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NOTE ON FUNCTIONS OF A REAL VARIABLE.

By W. Burnside,

In illustration of the properties of functions of a single 
variable several examples are known, shewing that for real 
values of the variable the function may be finite and 
continuous and yet may not possess a differential coefficient. 
One of the best known is, perhaps the function 

where a and δ are real quantities satisfying certain in
equalities. This example is due to Weierstrass, while in the 
second volume of his collected works Schwartz has given 
another of a totally different nature.

These functions, since they do not possess derivatives, 
cannot obviously be expanded in a series of positive powers 
of X — £c, for any real value whatever of x^. An example is 
here offered of a function of a real variable which, while 
finite, continuous, and possessing derivatives, yet is incapable 
of being expanded in a positive power-series.

Lemma. If ε is a given irrational number (that is, if no 
such equation as z = P∣ Q holds, where P and Q are integers) 
an infinite series of positive integers m, m', m", ... can be 
found such that the fractional parts of τwε, √n'ε, wz"ε, ... shall 
differ by less than any assigned difference δ from a given 
proper traction P∣ Q.

Let ε be converted into an infinite continued, fraction by 
carrying out a process exactly similar to that by which a 
quadratic surd is converted into a periodic continued 
fraction, and etq>∣q be one of the convergents.

Consecutive integers w and or + 1 can always be determined 
such that 

and since 7?, q are relatively prime, m can be chosen so that

Now
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therefore

and

But

Hence

and if p∣qlaas been chosen so that q^>2, m will be one 
integer satisfying the required condition. That there is an 
infinite number nαay be shewn as follows. If p'∣q' is any 
other convergent,

Now clearly q and q' may be so chosen that

whence frac.

But frac.

and when q and q' are sufficiently great the latter alter
native is impossible, and therefore

or

Hence, if q^ q' have been chosen so that

zz zzz
and if -‰r, ... are successive convergents, m÷∕, 

m + 5", ... all satisfy the required conditions.
If now α is such that α∕τr is not a rational fraction, it 

follows at once from the preceding Lemma that an infinite 
series of integers wz, w', ... can be found, such that tanwα,
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tanw'α, ... shall differ by less than any assigned difference 
Pτrfrom tan-yj , and therefore also from any given real quantity. 

Consider now the function of a real variable given by

where n is real and greater than unity.
Whatever real value x has, f (ic) is always finite, for it 

is less than Σ —,. Moreover the series defining /(«) is 
0^1

uniformly convergent for all real values of a;, so that / (a?) is 
continuous.

Again,/(a!)-/(.y)

where = (a;—tanzια), = α" (y — tannα).

Now, whatever real quantities ∕>, be.

so that the series for —'' is uniformly convergenta; y
whatever real values x and .y may have, and therefore the 
fraction f (a:) has a derivative. In a similar manner it may 
be shewn that it has a second differential coefficient, and so 
on.

Finally f(x) can only be expanded in a series of positive 
powers of x — α-θ, if each term in the series representing it 
is capable of such expansion. Now it is easily shewn that 

is capable of expansion in positive powers of a; — a∙θ, provided 
that
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But by the Lemma, whatever may be, an increasing 
series of positive integers m, ... can be found such that 
(icθ-tanwα)*, and therefore also (ajθ- tanwα)* + a"’™, is less 
than any assignable quantity. Hence, there must be terms 
in the series for f (x) which can only be expanded in negative 
powers of x — a∙θ, whatever value icθ may have; and there
fore for no real value of x^ can f(x} be expanded in a series 
of positive powers.

ON RICHELOT’S INTEGRAL OF THE DIFFER
ENTIAL EQUATION + 0.

By Prof. Cayley.

In the Memoir “Einige Neue Integralglelchungen des 
Jacobi’schen Systems Differentialgleichungen ” CrMe t. 25 
(1843) pp. 97-118, Richelot, working with the more general' 
problem of a system of n — 1 differential equations between n 
variables, obtains a result which in the particular case n = 2 
(that is for the differential equation 

and Y the same function of y), is in effect as follows: an 
integral is

where □ , θ are arbitrary constants, and θ denotes the quartic 
function a + hβ + + + et)* ]
viz. this is theorem 3, p. 107, taking therein w = 2, and writing 
θj □ for Richelot’s α and const.

The peculiarity is that the integral contains apparently two 
arbitrary constants, and it is very interesting to show how 
these really reduce themselves to a single arbitrary constant.

Observe that on the right-hand side there are terms in 
6*, whereas no such terms present themselves on the left
hand side. But by changing the constant □ , we can get rid 
of these terms, and so bring each side to contain only terms
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