NOTE ON FUNCTIONS OF A REAL VARIABLE.

By W. Burnside.

In illustration of the properties of functions of a single variable several examples are known, shewing that for real values of the variable the function may be finite and continuous and yet may not possess a differential coefficient. One of the best known is, perhaps the function

$$
\sum_{0}^{\infty} b^{n} \cos \left(a^{n} \theta\right)
$$

where a and b are real quantities satisfying certain inequalities. This example is due to Weierstrass, while in the second volume of his collected works Schwartz has given another of a totally different nature.

These functions, since they do not possess derivatives, cannot obviously be expanded in a series of positive powers of $x-x_{0}$ for any real value whatever of $x_{0^{\circ}}$. An example is here offered of a function of a real variable which, while finite, continuous, and possessing derivatives, yet is incapable of being expanded in a positive power-series.

Lemma. If ε is a given irrational number (that is, if no such equation as $\varepsilon=P / Q$ holds, where P and Q are integers) an infinite series of positive integers $m, m^{\prime}, m^{\prime \prime}, \ldots$ can be found such that the fractional parts of $m \varepsilon, m^{\prime} \varepsilon, m^{\prime \prime} \varepsilon, \ldots$ shall differ by less than any assigned difference δ from a given proper fraction P / Q.

Let ε be converted into an infinite continued fraction by carrying out a process exactly similar to that by which a quadratic surd is converted into a periodic continued fraction, and let p / q be one of the convergents.

Consecutive integers ω and $\varpi+1$ can always be determined such that

$$
\frac{\varpi}{q}<\frac{P}{Q}<\frac{\omega+1}{q},
$$

and since p, q are relatively prime, m can be chosen so that

$$
m p \equiv \varpi(\bmod \cdot q)
$$

Now

$$
\varepsilon \sim \frac{p}{q}<\frac{1}{q^{2}},
$$

therefore

$$
m \varepsilon \sim \frac{m p}{q}<\frac{m}{q^{3}}<\frac{1}{q},
$$

and

$$
\text { frac. }(m \varepsilon) \sim \frac{\varpi}{q}<\frac{1}{q}
$$

But

$$
\frac{P}{\bar{Q}} \sim \frac{\infty}{q}<\frac{1}{q} .
$$

Hence

$$
\text { frac. }(m \varepsilon) \sim \frac{P}{Q}<\frac{2}{q},
$$

and if p / q has been chosen so that $q \delta>2, m$ will be one integer satisfying the required condition. That there is an infinite number may be shewn as follows. If p^{\prime} / q^{\prime} is any other convergent,

$$
\text { frac. }\left(q^{\prime} \varepsilon\right) \sim 0<\frac{1}{q^{\prime}}
$$

Now clearly q and q^{\prime} may be so chosen that

$$
\text { frac. }(m \varepsilon)>\frac{P}{\bar{Q}} \text { and frac. }\left(q^{\prime} \varepsilon\right)>0
$$

whence \quad frac. $(m \varepsilon)+$ frac. $\left(q^{\prime} \varepsilon\right)<\frac{P}{Q}+\frac{2}{q}+\frac{1}{q^{\prime}}$.
But frac. $\left\{\left(m+q^{\prime}\right) \varepsilon\right\}=$ frac. $(m \varepsilon)+$ frac. $\left(q^{\prime} \varepsilon\right)$,
or

$$
\text { frac. }(m \varepsilon)+\text { frac. }\left(q^{\prime} \varepsilon\right)-1
$$

and when q and q^{\prime} are sufficiently great the latter alternative is impossible, and therefore

$$
\text { frac. }\left\{\left(m+q^{\prime}\right) \varepsilon\right\}-\frac{P}{\bar{Q}}<\frac{2}{q}+\frac{1}{q^{\prime}}
$$

Hence, if q, q^{\prime} have been chosen so that

$$
\delta>\frac{2}{q}+\frac{1}{q^{\prime \prime}}
$$

and if $\frac{p^{\prime \prime}}{q^{\prime \prime}}, \frac{p^{\prime \prime \prime}}{q^{\prime \prime \prime}}, \ldots$ are successive convergents, $m, m+q^{\prime}$, $m+q^{\prime \prime}, \ldots$ all satisfy the required conditions.

If now α is such that α / π is not a rational fraction, it follows at once from the preceding Lemma that an infinite series of integers m, m^{\prime}, \ldots can be found, such that $\tan m \alpha$,
$\tan m^{\prime} \alpha, \ldots$ shall differ by less than any assigned difference from $\tan \frac{P \pi}{Q}$, and therefore also from any given real quantity.

Consider now the function of a real variable given by

$$
f(x)=\sum_{0}^{\infty} \frac{1}{n!} \frac{1}{1+a^{2 n}(x-\tan n \alpha)^{2}},
$$

where a is real and greater than unity.
Whatever real value x has, $f(x)$ is always finite, for it is less than $\sum_{0}^{\infty} \frac{1}{n!}$. Moreover the series defining $f(x)$ is uniformly convergent for all real values of x, so that $f(x)$ is continuous.

Again, $f(x)-f(y)$

$$
\begin{aligned}
& =\sum_{0}^{\infty} \frac{1}{n!} \frac{(y-x) a^{9 n}(x+y-2 \tan n \alpha)}{\left\{1+a^{2 n}(x-\tan n \alpha)^{2}\right\}\left\{1+a^{2 n}(y-\tan n \alpha)^{2}\right\}} \\
& =-(x-y) \sum_{0}^{\infty} \frac{a^{n}}{n!} \frac{p_{n}+q_{n}}{\left(1+p_{n}{ }^{2}\right)\left(1+q_{n}{ }^{2}\right)},
\end{aligned}
$$

where

$$
p_{n}=a^{n}(x-\tan n \alpha), q_{n}=a^{n}(y-\tan n \alpha) .
$$

Now, whatever real quantities p, q may be,

$$
\frac{p+q}{\left(1+p^{2}\right)\left(1+q^{2}\right)} \ngtr \frac{3 \sqrt{ } 3}{8},
$$

so that the series for $\frac{f(x)-f(y)}{x-y}$ is uniformly convergent whatever real values x and y may have, and therefore the fraction $f(x)$ has a derivative. In a similar manner it may be shewn that it has a second differential coefficient, and so on.

Finally $f(x)$ can only be expanded in a series of positive powers of $x-x_{0}$, if each term in the series representing it is capable of such expansion. Now it is easily shewn that

$$
\frac{1}{1+a^{3 n}(x-\tan n \alpha)^{2}}
$$

is capable of expansion in positive powers of $x-x_{0}$, provided that

$$
\left(x-x_{0}\right)^{2}<\left(x_{0}-\tan n \alpha\right)^{2}+a^{-2 n} .
$$

But by the Lemma, whatever x_{0} may be, an increasing series of positive integers m, \ldots can be found such that $\left(x_{0}-\tan m \alpha\right)^{2}$, and therefore also $\left(x_{0}-\tan m \alpha\right)^{2}+a^{-2 m}$, is less than any assignable quantity. Hence, there must be terms in the series for $f(x)$ which can only be expanded in negative powers of $x-x_{0}$, whatever value x_{0} may have; and therefore for no real value of x_{0} can $f(x)$ be expanded in a series of positive powers.

ON RICHELOT'S INTEGRAL OF THE DIFFERENTILLL EQUATION $\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{ } Y}=0$.

By Prof. Cayley.

In the Memoir "Einige Neue Integralgleichungen des Jacobi'schen Systems Differentialgleichungen" Crelle t. 25 (1843) pp. 97-118, Richelot, working with the more general problem of a system of $n-1$ differential equations between n variables, obtains a result which in the particular case $n=2$ (that is for the differential equation

$$
\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{ } Y}=0, X=a+b x+c x^{2}+d x^{3}+e x^{4}
$$

and Y the same function of y), is in effect as follows: an integral is

$$
\begin{aligned}
& \left\{\frac{\sqrt{X}(\theta-y)-\sqrt{Y}(\theta-x)}{x-y}\right\}^{2} \\
& \quad=\square(\theta-x)(\theta-y)+\theta+e(\theta-x)^{2}(\theta-y)^{2}
\end{aligned}
$$

where \square, θ are arbitrary constants, and θ denotes the quartic function $a+b \theta+c \theta^{2}+d \theta^{3}+e \theta^{4}$;
viz. this is theorem 3, p. 107 , taking therein $n=2$, and writing θ, \square for Richelot's α and const.

The peculiarity is that the integral contains apparently two arbitrary constants, and it is very interesting to show how these really reduce themselves to a single arbitrary constant.

Observe that on the right-hand side there are terms in θ^{4}, θ^{3} whereas no such terms present themselves on the lefthand side. But by changing the constant \square, we can get rid of these terms, and so bring each side to contain only terms

