But by the Lemma, whatever x_{0} may be, an increasing series of positive integers m, \ldots can be found such that $\left(x_{0}-\tan m \alpha\right)^{2}$, and therefore also $\left(x_{0}-\tan m \alpha\right)^{2}+a^{-2 m}$, is less than any assignable quantity. Hence, there must be terms in the series for $f(x)$ which can only be expanded in negative powers of $x-x_{0}$, whatever value x_{0} may have; and therefore for no real value of x_{0} can $f(x)$ be expanded in a series of positive powers.

ON RICHELOT'S INTEGRAL OF THE DIFFER-

 ENTIAL EQUATION $\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{ } Y}=0$.By Prof. Cayley.

In the Memoir "Einige Neue Integralgleichungen des Jacobi'schen Systems Differentialgleichungen" Crelle t. 25 (1843) pp. 97-118, Richelot, working with the more general problem of a system of $n-1$ differential equations between n variables, obtains a result which in the particular case $n=2$ (that is for the differential equation

$$
\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{ } Y}=0, X=a+b x+c x^{2}+d x^{3}+e x^{4}
$$

and Y the same function of y), is in effect as follows: an integral is

$$
\begin{aligned}
&\left\{\frac{\sqrt{ } X(\theta-y)-\sqrt{Y}(\theta-x)}{x-y}\right\}^{2} \\
&=\square(\theta-x)(\theta-y)+\theta+e(\theta-x)^{2}(\theta-y)^{2}
\end{aligned}
$$

where \square, θ are arbitrary constants, and θ denotes the quartic function $a+b \theta+c \theta^{2}+d \theta^{3}+e \theta^{4}$;
viz. this is theorem 3, p. 107, taking therein $n=2$, and writing θ, \square for Richelot's α and const.

The peculiarity is that the integral contains apparently two arbitrary constants, and it is very interesting to show how these really reduce themselves to a single arbitrary constant.

Observe that on the right-hand side there are terms in θ^{4}, θ^{3} whereas no such terms present themselves on the lefthand side. But by changing the constant \square, we can get rid of these terms, and so bring each side to contain only terms

$$
\text { DIFFERENTIAL EQUATION } \frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ } Y}=0
$$

in $\theta^{2}, \theta, 1$; viz. writing $\square=-2 e \theta^{2}-d \theta-c+C$, where C is a new arbitrary constant, the equation becomes

$$
\begin{aligned}
& \left\{\frac{\sqrt{ } X(\theta-y)-\sqrt{ } Y(\theta-x)}{x-y}\right\}^{2} \\
& =\theta^{2}\left[\quad e(x+y)^{2}+d(x+y)+C\right. \\
& +\theta[-2 e x y(x+y)-d x y \quad-(C-c)(x+y)+b] \\
& +\left[e x^{2} y^{2}+(C-c) x y+a\right] \text {, }
\end{aligned}
$$

which still contains the two arbitrary constants θ, C.
But this gives the three equations

$$
\begin{gathered}
\frac{(\sqrt{ } X-\sqrt{ })^{2}}{(x-y)^{2}}=e(x+y)^{2}+d(x+y)+C \\
-2 \frac{(\sqrt{ } X-\sqrt{ } Y)(y \sqrt{ } X-x \sqrt{ } Y)}{(x-y)^{2}} \\
=-2 e x y(x+y)-d x y-(C-c)(x+y)+b \\
\frac{(y \sqrt{ } X-x \sqrt{ } Y)^{2}}{(x-y)^{2}}=e x^{2} y^{2}+(C-c) x y+a
\end{gathered}
$$

The first of these is Lagrange's integral containing the arbitrary constant C; and it is necessary that the three equations shall be one and the same equation; viz. the second and third equations must be each of them a mere transformation of the first equation.

It is easy to verify that this is so. Starting from the first equation, we require first the value of

$$
-2 \frac{(\sqrt{ } X-\sqrt{ } Y)(y \sqrt{ } X-x \sqrt{ } Y)}{(x-y)^{2}},=\Omega, \text { for a moment. }
$$

We form a rational combination, or combination without any term in $\sqrt{ } X Y$; this is

$$
\begin{aligned}
(x+y) \frac{(\sqrt{ } X-\sqrt{ } Y)^{2}}{(x-y)^{2}}-2 & \frac{(\sqrt{ } X-\sqrt{ } Y)(y \sqrt{ } X-x \sqrt{ } Y)}{(x-y)^{2}} \\
& =e(x+y)^{3}+d(x+y)^{2}+C(x+y)+\Omega
\end{aligned}
$$

where the left-hand side is

$$
\frac{(x-y)(X-Y)}{(x-y)^{2}},=\frac{X-Y}{x-y}
$$

which is

$$
=e\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+d\left(x^{2}+x y+y^{2}\right)+c(x+y)+b,
$$

and we thence have for

$$
\Omega,=-2 \frac{(\sqrt{ } X-\sqrt{ } Y)(y \sqrt{ } X-x \sqrt{ } Y)}{(x-y)^{2}},
$$

the value given by the second equation.
Secondly, starting again from the first equation, and proceeding in like manner to find the value of

$$
\frac{(y \sqrt{ } X-x \sqrt{ } Y)^{2}}{(x-y)^{2}},=\Omega, \text { for a moment, }
$$

we form a rational combination

$$
\begin{aligned}
-x y \frac{(\sqrt{ } X-\sqrt{ } Y)^{2}}{(x-y)^{2}} & +\frac{(y \sqrt{ } X-x \sqrt{ } Y)^{2}}{(x-y)^{2}} \\
& =-e x y(x+y)^{2}-d x y(x+y)-C x y+\Omega
\end{aligned}
$$

where the left-hand side is

$$
\frac{(x-y)(-y X+x Y)}{(x-y)^{2}},=\frac{-y X+x Y}{x-y}
$$

which is

$$
=-e x y\left(x^{8}+x y+y^{2}\right)-d x y(x+y)-c x y+a ;
$$

and we thence have for

$$
\Omega,=\frac{(y \sqrt{ } X-x \sqrt{ } Y)^{2}}{(x-y)^{2}}
$$

the value given by the third equation.
In conclusion, I give what is in effect the process by which Richelot obtained his integral. The integral is $v=\square$, where

$$
v=\frac{-\theta}{\theta-x \cdot \theta-y}-e(\theta-x \cdot \theta-y)+(\theta-x . \theta-y) \Omega^{2}
$$

if, for shortness,

$$
\Omega=\frac{\sqrt{ } X}{\theta-x \cdot x-y}+\frac{\sqrt{ }}{\theta-y \cdot y-x}
$$

and it is required thence to show that $\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{ } Y}=0$, or, what

$$
\text { DIFFERENTIAL EQUATION } \frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{Y}}=0
$$

is the same thing, to show that v satisfies the partial differential equation

$$
\sqrt{ } X \frac{d v}{d x}-\sqrt{ } Y \frac{d v}{d y}=0
$$

We have

$$
\begin{aligned}
\frac{d v}{d x}=\frac{-\theta}{(\theta-x)^{2}(\theta-y)}+e(\theta-y) & -(\theta-y) \Omega^{2} \\
& +2(\theta-x)(\theta-y) \Omega \frac{d \Omega}{d x}, \\
\frac{d v}{d y}=\frac{-\theta}{(\theta-x)(\theta-y)^{2}}+e(\theta-x) & -(\theta-x) \Omega^{2} \\
& +2(\theta-x)(\theta-y) \Omega \frac{d \Omega}{d y},
\end{aligned}
$$

and thence, attending to the value of Ω,

$$
\begin{aligned}
\sqrt{ } X \frac{d v}{d x}-\sqrt{ } Y \frac{d v}{d y} & =\frac{-\theta}{\theta-x \cdot \theta-y}(x-y) \Omega \\
& +\left(e-\Omega^{3}\right)(\theta-x)(\theta-y)(x-y) \Omega \\
& +2(\theta-x)(\theta-y) \Omega\left(\sqrt{ } X \frac{d \Omega}{d x}-\sqrt{ } Y \frac{d \Omega}{d y}\right)
\end{aligned}
$$

or say

$$
\begin{aligned}
& -\frac{\left(\sqrt{ } X \frac{d v}{d x}-\sqrt{ } Y \frac{d v}{d y}\right)}{(\theta-x)(\theta-y)(x-y) \Omega} \\
& \quad=\frac{\theta}{(\theta-x)^{2}(\theta-y)^{3}}-e+\Omega^{2}-\frac{2}{x-y}\left(\sqrt{ } X \frac{d \Omega}{d x}-\sqrt{ } Y \frac{d \Omega}{d y}\right)
\end{aligned}
$$

and it is consequently to be shown that the function on the right hand side is $=0$. We have

$$
\begin{aligned}
& \sqrt{ } X \frac{d \Omega}{d x}=\frac{\frac{1}{2} X^{\prime}}{(\theta-x)(x-y)}+\frac{X}{(\theta-x)^{2}(x-y)} \\
& \quad-\frac{X}{(\theta-x)(x-y)^{2}}+\frac{\sqrt{ }(X Y)}{(\theta-y)(x-y)^{2}}, \\
& \sqrt{ } Y \frac{d \Omega}{d y}=\frac{\frac{1}{2} Y^{\prime}}{(\theta-y)(y-x)}+\frac{Y}{(\theta-y)^{2}(y-x)} \\
& \quad-\frac{Y}{(\theta-y)(x-y)^{2}}+\frac{\sqrt{ }(X Y)}{(\theta-x)(x-y)^{2}},
\end{aligned}
$$

and thence

$$
\begin{aligned}
\sqrt{ } X \frac{d \Omega}{d x}-\sqrt{ } Y \frac{d \Omega}{d y}= & \frac{\frac{1}{2} X^{\prime}}{(\theta-x)(x-y)}-\frac{\frac{1}{2} Y^{\prime}}{(\theta-y)(y-x)} \\
& +\left\{\frac{X}{(\theta-x)^{2}}+\frac{Y}{(\theta-y)^{2}}\right\} \frac{1}{x-y} \\
& -\left(\frac{X}{\theta-x}-\frac{Y}{\theta-y}\right) \frac{1}{(x-y)^{3}} \\
& -\frac{\sqrt{ }(X Y)}{(\theta-x)(\theta-y)(x-y)}
\end{aligned}
$$

or multiplying by $\frac{2}{x-y}$, we may put the result in the form
$\frac{2}{x-y}\left(\sqrt{ } X \frac{d \Omega}{d x}-\sqrt{ } Y \frac{d \Omega}{d y}\right)=\frac{1}{\theta-x} \frac{d}{d x} \frac{X}{(x-y)^{2}}+\frac{1}{\theta-y} \frac{d}{d y} \frac{Y}{(\theta-y)^{2}}$
$+\frac{2 X}{(\theta-x)^{2}(x-y)^{2}}+\frac{2 Y}{(\theta-x)^{2}(x-y)^{2}}-\frac{2 \sqrt{ }(X Y)}{(\theta-x)(\theta-y)(x-y)^{2}}$.
and the equation to be verified thus is

$$
\begin{aligned}
& 0=\frac{\theta}{(\theta-x)^{2}(\theta-y)^{2}}-e+\Omega^{2} \\
&-\frac{1}{\theta-x} \frac{d}{d x} \frac{X}{(x-y)^{2}}-\frac{2 X}{(\theta-x)^{2}(x-y)^{2}} \\
&-\frac{1}{\theta-y} \frac{d}{d y} \frac{Y}{(x-y)^{2}}-\frac{2 Y}{(\theta-x)^{2}(x-y)^{2}} \\
&+\frac{2 \sqrt{ }(X Y)}{(\theta-x)(\theta-y)(x-y)^{2}} .
\end{aligned}
$$

But decomposing the first term into simple fractions, we have

$$
\begin{aligned}
\frac{\theta}{(\theta-x)^{2}(\theta-y)^{2}}= & +e \\
& +\frac{1}{\theta-x} \frac{d}{d x} \frac{X}{(x-y)^{2}}+\frac{X}{(\theta-x)^{2}(x-y)^{2}} \\
& +\frac{1}{\theta-y} \frac{d}{d y} \frac{Y}{(x-y)^{2}}+\frac{Y}{(\theta-y)^{2}(x-y)^{3}}
\end{aligned}
$$

MR. SEGAR, LIMITS OF THE EXPRESSION $\frac{x^{p}-y^{q}}{x^{q}-y^{q}}$.
Also for the third term, we have

$$
\begin{aligned}
\Omega^{2}= & \frac{X}{(\theta-x)^{2}(x-y)^{2}} \\
& +\frac{Y}{(\theta-y)^{2}(x-y)^{2}} \\
& -\frac{2 \sqrt{ }(X Y)}{(\theta-x)(\theta-y)(x-y)^{2}}
\end{aligned}
$$

and substituting these values the several terms destroy each other, so that the right-hand side is $=0$ as it should be.

LIMITS OF THE EXPRESSION $\frac{x^{p}-y^{q}}{x^{q}-y^{q}}$.

By H. W. Segar.

§ 1. In a paper with the above title in Messenger, xxir., 165-171, Mr. S. R. Knight gives the theorem:-
' If the quantities x and y are positive, and if the quantitiés p and q are real, then $\frac{x^{p}-y^{p}}{x^{q}-y^{q}}$ lies between $\frac{p}{q} x^{p-q}$ and $\frac{p}{q} y^{p-q}$, which is really not more general than that of which Prof. Chrystal makes such frequent application in the second volume of his 'Algebra'; and he discusses the inequalities that exist between these three expressions when p or q, or both are negative.

The same theorem and all these inequalities in the different cases are practically given in Messenger, xxir., 47, and they there appear in the form

$$
\frac{1-\left(\frac{c}{b}\right)^{n}}{n}>\frac{1-\binom{c}{b}^{m}}{m} \ldots \ldots \ldots \ldots \ldots(1)
$$

where, as is at once evident from the method of proof, b and c are any two unequal positive quantities, m is numerically greater than n, and n may be positive or negative, but the

