ON A THEOREM IN THE DIFFERENTIAL CALCULUS.

By E. W. Hobson.

Suppose it is required to express the result of the operation

$$
f_{n}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{p}}\right) F\left\{\phi\left(x_{1}, x_{2}, x_{3}, \ldots, x_{p}\right)\right\},
$$

where F, ϕ are any functions, and f_{n} is a rational integral homogeneous function of degree n in the differential operators; it is clear that the expression can be exhibited in the form

$$
\chi_{0} \frac{d^{n} F}{d \phi^{n}}+\chi_{1} \frac{d^{n-1} F}{d \phi^{n-1}}+\ldots+\chi_{r} \frac{d^{n-r} F}{d \phi^{n-r}}+\ldots+\chi_{n-1} \frac{d F}{d \phi}
$$

where $\chi_{0}, \chi_{1}, \ldots, \chi_{n-1}$ denote functions of the p variables, the form of these functions being independent of the form of F, and depending only on f_{n} and ϕ. To determine the functions χ, we may take F to be of any form which is convenient ; let $F\{\phi\}=\phi^{n}$ the $n^{\text {th }}$ power of ϕ, we have then

$$
\begin{aligned}
& f_{n}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{p}}\right)\left\{\phi\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right\}^{n} \\
& \quad=n!\left\{\chi_{0}+\chi_{1} \phi+\ldots+\frac{1}{r!} \chi_{r} \phi^{r}+\ldots+\frac{1}{(n-1)!} \chi_{n-1} \phi\right\} \ldots(1)
\end{aligned}
$$

now

$$
\begin{aligned}
& f_{n}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{p}}\right)\left\{\phi\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right\}^{n} \\
& \quad=f_{n}\left(\frac{\partial}{\partial h_{1}}, \frac{\partial}{\partial h_{2}}, \ldots, \frac{\partial}{\partial h_{p}}\right)\left\{\phi\left(x_{1}+h_{1}, x_{2}+h_{2}, \ldots, x_{p}+h_{p}\right)\right\}^{n}
\end{aligned}
$$

where on the right-band side $h_{1}, h_{2}, \ldots, h_{p}$ are all put equal to zero after the operation is performed.

Using the Binomial Theorem, we have

$$
\begin{aligned}
& \phi\left(x_{1}+h_{1}, x_{2}+h_{2}, \ldots, x_{p}+h_{p}\right) \\
& \begin{array}{r}
r=\sum_{r=0}^{r=n} \frac{n!}{r!(n-r)!}\left\{\phi\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right\}^{r}\left\{\phi\left(x_{1}+h_{1}, x_{2}+h_{\mathbf{2}}, \ldots, x_{p}+h_{p}\right)\right. \\
\\
\left.-\phi\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right\}^{n-r},
\end{array}
\end{aligned}
$$

$116 \mathrm{DR}_{0}$ HOBSON, THEOREM IN DIFFERENTIAL CALCULUS.
operating on both sides of this equation with

$$
f_{n}\left(\frac{\partial}{\partial h_{1}}, \frac{\partial}{\partial h_{2}}, \ldots, \frac{\partial}{\partial h_{p}}\right),
$$

we obtain an equation which must be equivalent to (1); comparing the coefficients of $\phi^{\prime \prime}$, we have
$\chi_{r}=\frac{1}{(n-r)!} f_{n}\left(\frac{\partial}{\partial h_{1}}, \frac{\partial}{\partial h_{a}}, \ldots, \frac{\partial}{\partial h_{p}}\right)$

$$
\left\{\phi\left(x_{1}+h_{1}, x_{2}+h_{2}, \ldots, x_{p}+h_{p}\right)-\phi\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right\}^{n-r},
$$

where $h_{1}, h_{2}, \ldots, h_{p}$ are all put equal to zero after the operation is performed.

We have thus obtained the following theorem-

$$
\begin{aligned}
& f_{n}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{p}}\right) F\left\{\phi\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right\} \\
& =\frac{1}{n!} \frac{d^{n} F}{d \phi^{n}} f_{n}\left(\frac{\partial}{\partial h_{1}}, \frac{\partial}{\partial h_{2}}, \ldots, \frac{\partial}{\partial h_{p}}\right) P^{n} \\
& +\frac{1}{(n-1)!} \frac{d^{n-1} F}{d \phi^{n-1}} f_{n}\left(\frac{\partial}{\partial h_{1}}, \frac{\partial}{\partial h_{s}}, \ldots, \frac{\partial}{\partial h_{p}}\right) P^{n-1} \\
& +\frac{1}{(n-r)!} \frac{d^{n-r} F}{d \phi^{n-r}} f_{n}\left(\frac{\partial}{\partial h_{1}}, \frac{\partial}{\partial h_{2}}, \ldots, \frac{\partial}{\partial h_{p}}\right) P^{n-r}, \\
& +\ldots . \text {.............. }(2) \text {, }
\end{aligned}
$$

where $P=\phi\left(x_{1}+h_{1}, x_{2}+h_{z}, \ldots, x_{p}+h_{p}\right)-\phi\left(x_{1}, x_{2}, \ldots, x_{p}\right)$, and $h_{1}, h_{2}, \ldots, h_{p}$ are all put equal to zero in the result.

It is clear that the coefficient of $\frac{d^{n-r} F}{d \phi^{n-r}}$ in (2) may be expressed in the form

$$
\begin{aligned}
& \frac{1}{(n-r)!}\left\{f _ { n } (\frac { \partial } { \partial x _ { 1 } } , \frac { \partial } { \partial x _ { 2 } } , \ldots , \frac { \partial } { \partial x _ { p } }) \left[\phi\left(x_{1}, x_{2}, \ldots, x_{p}\right]^{n-r}\right.\right. \\
& -(n-r) \phi\left(x_{1}, x_{2}, \ldots, x_{p}\right) f_{n}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{p}}\right) \\
& {\left[\phi\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right]^{n-r-3}} \\
& +\frac{(n-r)(n-r-1)}{2!}\left[\phi\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right]^{2} f_{n}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{p}}\right) \\
& {\left[\phi\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right]^{n-r-8}}
\end{aligned}
$$

The particular case of the theorem (2) in which there is only one variable x, so that $f_{n}\left(\frac{d}{d x}\right)=\frac{d^{n}}{d x^{n}}$ is given in Schlömilch's Compendium der höheren Analysis, Vol. II.

I shall now consider a case in which the theorem (2) takes a simple form; let $\phi\left(x_{1}, x_{2}, \ldots, x_{p}\right)=x_{1}{ }^{2}+x_{2}{ }^{2}+\ldots+x_{p}{ }^{2}=\rho^{2}$; in this case the coefficient of $\frac{d^{n-r} F^{p}}{d \phi^{n-r}}$ or $\frac{d^{n-r} F^{2}}{d\left(\rho^{2}\right)^{n-}}$ is

$$
\begin{aligned}
\frac{1}{(n-r)!} f_{n}\left(\frac{\partial}{\partial h_{1}}, \frac{\partial}{\partial \bar{h}_{2}}, \ldots, \frac{\partial}{\partial h_{p}}\right) & \left\{h_{1}{ }^{2}+h_{2}{ }^{2}+\ldots+h_{p}{ }^{2}\right. \\
& \left.+2\left(h_{1} x_{1}+h_{2} x_{2}+\ldots+h_{p} x_{p}\right)\right\}^{n-\pi},
\end{aligned}
$$

where $h_{1}=0, h_{2}=0, \ldots, h_{p}=0$; the only term in this expression which does not vanish is

$$
\begin{aligned}
\frac{1}{(n-r)!} f_{n}\left(\frac{\partial}{\partial h_{1}}, \frac{\partial}{\partial h_{2}}, \ldots,\right. & \left.\frac{\partial}{\partial h_{p}}\right) \frac{(n-r)!}{r!(n-2 r)}!^{2^{n-2 r}} \\
& \left(h_{1} x_{1}+h_{2} x_{2}+\ldots\right)^{n-2 r}\left(h_{1}{ }^{2}+h_{2}^{2}+\ldots\right)^{r},
\end{aligned}
$$

for this is the only term in which the degree of the operand in $h_{1}, h_{n}, \ldots, h_{p}$, is the same as that of the operator in

$$
\frac{\partial}{\partial h_{1}}, \frac{\partial}{\partial h_{2}}, \ldots, \frac{\partial}{\partial h_{p}} .
$$

It is easily seen that if f_{n}, ψ_{n} are two functions of the same degree n,
$f_{n}\left(\frac{\partial}{\partial h_{1}}, \frac{\partial}{\partial h_{2}}, \ldots, \frac{\partial}{\partial h_{p}}\right) \psi_{n}\left(h_{1}, h_{y}, \ldots, \hbar_{p}\right)$

$$
=\psi_{n}\left(\frac{\partial}{\partial h_{1}}, \frac{\partial}{\partial h_{2}}, \ldots, \frac{\partial}{\partial h_{p}}\right) f_{n}\left(h_{1}, h_{n}, \ldots, h_{p}\right) ;
$$

it follows that the coefficient of $\frac{d^{n-r} F}{d\left(\rho^{2}\right)^{n-r}}$ is equal to

$$
\begin{aligned}
& \frac{1}{r!(n-2 r)!} 2^{n-2 r}\left(x_{1} \frac{\partial}{\partial h_{1}}+x_{2} \frac{\partial}{\partial h_{2}}+\ldots+x_{p} \frac{\partial}{\partial h_{p}}\right)^{n-2 n} \\
&\left(\frac{\partial^{s}}{\partial h_{1}^{2}}+\frac{\partial^{2}}{\partial h_{2}^{3}}+\ldots+\frac{\partial^{2}}{\partial h_{p}^{2}}\right)^{r} f_{n}\left(h_{1}, h_{2}, \ldots, h_{p}\right) ;
\end{aligned}
$$

let

$$
\left(\frac{\partial^{2}}{\partial h_{1}^{2}}+\frac{\partial^{3}}{\partial h_{2}^{2}}+\ldots+\frac{\partial^{2}}{\partial h_{p}}\right)^{r} f_{n}\left(h_{1}, h_{2}, \ldots, h_{p}\right)=\lambda_{n-z r}\left(h_{1}, h_{s}, \ldots, h_{p}\right)_{s}
$$

118 DR. HOBSON, THEOREM IN DIFFERENTIAL CALCULUS.
then the above expression is equal to
$r \frac{1}{r!(n-2 r)!} 2^{n-2 r}\left(x_{1} \frac{\partial}{\partial h_{1}}+x_{2} \frac{\partial}{\partial h_{2}}+\ldots+x_{p} \frac{\partial}{\partial h_{p}}\right)^{n-2 r} \lambda_{n-2 r}\left(h_{1}, h_{2}, \ldots, h_{p}\right)$; if $\lambda_{n-2 r}\left(h_{1}, h_{2}, \ldots, h_{p}\right)=\Sigma A h_{1}{ }^{a_{1}} h_{2}{ }^{a_{2}} \ldots h_{p}{ }^{a_{p}}$, the only terms which do not vanish are

$$
\begin{aligned}
\frac{1}{r!(n-2 r)} 2^{n-2 r} \Sigma A \frac{(n-2 r)!}{\alpha_{1}!\alpha_{2}!\ldots \alpha_{p}!} & x_{1}^{a_{1} x_{2}{ }_{2}^{a_{2}} \ldots x_{p}{ }^{a_{p}}} \\
& \quad \times \frac{\partial^{a_{1}}}{\partial h_{1}{ }_{1}} \frac{\partial^{a_{2}}}{\partial h_{2} a_{2}} \ldots, h_{1}^{a_{1}} h_{2}{ }_{2}{ }_{2}, \ldots,
\end{aligned}
$$

or
$\frac{1}{r!} 2^{n-2 r} \Sigma A x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{p}^{a_{p}}$ which is $\frac{1}{r!} 2^{n-2 r} \lambda_{n-2 r}\left(x_{1}, x_{2}, \ldots, x_{p}\right)$; since
$\lambda_{n-2 r}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{p}^{2}}\right)^{r} f_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)$,
we see that the coefficient of $\frac{d^{n-r} F}{d\left(\rho^{2}\right)^{n-r}}$ si

$$
\frac{2^{n-2 r}}{r!}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{p}^{3}}\right)^{r} f_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right),
$$

we have thus obtained the following theorem:-

$$
\begin{aligned}
& \begin{aligned}
& f_{n}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{p}}\right) F\left(x_{1}{ }^{2}+x_{2}^{2}+\ldots+x_{p}^{2}\right) \\
&=\left\{2^{n} \frac{d^{n} F}{d\left(\rho^{2}\right)^{n}}+\frac{2^{n-2}}{1!} \frac{d^{n-1} F}{d\left(\rho^{2}\right)^{n-1}} \nabla^{2}+\frac{2^{n-6}}{2!} \frac{d^{n-2} F}{d\left(\rho^{2}\right)^{n-2}} \nabla^{0}\right.
\end{aligned} \\
& \left.\qquad+\ldots+\frac{2^{n-2 r}}{r!} \frac{d^{n-r} F}{d\left(\rho^{2}\right)^{n-2 r}} \nabla^{2 r}+\ldots\right\} f_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) \ldots(3), \\
& \text { where } \quad \nabla^{2}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{p}^{2}}, \\
& \text { and } \quad \rho^{2}=x_{1}{ }^{2}+x_{2}{ }^{2}+\ldots+x_{p}^{2} .
\end{aligned}
$$

The theorem (3) I have given in a paper* "On a theorem in Differentiation, \&c.," where it is deduced from the theory of Spherical Harmonics.

[^0]In the particular case $F\left(\rho^{2}\right)=\rho^{p-2}$ the theorem (3) becomes $f_{n}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{p}}\right) \frac{1}{\rho^{p-2}}=\frac{(-1)^{n}(p-2) p(p+2) \ldots(p+2 n-4)}{\rho^{p+2 n-2}}$

$$
\times\left\{1-\frac{\rho^{2} \nabla^{3}}{2.2 n+p-4}+\frac{\rho^{4} \nabla^{6}}{2.4(2 n+p-4)(2 n+p-6)}-\cdots\right\}
$$

$$
\begin{equation*}
f_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) \tag{4}
\end{equation*}
$$

It is well known that $\frac{1}{\rho^{p-2}}$ is a solution of the equation $\nabla^{2} V=0$, and it follows at once that

$$
f_{n}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{p}}\right) \frac{1}{\rho^{p-2}}
$$

satisfies the same equation, we see therefore that the expression on the right-hand side of (4) satisfies the equation $\nabla^{2} V=0$; now it can be verified at once that if $V_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ is a solution of the differential equation, so also is

$$
\frac{V_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)}{\rho^{2 n+p-2}} ;
$$

we see therefore that the expression

$$
\begin{equation*}
V=f_{n}-\frac{\rho^{2}}{2.2 n+p-4} \nabla^{2} f_{n}+\frac{\rho^{2}}{2.4 .2 n+p-4.2 n+p-6} \nabla^{4} f_{n} \ldots \tag{5}
\end{equation*}
$$

satisfies the differential equation $\nabla^{2} V=0$, when f_{n} denotes any homogeneous integral function of degree n in the variables $x_{1}, x_{2}, \ldots, x_{p}$. All the solutions of $\nabla^{2} V=0$ which are rational algebraical functions of the variables may be obtained by giving f_{n} various values; for example, the zonal harmonic is obtained by putting $f_{n}=x_{p}{ }^{n}$.

A case of (3) which is of considerable importance is obtained by taking $f_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ to be a solution of $\nabla^{2} V=0$; denoting the solution by $Y_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)$, the theorem (3) becomes

$$
\begin{align*}
Y_{n}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots,\right. & \left.\frac{\partial}{\partial x_{p}}\right) F\left(\rho^{2}\right) \\
& =\frac{d^{n} F\left(\rho^{2}\right)}{(\rho d \rho)^{n}} Y_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) \tag{6}
\end{align*}
$$

In particular, we have
$Y_{n}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \cdots, \frac{\partial}{\partial x_{p}}\right) \cdot \frac{1}{\rho^{p-2}}$
$=(-1)^{n}(p-2) p(p+2) \ldots(p+2 n-4) \frac{Y_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)}{\rho^{2 n+p^{-4}}}$.
where, as before, ρ^{2} denotes $x_{1}{ }^{2}+x_{2}{ }^{2}+\ldots+x_{p}{ }^{2}$.
Cbrist's College, Cambriage.

[^0]: * See Proc, Lond. Math. Soc., Vol. xxiv., p. 67

