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ON THE SURFACE OF THE ORDER n WHICH 
PASSES THROUGH A GIVEN CUBIC CURVE.

By Professor Cayley.

It 18 natural to assume that taking A, R, G to denote the 
general functions (a;, wy'~* of the order zi —2, the general
surface of the order n which passes through the curve

(or, what is the same thing, the curve x: y: z : w = 1: θ: θ': 
has for its equation 

but the formal proof is not immediate. Writing the equation 
in the form U^= Sax''y^z^w^.^ = 0, α + 3 + 7÷δ = zι, then U 
must vanish on writing therein x '. y '. z '. w =1 '. Θ '. a 
term ax"^y^z"<w^ becomes = where = /9 + 2γ + 3δ js the 
weight of the term reckoning the weights of ar, y, z., w as 
0, 1, 2, 3 respectively; and hence the condition is that for 
each given weight p the sura Sa of the coefficients of the 
several terras of this weight shall be =0. Using any such 
equation to determine one of the coefficients thereof in terms 
01 the others, the function U is reduced to a sum of duads 
a (x'^y>^z^<w^ — x"''y^'z^''f where in each duad the two terms 
are of the same degree and of the same weight, and where a 
is an arbitrary coefficient; it ought therefore to be true that 
each such duad x"^y^z"^w^ — x^'y∣^'z'*'w^' has the property in 
question—or writing P, R = yw — z’, zy — xw^ xz ~y^, 3a,f 
that each such duad is of the form AP+ BQ+ GR.

Suppose for a moment that α' is greater than α, but that 
β  y  δ' are each less than β, y, δ respectively: the duad is 
x"^'y!^z'<w^ (of - y^^z''wP  where λ, μ., r, p are each positive, and 
hence x^-y^z''wP is a duad having the property in question, 
or changing the notation say a:“ — y^z"^Ι∕f has the property in 
question ; and in like manner by considering the several cases 
that may happen we have to show that each of the duads
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hag the property in question; it being of course understood 
that in each of these duads the two terms have the same 
degree and the same weight. The first form cannot exist; for 
we must have therein a = β + 7 + δ and 0 = /9 ÷ 2γ + 3δ, which 
is inconsistent with α, β, 7, δ each of them positive. For the 
second form β = α + 7 + δ, β = 2y + 3δ, this is α = 7 + 2δ or 
the duad is = — (xz^ Writ
ing y* = xz - R, we have terras containing the factor R^ and 
a residual terra (xz^ and writing herein

w'e have terras containing Q as a factor and a residual term 
= f’-nd again writing

herein y^≈xz-R^ see that this terra contains the factor R: 
hence the duad in question consists of terras having the factor 
R Q)Y the factor Q. Similarly for the other cases, either 
α, β^ y, δ can be expressed as positive numbers, and then the 
duad consists of terras each divisible by P, Q, or R  or else 
α, β, δ cannot be expressed as positive numbers, and then 
the duad does not exist: thus for the third form - x"^y^w^^ 
here 7 = α + ∕S + δ, 27 = β + 3δ, or say 7 = 3α + 2/:?, δ = 2α + /3, 
and the duad is _ χ-yβw^^^^, = Z^^ {zyβ - {xwy {ywγ, 
which can be reduced to the required form. But for the duad 
x'^yβ - z^^w  vfG have α + yS = 7 + δ, /3 = 27 + 3δ, which cannot 
be satisfied by positive values of α, β, δ, and thus the duad 
does not exist.

A surface of the order n which passes through 3n + 1 
points of a cubic curve contains the curve : hence the number < 
of constants or say the capacity of a surface of the order w, 
through the curve P=0, Q = 0, B = 0, is

Prima facie the capacity of the surface ΛP+ BQ+ GR = 0^
G the general functions of the order n — 2, is 

but there is a reduction on account ot the identical equations 
zP + yQ + zR = {)^ yP-hzQ + wR = 0 which connect the func
tions P, Qy R  for n = 2, the formulae give each of them as it 
should do. Capacity = 2 ; viz. the quadric surface through the 
curve is αP+ b Q + cR = 0.
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