are $\frac{1}{2}\left(-\sin ^{3} A+\sin ^{2} B+\sin ^{3} C\right), \frac{1}{2}\left(\sin ^{3} A-\sin ^{2} B+\sin ^{2} C\right)$, $\frac{1}{2}\left(\sin ^{2} A+\sin ^{2} B-\sin ^{2} C\right)$ respectively. But we have

$$
A+B+C=\pi
$$

and thence

$$
\begin{aligned}
& \sin ^{2} A+\sin ^{2} B-\sin ^{2} C \\
= & \sin ^{2} A+\sin ^{2} B-\sin ^{2}(A+B) \\
= & 2 \sin A \sin B(\sin A \sin B-\cos A \cos B) \\
= & -2 \sin A \sin B \cos (A+B) \\
= & 2 \sin A \sin B \cos C
\end{aligned}
$$

and we thus have
$a, b, c=\sin B \sin C \cos A, \sin C \sin A \cos B, \sin A \sin B \cos C$, (or, what is the same thing, $a: b: c=\cot A: \cot B: \cot C$), and the equation of the circle is
$y z \sin ^{2} A+z x \sin ^{2} B+x y \sin ^{2} C$
$-\frac{1}{2}(x \sin B \sin C \cos A+y \sin C \sin A \cos B+z \sin A \sin B \cos C)$

$$
\times(x+y+z)=0 .
$$

We thus have $x: y: z=1: 1: 1$ for the point O^{\prime}, and $x: y: z=\cot A: \cot B: \cot C$ for the point $O ;$ viz O^{\prime} is the point of intersection of the lines from the angles to the midpoints of the opposite sides respectively; and O is the point of intersection of the perpendiculars from the angles on the opposite sides respectively: and the foregoing equation is consequently that of the Nine-points Circle.

ON THE NINE-POINTS CIRCLE OF A PLANE TRLANGLE.

By Professor Cayley.

I consider the circle which meets the sides of a triangle $A B C$ in the points $F, L ; G, M F ; H, N$ respectively, where ultimately F, G, H are the feet of the perpendiculars let fall from the angles on the opposite sides, and L, M, N are the mid-points of the sides: but in the first instance they are
taken to be arbitrary points. Taking the radius of the circle to be unity, the coordinates of the point F may be taken to be $\cos F, \sin F$, and these may be expressed rationally in terms of the tangent of the half-angle, $f=\tan \frac{1}{2} F$; and similarly for the other points, viz. we may determine the six points by the parameters f, g, h, l, m, n respectively. The sides of the triangle are the lines joining the points L, F; $M, G ; N, H$ respectively : thus the equations of the sides are

$$
\begin{aligned}
\text { for } B C x(1-l f)+y(l+f)-(1+l f)=0, \text { say } & U=0 \\
\# C A x(1-m g)+y(m+g)-(1+m g)=0, & , \\
" A B x(1-n h)+y(n+h)-(1+n h)=0, & , W=0
\end{aligned}
$$

We have $A F$ a line through the intersections of $B C$ and $C A$; its equation is therefore of the form $B V-C W=0$, and to determine B, C we have $B V_{0}-C W_{0}=0$, if V_{0}, W_{0} are the values of V, W belonging to the point F, the coordinates of which are $\frac{1-f^{2}}{1+f^{2}}, \frac{2 f}{1+f^{2}}$; we find

$$
\begin{aligned}
& V_{0}=-2(f-g)(f-m) \div\left(1+f^{2}\right) ; \\
& W_{0}=2(h-f)(f-n) \div\left(1+f^{2}\right)_{2}
\end{aligned}
$$

and then $B \div C=W_{0} \div V_{0}$: we thus find
equation $\quad A F$ is $B V-C W=0$,

$$
B G, C^{\prime} W-A^{\prime} U=0
$$

$$
C I I, A^{\prime \prime} U-B^{\prime \prime} V=0
$$

where

$$
\begin{aligned}
& B: C=-(h-f)(f-n):(f-g)(f-m), \\
& C^{\prime}: A^{\prime}=-(f-g)(g-l):(g-h)(g-n), \\
& A^{\prime \prime}: B^{\prime \prime}=-(g-h)(h-m):(h-f)(h-l),
\end{aligned}
$$

The condition in order that the three lines may meet in a point is $C B^{\prime} A^{\prime \prime}=C A^{\prime} B^{\prime \prime}$, viz. this is

$$
(f-n)(g-l)(h-m)+(f-m)(g-n)(\hbar-l)=0
$$

or, as this may also be written,
$2 f g h-g h(m+n)-h f(n+l)-f g(l+m)$

$$
+m n(g+h)+n l(h+f)+\operatorname{lm}(f+g)-2 l m n=0
$$

Similarly
equation

$$
\begin{aligned}
& A L \text { is } \mathfrak{B} V-\mathbb{C} W=0 \\
& B M, \mathbb{C}^{\prime} W-\mathfrak{A}^{\prime} U=0 \\
& C N, \mathfrak{a}^{\prime \prime} U-V=0
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathfrak{B}: \mathbb{C}=-(n-l)(h-l):(l-m)(g-l), \\
& \mathfrak{C}^{\prime}: \mathfrak{A}^{\prime}=-(l-m)(f-m):(m-n)(h-m), \\
& \mathfrak{A}^{\prime \prime}: \mathfrak{b}^{\prime \prime}=-(m+n)(g-n):(n-l)(f-n),
\end{aligned}
$$

and the condition in order that the three lines may meet in a point is $\mathbf{B C} \mathbb{C}^{\prime \prime}=\mathbb{C} \mathfrak{A}^{\prime} \mathbf{B}^{\prime \prime}$, viz. this is the same condition as before; that is if the lines $A F, B G, C H$ meet in a point, then also the lines $A L, B M, C N$ will meet in a point.

In the case of the nine-points circle we have $M N, N L$, $L M$ parallel to $L F, M G, N H$ respectively: the equation of $M N$ is

$$
x(l-m n)+y(m+n)-(l+m n)=0
$$

and this is parallel to $L F$, if

$$
\frac{m+n}{1-m n}=\frac{l+f}{1-l f}, \text { that is } L+F=M+N .
$$

Hence for the nine-pointa circle we have

$$
L+F=M+N, M+G=N+L, N+H=L+M
$$

or, as these equations may be written,

$$
2 L=G+H, 2 M=H+F, 2 N=F+G,
$$

viz. it thus appears that the radii to the points L, M, N respectively, or say the radii $L . M, N$, bisect the angles uade by the radii G and $I I, I I$ and F, F and G respectively.

It may be added that we have

$$
\begin{aligned}
& m+n-l+l m n=f\{1-m n+l(m+n)\}, \\
& n+l-m+l m n=g\{1-n l+m(n+l)\} \\
& l+m-n+l m n=l\{1-l m+n(l+m)\},
\end{aligned}
$$

viz. f, g, h are expressible each of them as a rational function of l, m, n.

