ON THE FLEX-LOCUS OF A SYSTEM OF PLANE CURVES WHOSE EQUATION IS A RATIONAL INTEGRAL FUNCTION OF THE COORDINATES AND ONE ARBITRARY PARAMETER.

By M. J. M. Hill, M.A., D.Sc., Professor of Mathematics at University College, London.

Let

$$
\begin{equation*}
f(x, y, c)=0 . \tag{I}
\end{equation*}
$$

be the equation of the system of curves, rational and integral with regard to the coordinates x, y and the parameter c.

There is a point of inflexion on a curve of the system, where $d^{2} y / d x^{2}=0$.

Using square brackets to enclose the variable with regard to which partial differential coefficients of $f(x, y, c)$ are taken,

$$
\begin{array}{r}
{[x]+[y] \frac{d y}{d x}=0 \ldots \ldots \ldots \ldots \ldots \ldots \text { (II), }} \\
{[x, x]+2[x, y] \frac{d y}{d x}+[y, y]\left(\frac{d y}{d x}\right)^{2}+[y] \frac{d^{2} y}{d x^{2}}=0 \ldots \text { (III) }}
\end{array}
$$

or, substituting for $d y / d x$ from (II) in (III),
$[x, x][y]^{3}-2[x, y][x][y]+[y, y][x]^{3}=-[y]^{3} \frac{d^{2} y}{d x^{2}} \ldots$ (IV)
Hence if $d^{y} y \mid d x^{2}=0$, in general

$$
[x, x][y]^{2}-2[x, y][x][y]+[y, y][x]^{2}=0 \ldots(\mathrm{~V})
$$

The left-hand side of (V) is the Hessian.
Consequently let (V) be written in the form

$$
\begin{equation*}
H=0 \tag{VI}
\end{equation*}
$$

In (VI) H is a function of x, y, c.
Let the roots of (I) considered as an equation for c be $c_{1}, c_{2}, \ldots, c_{n}$.

Let the result of substituting any root c_{r} for c in H be denoted by H_{r}.

Let the result of eliminating c between (I) and (VI) be denoted by $E=0$.

Let the locus of the points of inflexion, or flex-locus, of the curves (I) be $F=0$. Let the locus of their double points be $N=0$. Let the locus of their cusps be $C=0$.

Then the object of this paper is to show that E contains the factors F, N^{6}, C^{8}.

1. The differential coefficients of H as far as the third order.

Let ∂ denote partial differentiation when x, y are independent variables, o being expressed as a function of x, y by means of (I).

$$
\begin{aligned}
& \frac{\partial H}{\partial x}=[x, x, x][y]^{3}-2[x, x, y][x][y]+[x, y, y][x]^{2} \\
& +2[x]\left\{[x, x][y, y]-[x, y]^{2}\right\} \\
& +\frac{\partial c}{\partial x}\left(\begin{array}{l}
\quad[x, x, c][y]^{2}-2[x, y, c][x][y]+[y, y, c][x]^{2} \\
+2[x]\{[x, c][y, y]-[y, c][x, y]\} \\
-2[y]\{[x, c][x, y]-[y, c][x, x]\}
\end{array}\right), \\
& \frac{\partial^{2} H}{\partial x^{2}}=[x, x, x, x][y]^{x}-2[x, x, x, y][x][y]+[x, x, y, y][x]^{2} \\
& +2[x]\{[x, x, x][y, y]-3[x, x, y][x, y]+2[x, y, y][x, x]\} \\
& +2[y]\{[x, x, x][x, y]-[x, x, y][x, x]\} \\
& +2[x, x]\left\{[x, x][y, y]-[x, y]^{2}\right\} \\
& +2 \frac{\partial c}{\partial x}\left(\begin{array}{c}
{[x, x, x, c][y]^{2}-2[x, x, y, c][x][y]+[x, y, y, c][x]^{3}} \\
+2[x]\{[x, x, c][y, y]-2[x, y, c][x, y]+[y, y, c][x, x]
\end{array}\right. \\
& +[x, y, y][x, c]-[x, x, y][y, c]\} \\
& +2[y]\{[x, x, x][y, c]-[x, x, y][x, c]\} \\
& +2[x, c]\left\{[x, x][y, y]-[x, y]^{2}\right\} \\
& +\left(\frac{\partial c}{\partial x}\right)^{2}\left(\begin{array}{c}
{[x, x, c, c][y]^{2}-2[x, y, c, c][x][y]+[y, y, c, c][x]^{2}} \\
+2[x]\{[y, y][x, c, c]-[x, y][y, c, c]
\end{array}\right. \\
& +2[x, c][y, y, c]-2[y, c][x, y, c]\} \\
& +2[y]\{[x, x][y, c, c]-[x, y][x, c, c] \\
& -2[x, c][x, y, c]+2[y, c][x, x, c]\} \\
& \left(+2\left\{[x, x][y, c]^{2}-2[x, y][x, c][y, c]+[y, y][x, c]^{2}\right\}\right) \\
& +\frac{\partial^{2} c}{\partial x^{2}}\left(\begin{array}{c}
{[x, x, c][y]^{2}-2[x, y, c][x][y]+[y, y, c][x]^{2}} \\
+2[x]\{[x, c][y, y]-[y, c][x, y]\} \\
-2[y]\{[x, c][x, y]-[y, c][x, x]\}
\end{array}\right) .
\end{aligned}
$$

In forming $\frac{\partial^{3} H}{\partial x^{3}}$ it is necessary only to calculate the terms which obviously do not vanish through containing a factor $[x]$ or $[y]$.

The terms retained will then be

$$
\begin{aligned}
& 6[x, x]\{[x, x, x][y, y]-2[x, x, y][x, y]+[x, y, y][x, x]\} \\
& +6 \frac{\partial c}{\partial x}\left(\begin{array}{c}
{[x, x, x]\{[x, c][y, y]+[y, c][x, y]\}} \\
-[x, x, y]\{3[x, c][x, y]+[y, c][x, x]\}
\end{array}\right. \\
& +2[x, y, y][x, c][x, x] \\
& +[x, x, c]\left\{2[x, x][y, y]-[x, y]^{3}\right\} \\
& +[x, x]\{[x, x][y, y, c]-2[x, y][x, y, c]\}) \\
& +6\left(\frac{\partial c}{\partial x}\right)^{2}\left(\begin{array}{r}
{[x, x, x][y, c]^{2}-2[x, x, y][x, c][y, c]+[x, y, y][x, c]^{2}} \\
+2[x, c]\{[x, x, c][y, y]-2[x, y, c][x, y]+[y, y, c][x, x]\} \\
+2[x, c, c]\left\{[x, x][y, y]-[x, y]^{2}\right\}
\end{array}\right) \\
& +6\left(\frac{\partial c}{\partial x}\right)^{3}\left(\begin{array}{l}
{[x, x, c][y, c]^{2}-2[x, y, c][x, c][y, c]+[y, y, c][x, c]^{2}} \\
+[x, c, c]\{[x, c][y, y]-[y, c][x, y]\} \\
-[y, c, c]\{[x, c][x, x]-[y, c][x, x]\}
\end{array}\right) . \\
& +6 \frac{\partial^{2} c}{\partial x^{2}}[x, c]\left\{[x, x][y, y]-[x, y]^{2}\right\} \\
& +6 \frac{\partial c}{\partial x} \frac{\partial^{2} c}{\partial x^{2}}\left\{[x, x][y, c]^{2}-2[x, y][x, c][y, c]+[y, y][x, c]^{2}\right\} .
\end{aligned}
$$

2. To prove that at a point on the node-locus

$$
H=0, \quad \frac{\partial H}{\partial x}=0, \quad \frac{\partial^{2} H}{\partial x}=0
$$

At a point ξ, η on the node-locus, the equations

$$
[x]=0,[y]=0,[c]=0
$$

hold; see a paper by the Author on the c - and p - discriminants of Ordinary Integrable Differential Equations of the First Order (Proceedings of the London Mathematical Society, Vol. xix., p. 562).

Let the value of c corresponding to the curve which has the node at ξ, η be γ.

Then $x=\xi, y=\eta, c=\gamma$ satisfy

$$
[x]=0,[y]=0,[c]=0 .
$$

Hence, they also make

$$
\begin{aligned}
H & =0, \\
\frac{\partial H}{\partial x} & =0,
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{3} H}{\partial x^{2}}=2[x, x]\left\{[x, x][y, y]-[x, y]^{2}\right\} \\
& \quad+4 \frac{\partial c}{\partial x}[x, c]\left\{[x, x][y, y]-[x, y]^{2}\right\} \\
& \quad+2\left(\frac{\partial c}{\partial x}\right)^{\prime}\left\{[x, x][y, c]^{3}-2[x, y][x, c][y, c]+[y, y][x, c]^{2}\right\} .
\end{aligned}
$$

But $x=\xi, y=\eta, c=\gamma$ also make

$$
\left|\begin{array}{l}
{[x, x][x, y][x, c]} \\
{[y, x][y, y][y, c]} \\
{[c, x][c, y][c, c]}
\end{array}\right|=0 ;
$$

see paper cited above, p. 563.
Therefore

$$
\begin{aligned}
{[x, x][y, c]^{2}-2[x, y][x, c][y, c] } & +[y, y][x, c]^{3} \\
& =[c, c]\left\{[x, x][y, y]-[x, y]^{3}\right\}
\end{aligned}
$$

therefore
$\frac{\partial^{2} H}{\partial x^{2}}=2\left\{[x, x][y, y]-[x, y]^{2}\right\}\left\{[x, x]+2[x, c] \frac{\partial c}{\partial x}+[c, c]\left(\frac{\partial c}{\partial x}\right)^{2}\right\}$.
Now to determine $\frac{\partial c}{\partial x}$, there is the equation

$$
[x]+[c] \frac{\partial c}{\partial x}=0
$$

which is indeterminate since $[x]=0,[c]=0$.
Hence, differentiating

$$
[x, x]+2[x, c] \frac{\partial c}{\partial x}+[c, c]\left(\frac{\partial c}{\partial x}\right)^{2}+[c] \frac{\partial^{2} c}{\partial x^{2}}=0
$$

But $[c]=0$,
therefore

$$
[x, x]+2[x, c] \frac{\partial c}{\partial x}+[c, c]\left(\frac{\partial c}{\partial x}\right)^{2}=0
$$

therefore

$$
\frac{\partial^{2} H}{\partial x^{2}}=0
$$

3. To shew that at a point on the cusp-locus

$$
H=0, \frac{\partial H}{\partial x}=0, \frac{\partial^{2} H}{\partial x^{2}}=0, \frac{\partial^{3} H}{\partial x^{3}}=0
$$

At a point on the cusp-locus (see paper cited above, pages 563,564),

$$
\begin{aligned}
& {[x, x]:[x, y]:[x, c] } \\
= & {[y, x]:[y, y]:[y, c] } \\
= & {[c, x]:[c, y]:[c, c], } \\
& x=\xi, y=\eta, c=\gamma .
\end{aligned}
$$

wherein
Put in the above $[c, x]=\sigma[c, c]$,

$$
[c, y]=\rho \quad[c, c],
$$

therefore

$$
\begin{aligned}
& {[x, x]=\sigma^{2}[c, c],} \\
& {[x, y]=\sigma \rho[c, c],} \\
& {[y, y]=\rho^{2}[c, c] .}
\end{aligned}
$$

As the cusp is a node, it is only necessary in this case to prove $\frac{\partial^{3} H}{\partial x^{3}}=0$.

On making the above substitutions in the value of $\frac{\partial^{3} H}{\partial x^{3}}$, the coefficients of $\frac{\partial^{2} c}{\partial x^{2}}$ and $\frac{\partial c}{\partial x} \frac{\partial^{3} c}{\partial x^{2}}$ both vanish.

The terms remaining in $\frac{\partial^{8} H}{\partial x^{8}} /[c, c]^{2}$ are
$6 \sigma^{2}\left\{\rho^{2}[x, x, x]-2 \rho \sigma[x, x, y]+\sigma^{2}[x, y y]\right\}$

$$
+3 \frac{\partial c}{\partial x}\left[\begin{array}{c}
4 \rho^{2} \sigma[x, x, x]-8 \rho \sigma^{2}[x, x, y]+4 \sigma^{3}[x, y, y] \\
+2 \rho^{2} \sigma^{2}[x, x, c]-4 \rho \sigma^{3}[x, y, c]+2 \sigma^{4}[y, y, c]
\end{array}\right]
$$

$$
+3^{\prime}\left(\frac{\partial c}{\partial x}\right)^{2}\left[\begin{array}{r}
2 \rho^{2}[x, x, x]-4 \rho \sigma[x, x, y]+2 \sigma^{2}[x, y, y] \\
+4 \rho^{2} \sigma[x, x, c]-8 \rho \sigma^{2}[x, y, c]+4 \sigma^{3}[y, y, c]
\end{array}\right]
$$

$$
+\left(\frac{\partial c}{\partial x}\right)^{3}\left[6 \rho^{2}[x, x, c]-12 \rho \sigma[x, y, c]+6 \sigma^{2}[y, y, c]\right]
$$

$=6\left(\sigma+\frac{\partial c}{\partial x}\right)^{2}\left(\begin{array}{r}\rho^{2}[x, x, x]-2 \rho \sigma[x, x, y]+\sigma^{2}[x, y, y] \\ +\frac{\partial c}{\partial x}\left\{\rho^{2}[x, x, c]-2 \rho \sigma[x, y, c]+\sigma^{2}[y, y, c]\right\}\end{array}\right\}$.
But the equation to determine $\frac{\partial c}{\partial x}$ is in this case

$$
[x, x]+2[x, c] \frac{\partial c}{\partial x}+[c, c]\left(\frac{\partial c}{\partial x}\right)^{2}=0
$$

and this becomes

$$
\sigma^{2}+2 \sigma \frac{\partial c}{\partial x}+\left(\frac{\partial c}{\partial x}\right)^{3}=0
$$

Hence $\frac{\partial^{3} H}{\partial x^{3}}=0$ at points on the cusp-locus.
4. To show that if $F=0$ be the flex-locus, E must contain F as a factor.

$$
E=A H_{1} H_{2} \ldots H_{n},
$$

where A is the rationalising factor.
If $x=\xi, y=\eta$ be a point on the flex-locus, then when $x=\xi, y=\eta$ the equations

$$
\begin{array}{r}
f(x, y, c)=0 \\
H=0
\end{array}
$$

are satisfied by a common value of c.
Hence one of the quantities $H_{1}, H_{2}, \ldots, H_{n}$ vanishes. therefore

$$
E=0 .
$$

Hence E contains F as a factor.
5. To show that if $N=0$ be the node-locus, E contains N^{δ} as a factor.

At a point on the node-locus, $H=0, \frac{\partial H}{\partial x}=0, \frac{\partial^{3} H}{\partial x^{2}}=0$.
At a point ξ, η on the node-locus, the values of x, y, c satisfy

$$
\begin{array}{ll}
f(x, y, c) & =0 \\
{[x]} & =0 \\
{[y]} & =0 \\
{[c]} & =0
\end{array}
$$

Hence (I) treated as an equation for c has equal rootso Suppose that when $x=\xi, y=\eta$ the roots c_{3}, c_{2} become equal, then writing E for brevity in the form

$$
E=B H_{1} H_{9},
$$

and forming all the partial differential coefficients of E with regard to x up to the 5 th order, every term in the result must contain H_{1} or H_{2} or a first or second differential coefficient of H_{1} or H_{2}. Hence all these differential coefficients vanish. Hence E must contain N^{6} as a factor.
6. To show that if $C=0$ be the cusp-locus, E must contain C^{8} as a facter.

If $x=\xi, y=\eta$ be a point on the cusp-locus the same equations hold as in the case of the node-locus, but in addition $\partial^{3} H$ $\overline{\partial x^{3}}$ vanishes.

Consequently if all the differential coefficients of E with regard to x up to the 7th order be formed, every term in the result must contain H_{1} or H_{2} or a first or second or third differential coefficient of H_{1} or H_{2}. Hence all these differential coefficients of E must vanish. Hence E must contain C^{8} as a factor.
7. Putting together the results of the last three articles it follows that the result of eliminating c between
and

$$
f(x, y, c)=0
$$

$$
[x, x][y]^{2}-2[x, y][x][y]+[y, y][x]^{3}=0
$$

contains the factors

$$
F, N^{6}, C^{8}
$$

8. The preceding results agree with Plücker's Formula

$$
3 n(n-2)=i+6 \delta+8 \kappa
$$

For every point of intersection of the curve and its Hessian, there is a factor in the eliminant.

As the Hessian cuts the curve once at a point of inflexion, 6 times at a double point, and 8 times at a cusp, the factors of the eliminant might be expected to be the flex-locus once, the node-locus 6 times, and the cusp-locus 8 times.

Example I.

Take the curves

$$
\begin{gathered}
y-c-x^{3}=0, \\
{[x]=-3 x^{3}} \\
{[y]=1,} \\
{[x, x]=-6 x} \\
{[x, y]=0,} \\
{[y, y]=0 .}
\end{gathered}
$$

Therefore

Therefore
becomes

$$
[x]^{3}[y, y]-2[x][y][x, y]+[y]^{\prime}[x, x]=0
$$

$$
x=0 .
$$

Hence the result of eliminating c between
and
is

$$
\begin{gathered}
y-c-x^{3}=0, \\
x=0, \\
x=0 .
\end{gathered}
$$

Hence $x=0$ is the flex-locus, and x occurs to the first power in the eliminant.

$$
\text { Example II } \begin{gathered}
\text { E. } \\
\text { Therefore } \\
(x-c)^{3}-(y-c)=0 \\
{[x]=3(x-c)^{2}} \\
{[y]=-1} \\
{[x, x]=6(x-c)} \\
{[x, y]=0} \\
{[y, y]=0}
\end{gathered}
$$

Hence

$$
[y]^{2}[x, x]-2[x][y][x, y]+[x]^{2}[y, y]=0
$$

becomes

$$
6(x-c)=0
$$

Eliminating c from
and

$$
\begin{gathered}
(x-c)^{3}-(y-c)=0 \\
x-c=0
\end{gathered}
$$

the result is $x-y=0$.
This is the flex-locus, and occurs only once.
Example III.

$$
(y-c)^{2}-x \cdot(x-a)(x-b)=0
$$

i.e.

$$
(y-c)^{2}-x^{3}+x^{2}(a+b)-x a b=0 \ldots \ldots \ldots \ldots(\mathbb{I})
$$

Therefore $[x]=-3 x^{2}+2 x(a+b)-a b$,

$$
[y]=2(y-c),
$$

$$
[x, x]=-6 x+2(a+b)
$$

$$
[x, y]=0
$$

$$
[y, y]=2 ;
$$

Therefore $[y]^{3}[x, x]-2[x][y][x, y]+[x]^{2}[y, y]=0$
becomes
$4(y-c)^{2}\{-6 x+2(a+b)\}+2\left\{-3 x^{2}+2 x(a+b)-a b\right\}^{2}=0 \ldots$ (II).

Now the result of eliminating c from (I) and (II) is $\left[8 x(x-a)(x-b)(a+b-3 x)+2\left\{-3 x^{2}+2 x(a+b)-a b\right\}^{2}\right]^{2}=0 ;$ i.e. $\left[4 x(x-a)(x-b)(a+b-3 x)+\left\{3 x^{2}-2 x(a+b)+a b\right\}^{2}\right]^{2}=0$, i.e.

$$
\left\{3 x^{4}-4(a+b) x^{3}+6 a b x^{2}-a^{2} b^{2}\right\}^{2}=0
$$

Now this is the flex-locus, for

$$
\begin{aligned}
& y-\mathrm{c}=[x(x-a)(x-b)]^{\frac{1}{2}}, \\
& \frac{d y}{d x}=\frac{1}{2} \frac{3 x^{2}-2 x(a+b)+a b}{[x(x-a)(x-b)]^{\frac{1}{2}}}, \\
& \frac{d^{2} y}{d x^{2}}=\frac{1}{2}\left\{\frac{\left.[6 x-2(a+b)]\{x(x-a)(x-b)\}^{\frac{1}{2}}-\frac{1}{2} \frac{\left(3 x^{2}-2 x(a+b)+a b\right)^{2}}{\{x(x-a)(x-b)\}^{\frac{1}{2}}}\right\}}{x(x-a)(x-b)}\right\} \\
&=\frac{4 x(x-a)(x-b)(3 x-a-b)-\left(3 x^{2}-2 x(a+b)+a b\right)^{2}}{4[x(x-a)(x-b)]^{\frac{3}{2}}}
\end{aligned}
$$

Hence $\frac{d^{2} y}{d x^{2}}=0$, when

$$
4 x(x-a)(x-b)(a+b-3 x)+\left\{3 x^{2}-2 x(a+b)+a b\right\}^{2}=0
$$

The reason why this factor occurs twice is this :-
The curve being symmetrical with regard to the axis of x, if $x=\xi, y=\eta$ is a point of inflexion, so is $x=\xi, y=-\eta$.

Now the system of curves is formed by shifting the curve

$$
y^{2}=x(x-a)(x-b)
$$

parallel to the axis of y.
Hence, if $x=\xi, y=\eta$ be one point of inflexion on the curve, then the straight line $x=\boldsymbol{\xi}$ is a part of the flex-locus. But it is the locus not of one point of inflexion only, but of two, for as the curve $y^{2}=x(x-a)(x-b)$ is moved parallel to the axis of y, two of its points of inflexion describe the line $x=\xi$.

Example IV.

Take the curves $(y-c)^{2}-x(x-a)^{2}=0$.
The results may be deduced from the last example by putting $b=a$.

Hence the locus to be considered is now

$$
\begin{array}{ll}
& \left(3 x^{4}-8 a x^{3}+6 a^{2} x^{2}-a^{4}\right)^{2}=0 \\
\text { i.e. } \quad(x-a)^{6}(3 x+a)^{2}=0
\end{array}
$$

In this $x=a$ is the double point locus, hence $x-a$ occurs 6 times as a factor.

Again $3 x+a=0$ is the locus of the two points of inflexion; every point on this locus contains two points of inflexion. Consequently $3 x+a$ occurs twice as a factor.

That $3 x+a=0$ is the flex-locus is seen at once, since

$$
\begin{aligned}
y-c & =x^{\frac{3}{2}}-a x^{\frac{1}{2}} \\
\frac{d y}{d x} & =\frac{3}{2} x^{\frac{1}{2}}-\frac{1}{2} a x^{-\frac{1}{2}} \\
\frac{d^{3} y}{d x^{3}} & =\frac{1}{4}(3 x+a) x^{-\frac{1}{2}}
\end{aligned}
$$

Hence $\frac{d^{3} y}{d x^{2}}=0$ when $3 x+a=0$.

$$
\begin{aligned}
& \text { Example } V \\
& (y-c)^{2}=x^{3}
\end{aligned}
$$

This is obtained by putting $a=0$ in the last result.
The locus to be considered becomes now

$$
x^{8}=0 .
$$

Now $x=0$ is the cusp-locus.
Hence it occurs 8 times.
Example VI.

$$
\begin{aligned}
& (x-c)^{3}-y+c^{2}=0, \\
& {[x]=3(x-c)^{2},} \\
& {[y]=-1} \\
& {[x, x]=6(x-c),} \\
& {[x, y]=0,} \\
& {[y, y]=0,}
\end{aligned}
$$

therefore $[x]^{2}[y, y]-2[x, y][x][y]+[y]^{2}[x, x]=0$
becomes

$$
x-c=0 .
$$

Eliminating c from

$$
x-c=0,
$$

and

$$
\begin{gathered}
(x-c)^{3}-y+c^{3}=0 \\
x^{3}-y=0
\end{gathered}
$$

Now $x^{2}-y=0$ is the flex-locus.
Hence it occurs only once as a factor.

