I proceed therefore to investigate the 
expansions of K. and Gi in powers of h' — h.

The function K., §§ 2-6.

§ 2. Mr. Kleiber’s identification of K and W with P 2
and Pjl in § 11 (pp. 10, 11) is not very precise; but we may 
regard Ki as defined by equation (146), p. 27, viz.

‰⅛+yp A._ σ--⅜)(f-wi-⅝) A.+&,
7r V i∖2a 1.2∖3x

We know also that Ki satisfies the differential equation 
(115), viz.

ωsU(⅛-⅛(c-i>=oi 

and we have also

7f0 = Λ^and JΓ1 = 2TF=7+P.
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