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A population dynamic model for Clethrionomys glareolus (Schreber, 
1780) is developed and analyzed. The model incorporates the fact 
that a high number of terri torial and mature females inhibits sexual 
maturat ion of young females. In addition, density dependence in litter 
size and in the interval between lit ter-productions are assumed. Season-
ality is also incorporated in the sense that reproduction is assumed 
only to occur during summer. Analysis of the model demonstrates that 
the female territoriality is a strongly stabilizing factor. Short repro-
ductive summer seasons and large litters may, however, destabilize 
these dynamics. 

[Dept. of Biology, Division of Zoology, University of Oslo, P.O. Box 
1050, Blindern, N-0316, Oslo 3, Norway] 

1. INTRODUCTION 

Contrary to several other microtine genera, Clethrionomys constitutes 
a rather homogeneous group with respect to social organization: all 
studied populations of any Clethrionomys species seem to be characte-
rized by reproductively active females having exclusive territories (e.g., 
Bujalska, 1985), whereas males do not have such territories (e.g., Gipps, 
1985). Microtus, for example, is far more diverse in this respect (see 
e.g., Stenseth et al., 1985a). Nevertheless, there are both stable and 
cyclic populations of Clethrionomys (e.g., Henttonen et al., 1985) just as 
there are both stable and cyclic populations of Microtus (e.g., Stenseth 
et al., 1985b). Specifically, we know that the bank vole (C. glareolus) 
exhibits both stable and cyclic populations (e.g., Petrusewicz, 1983; 
Henttonen et al, 1985; Stenseth et al., 1985b). 

It has been proposed that the exclusive territoriality of reproducing 
females operates as a stabilizing factor (see, e.g., Bujalska, 1970, 1983a, 
1985; Rajska-Jurgiel, 1976; Gliwicz & Rajska-Jurgiel, 1983). Others 
have, however, proposed that this territoriality may contribute to the 
generation of regular cycles (Wiger, 1982). Earlier I have investigated 

1 Dedicated to the late Professor Kazimierz Petrusewicz whose studies on the 
ecology of small rodents in general — and of the bank vole in particular — have 
greatly improved our understanding of microtine population dynamics. This little 
man was a great scientist — he was a great man! 
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these ideas from a general theoretical point of view (Stenseth et al.s 
1985a; Stenseth & Fagerstrom, 1985; Stenseth & Antonsen, 1985). Col-
lectively these studies suggested that when disregarding all effects 
of seasonality, but incorporating effects of habitat heterogeneity (i.e., 
Stenseth et al.} 1985a), territoriality will stabilize the population dy-
namics; at most, the number of immature individuals will fluctuate 
slightly. Seasonality and high reproductive rates may, however, desta-
bilize the population dynamics (Stenseth & Fagerstrom, 1985). 

In this paper I investigate the population dynamic consequences of 
an idea orginally proposed by Bujalska (1981, 1983a, 1985): the pro-
portion of reproductively active females (i.e., those having a breeding 
territory) will decrease with increasing total density (Fig. 1). By com-
bining this idea with the fact that the summer period is the maim 
reproductive season (e.g., Bujalska, 1983b); I have developed a model 
for studying the resulting population dynamic patterns. Throughout, 
I apply the cohort-concept (e.g., Gliwicz et al., 1968; Gliwicz, 1983a, b); 

Fig. 1. Three curves describing the relationships between the number of mature 
adult females and the total population density (after Bujalska, 1981). The mathe-
matical formulae for Clethrionomys and Apodemus are given in the main text 
(Eqs. (11) & (12)); the formula for the solid part of the Microtias curve is "Num-
ber of mature females"= — 4.19 + 0.55 X (Total number of females) (Bujalska, 1984; 

pers. comm.). 

that is, I assume that litters are produced fairly synchronously during 
the summer. 

When analyzing the model I search for features tending to stabilize 
as well as features tending to destabilize the population dynamics. This 
I do by changing the values of several of the model-parameters. How-
ever, in this analysis I am not particularly concerned about whether 
the resulting population dynamics patterns seen in microtine rodents 
emerge from the model. This is so because the model disregards a va-
riety of presumably important biological factors (food availability, pre-
dators, etc.). It is, however, only by analyzing a model being as simple 
as possible we can deduce the pure consequences of territoriality. We 
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must hence disregard these other potentially important — but compli-
cating — biological aspects. 

2. THE MODEL 

Only females are considered in the model. This is resonable to do for 
a species where females are territorial: only the availability of terri-
tories will limit the population density of mature females — the num-
ber of males is presumably always sufficient to inseminate the repro-
ductively active females (for further justification of this see, for ex-
ample, Stenseth et al. (1985a) and Stenseth & Fagerstram (1985)). For 
this very reason, the Polish ecologists studying the bank vole (see Pe-
trusewicz, (ed.), 1983) have concentrated on the ecology of f e m a l e 
bank voles. 

2.1. Summer and Winter Periods 

The year, consisting of 365 days, is assumed to be divided into two: 
one summer period of length Ts days, and one winter period of length 
(365-Ts) days. Reproduction is assumed to be possible only during the 
summer period. No reproduction is assumed to occur during the winter 
period (but see Iiansson, 1984a; Eriksson, 1985). 

Survival of females is assumed to be density-independent; net re-
production — and hence, juvenile survival — is, however, assumed to 
depend upon density (see below; Eg. (5)). The daily rate of survival, ss, 
during summer, is assumed to be lower than the rate of survival, sw, 
during winter (see, e.g., Petrusewicz et al., 1971; Gliwicz, 1983a, b). 

2.2. Length of Time between Litter Production during the Summer Period 

Considering only the female part of the population, as I do in this 
paper, assumes implicitly that changes in male density affect the fe-
males' demography in the same way as females affect their own demo-
graphy. For simplicity, a homogeneous population is further assumed; 
i.e., we consider average female individuals of which some are repro-
ductively active, and some are not. 

The start of the reproductive season will be delayed for some length 
of time depending on density due to the process of establishing terri-
tories of the overwintered females (e.g., Bujalska, 1970, 1981, 1983a; 
Wiger 1979, 1982). Similarly, after delivery of a litter, a female may 
— if density is low — become pregnant immediately, or — if the den-
sity of females is high — there will be a period between delivery of 
a litter and the subsequent pregnancy (Bujalska, 1970, 1983a; Wiger, 
1979, 1982). 
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Let Tj, i be the length of time between the earliest possible day of 
becoming pregnant and the actual delivery of the first litter. Similarly, 
Tl( 2 is the length of time between the delivery of the first and second 
litters. Generally, Tu , is the length of time between the (i —l)tfl and the 
ith litter. 

I have used the following formula for describing Tt, i=Ti(x l-1), where 
is the total density of females at the time of the (i—l)th delivery 

(for i = l , xl_1 is the total number of overwintering females in the pop-
ulation): 

Ti, t = T t ix i _,)=g+ic 1 • g • xi-i/ih+xi^) (1) 

where g is the shortest possible length of time between litters (i.e., the 
length of the gestation period) and h measures the density dependence 
of Tt (see Fig. 2). The standard case of the model applies g= 16 (e.g., 
Wrangel, 1940) and ^ = 1 . (Notice that a gestation period equal to 16 

Fig. 2. The assumed relation between between-li t ter interval, T( and the total. 
density of females, x r 

days may be somewhat too short as, e.g., Bujalska & Ryszkowski (1966) 
found a gestation period of 22 days. This will, however, have no effect 
on the qualitative conclusions to be drawn in this study). The para-
meter defining the degree of density dependence in Th h, is easier to 
interpret if it is related to the total female density for which no fe-
male will be mature, xm (defined precisely below; see Eq. (5)) (Bujalska. 
1985). Hence, we assume 

h=kB • x (2) 
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where k2 is a positive parameter; high values of k2 imply a more 
slowly increasing time-interval between successive litters with increas-
ing density. 

The number of litters being produced during the summer season is 
then given by nmax defined as 

71—1 
n = m a x n so that > T, (x . )<T, . (3) 

max / i l i s 
i=0 

2.3. Proportion of Females being Mature (Territorial) 

Let p=p(Xi) be the fraction of mature (i.e., territorial) females in 
a population of density xt. The fraction of mature females in the pop-

DENSITY (Xj) 
Fig. 3. Three curves, corresponding to those depicted in Fig. 1. (A) depicts the 
p(Xi)-curves whereas (B) depicts the xjp(xt) -curves, the lat ter corresponds directly 

to those depicted in Fig. 1. 
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ulation will, because of territoriality, be a decreasing function of 
total density in the population; such a relation was reported by 
Bujalska (1981) (see Fig. 3). For the general analysis, I have assumed 
the following formula for p(xt) (but see Sect. 3.2. below): 

_ — a • x— b • x.2^0 
p ( x ' ) - | 0 ' ' otherwise. ( 4 ) 

As can be seen, all females are assumed to be mature at very low fe-
male densities (i.e., p(0)=l). 

Let xm be the lowest female density for which p is equal to zero; 
this quantity may then be found as 

xm= - a / ( 2 • b)+((o/(2 • b))«+l/b)i'2. (5) 

This quantity xm is, presumably, related to the carrying capacity of 
the habitat f o r t h e s p e c i e s u n d e r s t u d y . Equation (5) may 
then make it easier to interpret biologically the parameter values of 
a and b — and hence to vary these parameters in a biologically mean-

~~10 ' 20 ' 30 ' TO ' 50 

DENSITY (x,) 

Fig. 4. The assumed relation between litter size per reproductively active (i.e., 
mature) female and the total female density, a^, in the population. 

ingful manner. For the general analysis, I have chosen combinations 
so as to loosely imitate the three curves in Fig. 1 (see Bujalska, 1981). 

2.4. Net Litter Size 

Let Bm be the largest possible net litter size (occurring when there 
are no negative effects of density). Assuming the sex ratio at birth 
to be 1:1 (see Bujalska, 1983a), the maximum possible number of fe-
bales being recruited to the population is given by 0.5 • Bm. Let 
B(Xi) be the net recruitment of females conceived at a female density xt. 
This B-function is defined as 
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_ r0.5 • Bm (1 - X t / ( k , • x m ) )>0 
B ( a v ~ \ 0 otherwise, ( 6 ) 

where k3 is a positive parameter determining the degree of density 
dependence (Fig. 4). Notice that the B(xt) includes the litter size as 
foetal and suckling mortality. 

2.5. Components of Population Growth 

Since we only consider an average female, we may describe the pop-
ulation dynamics within a season by a discrete time population dy-
namic model. Let rl be the net rate of growth in a population of initial 
female density equal to xt; this is defined as 

r = ( b ( x t ) • p(xt) + l) . s / i ( * ) i (7) 

where ss is the daily survival rate during the summer (Fig. 5). Then, 

Fig. 5. Net growth rate ru between successive cohorts as a function of density, 
x.; the curves assume a = 0.001 & b=0.003. 

a recursive population growth model for the withinseason population 
dynamics is given by 

x i + 1 = r . • x.. (8) 

Similarly, the total survival during the non-reproductive winter season 
is given by sw

S66~Ts, where sw is the daily survival rate during winter. 
In order to complete the cycle, we also have to adjust for mortality 
during the spring period of territorial establishment and the fall pe-
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riod after the last litter has been produced but before winter starts. 
Hence, we need to multiply the fall density by ss

r
r~T

s where 
n—l 

T = V - , (Xt). ( 9 ) 

i-i 
* (where n = nmax; see Eq. (3)). 

3. RESULTS AND DISCUSSION 

3.1. General Version 

I have investigated the dynamic behaviour of the model through nu-
.merical studies (see Appendix). The parameter values used in the ana-
lyses are summarized in Table 1. I have concentrated on studying the 

Table 1 
Parameters — and parameter values — used in the model. 

Pa ra -
meter 

Parameter 
values Definition 

Ts 80—160 days Maximum length of summer reproduction 
g 16 days Length of gestation period 
Bm 2—8 Maximum number of young in each litter 
Ss 0.990 Daily survival ra te of adults during the summer 

season 
S ID 0.999 Daily survival ra te of adults during the winter 

season 
,a 0.001 Parameter in the function determining the fract ion 

of mature females 
b 0.0001—0.005 Parameter in the function determining the fract ion 

of mature females 
K 1 Parameter determining the maximal length between 

litter productions 
K 0.5—10 Parameter determining the density dependence of the 

length of the interval between litter productions 
K 3.0 Parameter determining the density dependence of net 

litter size 

effect of varying the length of tne main breeding season (Ts), the 
maximum possible litter size (Bm), and the density dependence (k2) in 
i;he time between successive litters (see Eq. (1)). 

The results of these numerical studies are summarized in Table 
2. As can be seen, there are no dramatic differences with respect to 
overall stability properties between the three cases represented by the 
three curves depicted in Fig. 1: all cases seem, in general, to correspond 
to rather stable population dynamics. Only a few parameter combina-
tions seem to cause instability (and hence, possibly cycles). Notice that 
high litter sizes, short potential summers and/or high carrying capac-
ity (xm; see Eq. (5)) (i.e., the lower case in Table 2) in particular seem to 
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destabilize the density. This corresponds directly to the result derived 
by Stenseth & Fagerstrôm (1985) on the basis of a far more complicat-
ed model. This concordance certainly strengthens the validity of the 
conclusions reached by Stenseth & Fagerstrôm (1985). 

Table 2 
Survey of the stability-properties of the model for various combinations of values 
of three critical parameters, the potential length of the summer period (Ts), the 
maximal l i t ter size (Bm) and the degree of density dependence (kj) in the t ime 
between successive litters. Number given in the table are percentages of cases for 
which a cyclic population dynamic pat tern results, a and b are defined in Table 1 

and the text . 

Case Ts Bm kt 

(o & b) 80 120 160 2 4 8 0.5 10.0 Avg. 

a = 0.001 
b = 0.005 33 0 0 0 0 33 11 11 11 

a=0.001 
b=0.003 30 17 17 0 0 67 11 33 22 

a = 0.001 
b=0.0001 33 17 17 0 0 67 11 33 22 

X 
> • 

U) 
z 
LU 
Q 
O 
Z 

. rr 
Q_ 
to 
< 

1 -I 1 1 1 r ' 1 ' 1 1 

0 2 I* 6 8 10 12 14 

SIMULATED YEAR 
Fig. 6. An example of a parameter set-up resulting in stable dynamics (that is, 
the most typical pat tern emerging f rom this model). Parameters are Ts= 80, g=16, 
Bm=2, a— 0.001, b=0.003 and Jc3=0.5; Other parameter values are as shown in 

Table 1. 
In Fig. 6—8 I have depicted some examples of the resulting popu-

lation dynamics: figure 6 depicts a typical stable population — most 
cases are like this. Figures 7 and 8 depict some of the unstable pop-
ulation dynamics patterns. 
29 — Acta Theriologica 
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I have further analyzed the model by evaluating the index for cyc-
licity proposed by Stenseth (1977) (see also Stenseth & Framstad, 1980;  
Henttonen et al., 1985) given as 

Q=(V ar(log10(Nt)))i'* 

where Nt is the initial spring density in year t. The index has been 
estimated on the basis of the simulated densities from year 20 to 50 

6 t 

3 H — * — i — • — i — * — i — • — i — ' — i — • — i — • — i — • — i 

30 32 34 36 38 40 42 44 46 

SIMULATED YEAR 
Fig. 7. Same as Fig. 5 except that T s=120, Bm=8 and k 2 =10. 

Fig. 8. Same as Fig. 6 except tha t T s=160. 

for all combinations of parameters in Table 1. The dependence between 
the value of the p-index and these parameter values are reported in 
Table 3. As can be seen, increased reproductive rate tends to destabilize 
the population dynamics. Furthermore, decreasing value of b tends to 
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destabilize the population dynamics; however, since decreasing value of 
b implies increasing value of xm — the carrying capacity — the ana-
lysis suggests that increasing productivity of the region tends to de-
stabilize the population dynamics of the voles. Finally we see a weak 
tendency for increased length of the summer period to stabilize the 
population dynamics, whereas decreased density dependence in inter-
-birth interval tends to stabilize the population dynamics. Again this 
resembles the results obtained by Stenseth & Fagerstrom (1985) on the 
basis of a much more complicated model. 

It is possible to understand the obtained results on the basis of gen-
eral population dynamics theory. As is well known, too strong density 
dependence in a seasonal environment (e.g., Maynard Smith, 1968, 1974; 
May, 1981; see also Stenseth & Antonsen, 1985) may often lead to 
violent density oscillations; this is particularly so in regions with high 

Table 3 
Dependence between the cyclicity index, p, and the various parameters of the 
model. Symbol interpretation: + denotes a significant positive correlation between 
Q and the respective parameter ; — denotes a significant negative correlation 
between p and the parameter ; ( + ) and (—) denote weak trends which were not 

significant. 

Parameter 

Ts B b K 

( - ) + (+) 

reproductive intensity and high equilibrium densities (i.e., carrying ca-
pasities). This is also the reason for the density fluctuations seen in the 
present model because both decreased length of summer period and 
increased density dependence in inter-birth interval lead to greater 
percentage variation in nmax (see Eq. (3)) — and hence, greater density 
dependence in nmax. 

3.2. Clethrionomys glareolus and Apodemus agrarius 

I have also analyzed the model for the particular populations of 
Clethrionomys glareolus and Apodemus agrarius discussed by Bujalska 
(1981): specifically, I have used the empirically derived p-functions (see 
Eq. (4)) provided by Bujalska (1984; pers. comm.). 

The Clethrionomys-curve provided by Bujalska is defined by 
[P(x4)]2= -0.0738+35.91 • : r - 1 -840.63 • x~2 (11) 

for 0^p (Xj )^ l ; if p(Xi) given by Eq. (11) is greater than one, p(xt) 
is assumed equal to 1, and if p(Xi) given by Eq. (11) is less than zero, 
p i x j is assumed equal to 0. 
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Using 0 = 22 (see Eq. (1)), p(x¿) defined by Eq. (11) and all other 
functions as defined above, analysis for the spectrum of parameter 
values given in Table 1 demonstrated that the resulting population dy-
namics always are v e r y s t a b l e . Analysis of the kind reported in 
Table 3 for the general model, demonstrated a comparable pattern 
except that Ts has a more pronounced effect in the specific model for 
Clethrionomys glareolus. 

The population dynamics of the Clethrionomys glareolus population 
studied by Bujalska and others are indeed expected t o b e s t a b l e 
because of the sexual inhibition of non-territorial females. My analysis 
of the data provided by Bujalska does indeed suggest the validity of 
Bujalska's (1970) hypothesis; this is particularly the case when com-
paring the results reported in this section with those reported in 
Section 3.1. 

The Apodemus-curve provided by Bujalska is defined by 

When using p{cc¡) defined by Eq. (12) and all other functions as defi-
ned above, fairly stable population dynamics result for most of the 
parameter-combinations given in Table 1. The pattern which emerged 
from the analysis of the general model (see Section 3.1.) is, in fact, 
very similar to the pattern emerging from the Clethrionomys-model 
defined by Eq. (11). As in the general analysis, increasing length of the 
summer period tends to stabilize the population dynamics whereas 
increased density dependence in the inter-birth interval tends to desta-
bilize the population dynamics. 

It should be noticed that the structure of the discussed model is a 
difference equation model with a variable time step. The length of the 
time step is determined by the density of the population: the higher 
density, the longer time steps. Biologically this is a fairly reasonable 
way of describing the population dynamics of Clethrionomys — like po-
pulations. Unfortunately there exist no standard mathematical techni-
ques for carrying out an ordinary stability analysis of such models. 
Such techniques are in fact badly needed. 

However, since I felt it more important to incorporate the variable 
time step than to perform some sort of standard stability analysis, I had 
to rely on numerical studies. Such numerical studies always have se-
veral shortcomings. It is clear, however, that one of the main results 
derived in this paper would not have been detected if I had paid 
more attention to mathematical elegance than to biological reality. 

0.553-0.00455 • x -0 .818 • x - ^ 0 

o otherwise. (12) 

3.3. A Technical Note 
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4. CONCLUSION 

On the basis of this analysis, it seems clear that the social system 
of exclusive female territoriality, observed in all populations of all 
Clethrionomys species (e.g., Bujalska, 1983a; Rajska-Jurgiel, 1976; Gli-
wicz & Rajska-Jurgiel, 1983), in general leads to stable population den-
sities. If species which are characterized by inhibition of females' sexual 
maturation at high densities also are cyclic, another factor must be res-
ponsible for the cyclicity. Then, if Clethrionomys species are cyclic, 
this must be due to some stronger overriding destabilizing factors such 
as for example, seasonality (discussed in this paper and by Stenseth & 
Fagerstrom (1985)) and various trophic interactions (see, e.g., discussion 
in Stenseth (1985)). It thus seems more important than ever to carry 
out detailed comparative studies of stable and cyclic populations of 
Clethrionomys species. The bank vole, C. glareolus, seems well suited 
for this purpose: this species has both stable and cyclic populations, 
both of which are rather well studied (see, e.g., Petrusewicz (ed.), 1983; 
Hansson, 1984b). If we could understand why some of these populations 
are cyclic, we might be able to understand why, for example, Microtus 
in general seems to be far more cyclic than Clethrionomys: hence, we 
may be able to understand the general differences in cyclicity between 
small rodent species (see, e.g., Krebs, 1979: 76). 

Compared to other microtines, Clethrionomys seems far better suited 
for studying why some species are cyclic whereas others are not be-
cause of its fairly uniform social system. We should not miss this 
opportunity to study the emerging population dynamic consequences 
of social organization (like, e.g., female territoriality). We are now at 
a stage where theoretical studies (like the present one) may go hand-in- 
hand with empirical studies in the field (see, eg., Petrusewicz (ed.), 
1983) and laboratory (e.g., Gustafsson, 1985). The model discussed in 
this paper may, in fact, serve as a total for interpreting the population 
dynamic consequences of findings in the field and in the laboratory: 
as exemplified in Section 3.2, empirically obtained forms of the various 
functions entering the model may be used in the analysis of the model. 

To continue the Clethrionomys-studies along these lines would, I am 
sure, be in the spirit of the late Professor K. Petrusewicz. 
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APPENDIX: The FORTRAN program used for analyzing the model 

In order to make it easier to carry out fu r the r analysis of the model, I present 
a copy of the program here: only the central parts of the program defining the 
functions are given. Whoever is to use this program must wr i te his or hers 
FORTRAN statements for reading in parameter values and writ ing out output 

results. 

CC '00 F"i'>TR.'.M ?UJA[. 
0020 J hi.AL K i,K2,K3 > NT,NT 1,K2VAL 
00300 INTEGER T 
oouoo T=1 00500 Is 1 
00600 1 CONTINUE 
00700 A2E=A/(2»B) 
00800 XM = A2B+3QRT(A2B,A2E-f(1.0/B)) 
00900 H=K2»XM 
01000 10 NT = X0 
01100 XI = X0 
01200 SUMTLX=0.0 
01300 20 TLXI=G • (K1»G»XI/(H + XI)) 
01100 SUMTLX=SUMTLX+TLXI 
01500 IF(SUMTLX .GT. TS) GO TO 50 
01600 PXI=1.0 - A'XI - (B'XI'XI) 
01700 IF(PXI .IT. 0.0) PXI=0,0 
01800 BXI=0.5 • BM »(1.0 - XI/(K3*XM)) 01900 IF(BXI .LT. 0.0) BXI=0.0 
02000 RI=(BXI«PXI + 1.0)*(SS,fTLXI) 
02100 X11=XI•RI 
02200 WRITE(3,115) I,XI,X11 
02300 XI=XI1 
02100 1=1+1 
02500 GO TO 20 
02600 50 R=(SS»«(TS-TR))»(SW«»(365-TS)) 
02700 NT1=R»XI1 
02800 IMAX=I 
02900 WRITE(3,120) T,I,XI,XII,NT,NT1,IMAX 
03000 TrTtl 
03100 IF(T .LT. 51) THEN 
03200 XI=NT 1 
03250 NT = NT1 
03300 1=1 
03100 SUMTLX=0.0 
03500 GO TO 20 
03600 ENDIF 
03700 T= 1 
03800 1=1 
03900 GO TO 1 
01000 99 STOP 
01200 END 

Nils Chr. STENSETH 

ZNACZENIE TERYTORIALIZMU SAMIC DLA DYNAMIKI 
POPULACJI NORNICY RUDEJ 

Streszczenie 

Wykorzystując dane literaturowe, autor skonstruował i poddał analizie model 
zmian dynamiki populacji nornicy rudej (Tabela 1). Model ten opiera się na fak-
cie, iż wysoka liczba mających tendencje terytorialne dojrzałych samic, wywołuje 
zahamowania rozrodu u młodych samic (Ryc. 1). Szczególnie odbija się to na 
wielkości miotu i wydłużaniu się okresów między kolejnymi miotami (Ryc. 2). 
Do konstrukcj i modelu włączono również sezonowość, z uwagi na założenie, że 
rozród odbywa się wyłącznie w okresie lata (Tabela 2, 3). Analiza modelu wy-
kazała, że terytorializm samic jest bardzo ważnym czynnikiem (Ryc. 3—8). Krótki, 
letni sezon rozrodczy i duże mioty mogą jednakże destabilizować tę populację. 


