PRACE PRZEGLĄDOWE

Cucumber transformation methods – the review

Zhimin Yin¹, Grzegorz Bartoszewski², Maria Szwacka², Stefan Malepszy²

¹ Institute of Plant Genetics, Polish Academy of Science, Poznań ²Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw Agriculture University, Warsaw

Cucumber transformation methods - the review

Summary

Several aspects of cucumber transformation including the ways of transgene introduction, factors influencing the transformation efficiency and the fate of the introduced genes were reviewed. Various transgenes have been introduced into the cucumber genome mostly *via* the *Agrobacterium*-mediated transformation. The frequency of *Agrobacterium*-mediated transformation ranged from 0.8 to 10% and was influenced by the selection agent, the regeneration efficiency, activation of *vir* genes expression, the explant size, bacteria cell density, the length of exposure and the co-cultivation period. The transgenes were integrated mostly as single copy in the *Agrobacterium*-mediated transformation and as multiple copies in direct transformation. Variable levels of the transgene expression were observed. The transmission of the transgenes as well as the transgenic phenotype follow the Mendelian, and rarely non-Mendelian, ratio. The production of marker-free transgenic cucumber and use of an alternative transformation method are recommended.

Key words:

Agrobacterium, transformation, Cucumis sativus, marker gene.

1. Introduction

Cucumber (*Cucumis sativus* L.) belongs to the group of the most popular vegetables in the world and the development of transgene introduction methods is very desirable for its biotechnology. Cucumber tissue culture systems are well defined (1).

Address for correspondence

Stefan Malepszy, Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw Agricultural University, Nowoursynowska 159, 02-776 Warsaw, Poland; e-mail: malepszy@alpha.sggw.waw. pl

biotechnologia

1 (68) 95-113 2005

Plants could be regenerated from various culture types in two ways: indirect regeneration from cotyledon explants (2,3) or leaf callus (4,5) and directly from leaf microexplants (6) or protoplast (7). The direct regeneration methods are fast allowing for regeneration of the plants without a distinguishable callus phase, and the leaf microexplant procedure is free of somaclonal variation. This can be good prerequisite for the use of leaf microexplant for transformation experiments.

Nearly two decades ago, transformation of cucumber began through an *Agrobacterium rhizogenes*-mediated transformation system (8,9) and direct gene transfer (10). At the same time, the *Agrobacterium tumefaciens* was also used (11,12). To date, many procedures have been developed with several new details. In this paper, we present the more reliable ways for transgene introduction into the cucumber genome and indicate the most important factors influencing the transformation efficiency and the fate of the introduced constructs. The agronomical properties of the transgenic cucumber plants were summarized elsewhere (13).

2. Ways of transgene introduction

The transgenes were introduced into cucumber genome mostly by *A. tumefaciens*--mediated transformation, rarely *via* a direct gene transfer, and in two cases by *A. rhizogenes*. Up to now, all agronomically important genes were transferred into the cucumber genome by *A. tumefaciens*-mediated transformation (13).

2.1. Agrobacterium tumefaciens-mediated transformation

The *Agrobacterium* genus has been divided into five species based on disease symptomology and plant host range (14,15). So far, *A. tumefaciens* and *A. rhizogenes* have been used for cucumber transformation (Tab. 1, 2 and 3). In cucurbits, susceptibility to crown gall disease has genetic basis (36). Hence, to some extent the differences in the transformation frequency depend on the genotype.

2.1.1. Genotype and explant sources

Various genotypes, including non-hybrid and hybrid cultivars, pure line and inbred lines of different origins, were successfully used for *Agrobacterium*-mediated transformation (Tab. 1, 2 and 3). The agronomically important genes: coat protein gene from cucumber mosaic virus (CMV-*cp*), superoxide dismutase gene from cassava (*mSOD1*), chitinase genes from different plant species (petunia, tobacco, bean), coat protein gene from zucchini green mottle mosaic virus (ZGMMV-*cp*), and chitinase gene from rice (*RCC2*) were introduced into different cucumber genotypes. Moreover, eight different constructs were introduced into one genotype, the inbred line Borszczagowski, using the same procedure (Tab. 3). All of them contained the gene of interest and the marker gene. However, the marker or selectable genes in plant transformation constructs have become very problematical, because in the European Union the registration of GMO containing the antibiotic or herbicide resistance genes will be not allowed starting from 2006.

There are two main sources of explants – directly excised from the plants or seedlings and tissues cultured *in vitro*. In the first case, leaf microexplants, leaf petiole, cotyledons and hypocotyls were inoculated. The *in vitro* growing tissue was a leaf- or cotyledon-derived embryogenic callus and a meristem-derived protoplast. According to our experience, the most promising explant is a leaf microexplant, previously described as being free of somaclonal variation and able to quickly and prolifically regenerate into the plants (6). A simple modification of the medium makes possible its application in various genotypes. Bacteria inoculation step, incorporated into this regeneration procedure, doubled the time of obtaining mature plants, i.e. 9-12 weeks, depending on the kind of the construct and the period of the year.

2.1.2. Some transgene elements

The total number of plasmid vectors used for cucumber transformation is 18 (Tab. 1, 2 and 3). Most frequently, a chimeric gene for kanamycin resistance (*npt*II) was used as the selectable marker. In four cases, a hygromycin resistance *hpt* gene and in only one, a herbicide resistance *bar* gene, were used. The β -D-glucuronidase gene (*uidA*) and luciferase gene (*luc*), mostly under the 35S cauliflower mosaic virus promoter (35S CaMV), were utilized as reporter genes. The constructs with agronomically important genes were most often driven by the 35S promoter and included the CMV coat protein gene (12,24), coat protein gene of ZGMMV (22), chitinase genes (16,18) and thaumatin II cDNA (25). In several cases, tissue specific promoters were used, such as *mSOD1* gene under the ascorbate oxidase promoter (pASO) (21), thaumatin II cDNA driven by tomato polygalacturonase (PG) promoter (Szwacka unpubl.), and tryptophan monooxigenase gene (*iaaM*) under the control of *Antirrhinum majus* ovule-specific *Deficiens* homologue 9 promoter (p*Def*H9) (35).

Table 1

Agrobacterium Genotype Explant Plasmid vector Transgene construct Literature strain* 6 3 4 (16) EHA105 pMOG196 pnos::nptII cv. Endeavor petiole pMOG198 p35S::chitinase gene MOG101 pGA492-CHN MOG301 (11)cotyledon pGA482 pnos::nptII cv. Poinsett 76 C58Z707 pnos::nptII (12)C58Z707 pGA482GG/ p35S::uidA cpCMV19 p35S::CMV-C cp EHA105 (17) pME524 nptII, uidA bar pnos::nptII cv. Shimoshirazu cotyledon LBA4404 pBI121-RCC2 (18)p35S::RCC2 cy. Shinhokusei No. 1 GV3101 pGV3850 HPT p35S::bpt (19)cotyledon LBA4404 pBI121 pnos::nptII GV2260 p35S-GUSINT nptII (20)cv. Spring Swallow cotyledon gus pASO::mSOD1 (21)cv. Winter Long cotvledon LBA4404 pGPTV-Bar pnos::bar (22)var. Chungjang pGA748-ZGMMV ZGMMV cp nptII Pure line 1021 pIG121-Hm pnos::nptII (23)hypocotyl EHA101 p35S::I-gus p35S::bpt pIG121-Hm CP hypocotyl EHA101 p35S::CMV-0 cp (24)pnos::nptII p35S::1-gus p35S::bpt p35S::thaumatin II cDNA (25) Inbred line Borszczagowski leaf LBA4404 pRUR528s pnos::nptII LBA4404 pPR-2d::uidA (26, 27)leaf pGA482 pnos::nptII HECSC LBA4404 pCAMBIA1301 bpt (28)**EHA105** pGPTVhpt uidA Inbred line 3672 petiole, leaf LBA4404 pCGN783 pnos::nptII (9,29)pBIN19 3676 (Gv14) p35S::nptII Inbred line Gy14A cotyledon LBA4404 pCIB10 Km^R gene (30)LBA4404 pAL4404 pnos::nptII (31)Hybrid Bambina cotyledon p35S::luc pAQ₂ (32)Hvbrid Brunex Hvbrid cotvledon. nptII C58C1 pGKB5 Bambina bar hypocotyl promoterless::uidA Ri plasmid cv. Straight Eight A4 Ri T-DNA (8)hypocotyl (A.r.)pARC8 pnos::nptII

The genotypes, Agrobacterium strains and plasmid vectors used for cucumber transformation

1	2	3	4	5	6
Inbred line Gy3 cv. Straight Eight	hypocotyl	LBA9402 (A.r.)	Ri plasmid	Ri T-DNA	(33)
Abbreviations: *-A. tumefaciens stra A.rA. rhizogenes str bar-bialaphos resistan CMV-C cp-Cucumber 1 CMV-O cp-Cucumber gus-β-D-glucuronidas HECSC-highly embryog bpt-hygromycin phosp I-first intron of catala: luc-firefly luciferase g	ains uce gene Mosaic Virus-C coat Mosaic Virus-O coa e (GUS) gene genic cell suspensio photransferase gene se gene from castoi	t protein gene	<i>npt</i> II-neomyci p35S-cauliflow pASO-ascorbat pnos-nopaline pPR-2d-tobacc <i>RCC2</i> -a rice cl <i>uidA</i> -β-D-gluc	ic CuZnSOD cDNA from n phosphotransferase II g er mosaic virus 35S pron e oxidase promoter synthase promoter o β-1,3-glucanase promot nitinase cDNA uronidase (GUS) gene at protein gene of zucchir	ene noter ter

Table 2

The plant genotypes, special treatment application and the efficiency of Agrobacterium-mediated cucumber transformation

Genotype	Transgene construct	Selection	Special treatment	TC	TE	ITE	Literature
1	2	3	4	5	6	7	8
cv. Endeavor	v. Endeavor pnos:: <i>npt</i> II Km p35S::chitinase gene		suspension culture, acetosyringone	ND	ND	9, 32, 44 plants	(16)
cv. Poinsett 76	pnos::nptII	Km	5 weeks in dark	ND	10% ^A	100 plants	(11)
	pnos:: <i>npt</i> II p35S:: <i>uidA</i> 35S::CMV-C <i>cp</i>	Km	5 weeks in dark	ND	ND	100 plants	(12)
	nptII uidA bar	PPT	BAP acetosyringone	ND	ND	ND	(17)
cv. Shimoshirazu	pnos:: <i>npt</i> II p358:: <i>RCC2</i>	Km	-	ND	ND	200 strains	(18)
cv. Shinhokusei No. 1	p35S::bpt pnos::nptII	Km G418 Hy	liquid culture for selection	ND	ND	6 plants	(19)
cv. Spring Swallow	nptII gus	-	acetosyringone	ND	ND	ND	(20)
cv. Winter Long	pASO::mSOD1 pNOS::bar	bialaphos	-	ND	4% ^A	4 plants	(21)
var. Chungjang	ZGMMV cp nptII	Km				3 plants	(22)
Pure line 1021	prios:: <i>npt</i> II p35S::1-gus p35S:: <i>bpt</i>	Km Hy	acetosyringone	4-6 months	1.4%^	12 plants	(23)

1	2	3	4	5	6	7	8	
Pure line 1021	p358::CMV-O <i>cp</i> pnos:: <i>npt</i> II p358::1- <i>gus</i> p358:: <i>bpt</i>	Ну	3', 5'- dimethoxy-4'- -hydroxy- -acetophenone	4-6 months	ND	4 plants	(24)	
Inbred line Borszczagowski	p35S::thaumatin II cDNA pnos::nptII	Km	-	ND	2.9- -6.3% ^B	16 ITE / 63 plants	(25)	
	pnos:: <i>npt</i> II pPR-2d:: <i>uidA</i>	Km	-	ND	1.52% ^B	7 ITE	(26,27)	
Inbred line 3672 3676 (Gy14)	pnos:: <i>npt</i> II p35S:: <i>npt</i> II	Km	acetosyringone	ND	9% ^A	21 plants	(9,29)	
Inbred line Gy14A	Km ^R gene	-	tobacco nurse cul- ture	ND	ND	ND	(30)	
Hybrid Bambina	pnos:: <i>npt</i> II p35S:: <i>luc</i>	Km	-	ND	ND	ND	(31)	
Hybrid Brunex Hybrid Bambina	nptII bar promoterless::uidA	Km	BA	ND	ND	ND	(32)	
cv. Straight Eight	Ri T-DNA pnos:: <i>npt</i> II	medium without hormone	-	10 weeks	3.2% ^A	22 plants	(8)	
Inbred line Gy3 cv. Straight Eight	Ri T-DNA	medium without hormone	-	ND	ND	0	(33)	
Abbreviations:			p35S-Cauliflower Mosaic Virus 35S promoter					
bar-bialaphos resis	tance gene		pASO-ascorbate oxi	dase prom	noter			
CMV-C cp – Cucur	nber Mosaic Virus-C coat pr	otein gene	pnos-nopaline synt	hase pron	noter			
CMV-O cp – Cucu	mber Mosaic Virus-O coat pi	rotein gene	PPT-phosphinothrid	cin				
G418-geneticin			pPR-2d-tobacco β-	1,3-glucan	ase promo	oter		
gus-β-D-glucuronic	lase (GUS) gene		RCC2-a rice chitina	ise cDNA		*		
bpt-hygromycin ph	osphotransferase gene		TC-time consumpti					
Hy-hygromycin ITE-independent transformation event Km-kanamycin <i>luc</i> -firefly luciferase gene			bacteria inoculation and the transgenic plantlets ready to transfer into the soil					
			explants producing				of the ino-	
			mSOD1 – cytosoli	culated explants produced transgenic plants uidA-β-D-glucuronidase (GUS) gene				
ND-not determined			ZGMMV cp-coat pro			i green mo	tle mosaic	
nptII-neomycin pho	osphotransferase II gene		virus	tem gene (or zucciffit	i green mo	the mosale	

Table 3

Construct	A. tumefaciens strain	Plamid vector	Selection	TE	ITE	Literature		
p35S::thaumatin II cDNA	LBA4404	pRUR528s	Km	6.3%	16	(25)		
pPG:: <i>thaumatin II</i> <i>cDNA</i>	LBA4404		Km	1%	3	Szwacka, Jankowska unpubl.		
pPR-2d::uidA	LBA4404	pGA482	Km	1.52%	7	(26,27)		
pPR-2d::uidA	LBA4404	pGA482	Km	1.4%	5	Yin unpubl.		
mldb	LBA4404	pBinAR	Ну	1.4%	14	Yin unpubl.		
apinv	LBA4404	pCAMBIA	Km	1.3%	9	Yin unpubl.		
pGT::Dbn10	LBA4404	pBI121	Km	0.8%	11	(34), Yin unpubl.		
pGT::Dhn10	LBA4404	pBI121	Km	4%	21	(34), Yin, Ziółkowska unpubl.		
pGT::Dbn25	LBA4404	pBI121	Km	2.3%	17	Yin, Ziółkowska unpubl.		
pDefH9::iaaM	GV2260	pPCV002	Km	1.5%	8*	(35)		
hpt uidA	LBA4404 EHA105	pCAMBIA1301 pGPTVhpt	Ну	1000 ITE / 1ml of PCV	29 (28), Zuzga et al. unput			
Abbreviations:			mldh-Brass	sica napus c	ytosol mala	te dehydrogenase gene		
* 50% of them were apinv-Saccharomyces Dbn10–Solanum soga	<i>cerevisiae</i> apoplas	0	PCV-packed	flower Mosaic 1 cell volume <i>tirrhinum m</i> a		promoter ms homologue 9 promoter		
Dhn25-Solanum soga	randinum dehydr	in (25 kDa) gene	pGT-Solanum sogarandinum glucosyl transferase promoter					
bpt-hygromycin phos	photransferase ge	ne	pPG-tomato fruit-specific polygalacturonase promoter					
Hv-hvgromvcin			pPR-2d-tobacco β -1,3-glucanase promoter					
<i>iaaM</i> - tryptophan monooxigenase gene			TE-transformation efficiency, percent of inoculated explants					
ITE-independent transformation events, referred to as the single transformation event produced rooted trans- genic plants								
Km-kanamycin								

Some information concerning the cucumber transformation experiments using a highly inbred line of *Cucumis sativus* L. cv. Borszczagowski and various constructs

2.1.3. Explant size, bacteria cell density and length of exposure

Sarmento et al. (29) mentioned the following factors as influencing the frequency of petiole callus development on kanamycin (75 mg/l)-containing medium: explant size, bacteria cell density and the length of exposure, co-cultivation period, and the presence of acetosyringone. The optimal procedure involved exposing the segments of petiole (4-6 mm length) or leaf (0.5 cm²) to a bacterial suspension (10^8 cells/ml) containing 20 μ M acetosyringone for 5 min, followed by 48 hr co-cultivation period on a tobacco feeder layer. The frequency of callus formation ranged between 0 and 40%.

2.1.4. Vir genes induction

The processing and transfer of T-DNA from *Agrobacterium* to plant cell are regulated by the activation of the *vir* genes. The *vir* gene expression can be induced by phenolic compounds such as acetosyringone and related molecules released by the wounded tissue (14). Using acetosyringone at the concentration of 50-200 μ M during co-cultivation is sufficient to increase the transformation frequency. Nishibayashi et al. (23) used 100 μ M acetosyringone during 5 days co-cultivation. Lower (50 μ M) concentration enhanced the transformation efficiency of cotyledon explants and additional wounding treatment with a hollow needle pierced through the surface of the proximal end of the cotyledon enhanced the stable transfer of T-DNA into plant cells (17). Acetosyringone (200 μ M) is a component in the procedure of leaf microexplants transformation used in our laboratory (Tab. 3).

2.1.5. Selection system

A proper selection procedure should reduce the occurrence of "escapes". The selection agents used are kanamycin, hygromycin, phosphinothricin (PPT), and geneticin (G418). Kanamycin, in the concentration of 50-150 mg/l, applied for four to six weeks, was a commonly used and efficient agent (11,17,19,23-25). In our laboratory, both kanamycin and hygromycin were used. According to our experience, kanamycin is a much better selective antibiotic compared to hygromycin. The use of kanamycin allows plants to be much more vigorous following the transfer into the soil, whereas, hygromycin disturbs plant development considerably and makes seed production extremely difficult. By contrast, Tabei et al. (19) demonstrated that the growth suppression of non-transgenic callus was more efficient with the use of G418 or hygromycin than kanamycin in the liquid culture system. Similarly, Nishibayashi et al. (23) demonstrated that kanamycin in the concentration of 50-100 mg/l is much less efficient than hygromycin at 20-30 mg/l for the selection of transgenic callus. We supposed that such difference might result from the genotype and/or type of culture.

2.1.6. Regeneration efficiency

An efficient and stable plant regeneration procedure is the most important requirement for reliable plant transformation. However, bacteria inoculation may considerably change some of the relations, mostly concerning time and regeneration efficiency. Sometimes, an incorporation of new stimulatory substances is necessary. Tabei et al. (18) demonstrated that the addition of abscisic acid (ABA) into the shoot induction medium increased the efficiency of shoot organogenesis and induced multiple shoots. Low concentration (1 mg/l) of 6-benzylaminopurine (BAP) stimulated the production of a higher number of shoots and roots (17). Sapountzakis and Tsaftaris (32) reported that the BAP level, on which the highest number of shoots was obtained, is 0.5 mg/l. In our procedure (Tab. 3), the concentration of the growth regulator is stable at each step, as experimentally estimated. In accordance with our experience (Malepszy et al. unpubl.), incorporation of the bacteria inoculation step into the leaf microexplants procedure (6) usually diminished the regeneration efficiency by a factor of 20, and delaying the occurrence of regenerants. However, some remarkable differences may occur, depending on the construct. This was most contrasting with pDefH9::iaaM chimeric transgene (*iaaM* gene from *Pseudomonas syringae* pv. *savastanoi*, under the control of the regulatory sequences of the ovule-specific DefH9 gene from Antirrhinum majus), where a lot of abnormal shoot structures and high amount of tetraploids (50%) were observed (35).

2.1.7. Transformation efficiency and time consumption

The transformation efficiency is represented as the percentage of explants producing regenerated shoots or transgenic plants. It remains low, ranging from 1.5 to 6.3% for regenerated shoots and 1.4-10%, as the ratio between the number of the obtained transgenic plants and the number of the total explants inoculated (Tab. 2). It takes 10 weeks (8) to 6 months (23,24) from the inoculation of the explants to the moment the plantlets are ready to be transferred into the soil, not considering the time required to obtain the seeds. In our transformation procedure, the length of this period is comparable with that needed for a plant derived from a regeneration procedure without bacteria inoculation. However, considerable differences have occurred for some constructs. In case of R_0 plants harbouring p*Def*H9::*iaaM* construct, a longer adaptation time following the transfer into the greenhouse was observed (35). This has prolonged, by 2-4 weeks, the time required for seed harvest.

2.2. Agrobacterium rbizogenes-mediated transformation

Two papers (8,33) reported the use of *A. rhizogenes* mediated transformation but only one (8) described a successful regeneration of transgenic plants within 10 weeks (Tab. 1 and 2). Plantlets were regenerated from 64 out of the total 691 roots harvested from the inoculated hypocotyl sections. Twenty-two plantlets were neomycin phosphotransferase II (*npt*II) positive. The addition of 25 mg/l kanamycin to the embryo-inducing medium did not affect the regeneration from the transformed tissue and did not prevent regeneration of some *npt*II-negative plants. The other report demonstrated that opine synthesis was detected in 20% of the 25 fast growing root clones tested (33).

2.3. Direct gene transfer

There were only a few reports of direct cucumber transformation (Tab. 4). Chee and Slightom (10) obtained a total number of 107 independently regenerated plants from ten different batches of embryogenic callus tissues bombarded with plasmid pGA482. Among them, 16% were transformed with pnos::*npt*II chimeric gene (*npt*II gene from *E. coli* under the control of the regulatory sequences of the nopaline synthase gene from *A. tumefaciens*). Schulze et al. (37) reported the production of transgenic plants by biolistic transformation of highly embryogenic cell suspension culture. After 6 months of *in vitro* culture, 189 structures were formed and 34 of them developed into plantlets finally resulting in 28 vigorously developed and rooted plants. The transformation frequency was four plants per bombardment (0.5 ml packed cell volume). All selected plants were proved to be *npt*II-positive and no "escape" could be detected. Co-integration efficiency for the linked unselectable *uidA* gene was 67%. Kodama et al. (38) obtained the transformed roots from cotyledon tissues bombarded with gold particles coated with plasmid pE7.4.

Table 4

							nt	
Target tissue	Method	Plasmid vector	Transgene construct	Selection	TC	TE	Primary transgenic pla	Literature
HECSC	biolistic transformation	pRT99-GUS	p35S:: <i>npt</i> II p35S:: <i>uidA</i>	Km	6 months	4 plants/ bombardment	28	(37)
EC	microprojectile bombardment	pGA482 pUC19	pnos:: <i>npt</i> II	-	ND	16%*	17	(10)
cotyledon	particle bombardment	pE7.4 pBI221	rolA rolB rolC ORF13 p35S::uidA	-	ND	ND	0	(38)
protoplast	electroporation	pBI121	p358::gus pnos::nptII	-	ND	ND	0	(39)
			pnos- nopal	ine sy	nthase pro	omoter	1	
 *: percent of the regenerated plants transformed with pnos::<i>npt</i>II EC-embryogenic callus <i>gus</i>- β-D-glucuronidase (GUS) gene HECSC- highly embryogenic cell suspension culture Km- kanamycin ND- not determined <i>npt</i>II- neomycin phosphotransferase II gene 			duction from MAF 03-017 TC- time con en bacteria i to transfer i TE- transfor	n pla 24 nsumj inocul nto th matio	smid pRil ption, refer lation and ne soil n efficience	724 of <i>A. rbizo</i> rred to as the dur the transgenic pl	genes : ration b	strain etwe-
	tissue HECSC EC cotyledon protoplast enerated plant Ilus idase (GUS) pryogenic cel d nosphotransf	tissue Method HECSC biolistic transformation EC microprojectile bombardment cotyledon particle bombardment protoplast electroporation enerated plants transformed with Ilus idase (GUS) gene pryogenic cell suspension cult d nosphotransferase II gene	Method vector tissue Method vector HECSC biolistic transformation pRT99-GUS EC microprojectile bombardment pGA482 pototledon particle bombardment pE7.4 protoplast electroporation pB1121	MethodvectorconstructtissueMethodvectorconstructHECSCbiolistic transformationpRT99-GUSp35S::npt/IIECmicroprojectile bombardmentpGA482 pUC19pnos::npt/IIcotyledonparticle bombardmentpE7.4 pBI221rolA rolCprotoplastelectroporationpBI121p35S::uidAprotoplastelectroporationpBI121p35S::gus pnos::npt/IIenerated plants transformed with pnos::npt/II rolase (GUS) generolA, rolB, r duction from MAF 03-017rolA, rolB, r duction from mAF 03-017dtransferase II genetransformedtransfor uidA -β -D-	HECSC biolistic transformation pRT99-GUS p35S::npt/II Km EC microprojectile bombardment pGA482 pnos::npt/II - Cotyledon particle pE7.4 rolA - bombardment pBI221 rolB - protoplast electroporation pBI121 p35S::uidA - protoplast electroporation pBI121 poss::npt/II - pros::npt/II u - - - protoplast electroporation pBI121 p35S::uidA - pros::npt/II pnos::npt/II - - - gase (GUS) gene rolA, rolB, rolC, of duction from pla MAF 03-01724 TC- time consumplen bacteria inocul to transfer into th d osphotransferase II gene uidA - β -D-glucu - -	HECSC biolistic transformation pRT99-GUS p35S::nptII Km 6 EC microprojectile bombardment pGA482 pnos::nptII – ND cotyledon particle bombardment pE7.4 rolA – ND protoplast electroporation pBI221 rolB rolC – ND protoplast electroporation pBI121 p35S::uidA – ND protoplast electroporation pBI121 p35S::uidA – ND pros::nptII uspassion culture pnos::nptII – ND d cution from plasmid pRiJ MAF 03-01724 TC- time consumption, reference in bacteria inoculation and to transfer into the soil TE- transformation efficience uidA - β -D-glucuronidase (uidA - β -D-glucuronidase (HECSC biolistic transformation pRT99-GUS p35S::nptII Km 6 4 plants/ bombardment EC microprojectile bombardment pGA482 pUC19 pnos::nptII – ND 16%* cotyledon particle bombardment pE7.4 pBI221 rolA – ND ND protoplast electroporation pBI121 p35S::uidA – ND ND protoplast electroporation pBI121 p35S::gus pnos::nptII – ND ND enerated plants transformed with pnos::nptII llus pnos::nptII – ND ND d orgogenic cell suspension culture MAF 03-01724 TC- time consumption, referred to as the due en bacteria inoculation and the transgenic pl to transfer into the soil d mosphotransferase II gene uidA - β -D-glucuronidase (GUS) gene GUS) gene	HECSCbiolistic transformationpRT99-GUS p35S:: <i>npt</i> IIp35S:: <i>npt</i> II p35S:: <i>uidA</i> Km6 months4 plants/ bombardment28 bombardmentECmicroprojectile bombardmentpGA482 pUC19pnos:: <i>npt</i> II pUC19-ND16%*17cotyledonparticle bombardmentpE7.4 pBI221 <i>rolA</i> <i>rolB</i> rolC ORF13 p35S:: <i>uidA</i> -NDND0protoplastelectroporation pBI121pBI121p35S:: <i>uidA</i> -NDND0protoplastelectroporation pos:. <i>npt</i> IIp35S:: <i>uidA</i> -NDND0protoplastelectroporation corpogenic cell suspension culturepBI121p35S:: <i>uidA</i> -NDND0ddddd <t< td=""></t<>

Some characteristics of direct cucumber transformation

3. Fate of the introduced transgene

The integration and expression of transgenes was summarized in Table 5. The transgenes can be stably integrated into the cucumber genome, however, the copy number of the integrated transgene may vary depending on the choice of the transformation method. Variable levels of the transgene expression were observed. The expression of the transgene at RNA and/or protein level was positively correlated with the transgene-related phenotype, but with some exceptions.

Table 5

				Transgene express	sion tissue	Transgene	
Method	Transgene	Copy number	RNA	Protein expressed	Protein not expressed	related phenotype	Literature
1	2	3	4	5	6	7	8
A.t.	pnos::nptII	single	ND	leaf	ND	ND	(11,12,40)
	p35S::uidA	ND	ND	leaf	10% NPT-positive plants	ND	
	р35S::СМV-С ср	ND	ND	leaf	ND	CMV ^R	
A.t.	p358::1 <i>-gus</i>	single or few	ND	young leaf, root meristematic region, cotyledon, ovule, pollen, another	mature leaf, old root, petiole, tendril	ND	(23,24)
	p35S::CMV-O <i>cp</i>	single	leaf		leaf, cotyledon	CMV-Y ^R CMV/ZYMV ^T ZYMV ^S	
A.t.	pnos:: <i>npt</i> II p35S:: <i>npt</i> II	10	ND	callus, shoot, cotyledon, leaf	ND	ND	(29)
A.t.	pnos::nptII	single or two	ND	ND	ND	ND	(16,41)
	p35S::chitinase genes	ND	ND	leaf, callus	ND	No increase in fungal ^T	
<i>A.t.</i>	p358::RCC2	ND	ND	epidermal cells of leaves	ND	H ^R , I ^R or S to gray mold	(18,42)
<i>A.t.</i>	p35S::thaumatin II cDNA	single, 2 or 5	leaf, fruit	leaf, fruit	ND	Changing in fruit taste	(43-45)
A.t.	pPR-2d::uidA	single or 2	ND	leaf	ND	ND	(27)
A.t.	pASO::mSOD1	single or 2	leaf, fruit	leaf, fruit	ND	Elevated SOD activity	(21)
D	pnos:: <i>npt</i> II	single or multiple	ND	25% of the transgenic plants	75% of the transgenics	ND	(10)

Integration and expression of transgenes in cucumber

1	2	3	4	5	6	7	8		
D	p358::npt11	multiple	ND	leaf	ND	ND	(37)		
	p35S::uidA								
Abbr	eviations:			I ^R -intermediate	resistance				
A.t -A	. tumefaciens-media	ted transformation	ion	mSOD1-cytosol	ic CuZnSOD cDNA f	rom cassava			
CMV-0	Cucumber Mosaic Viru	15		ND-not determ	ined				
CMVR.	-CMV resistance			nptII-neomycin	phosphotransferase	e II gene			
CMV-Y	YR-CMV-Y resistance			pnos-nopaline synthase promoter					
CMV/2	ZYMV ^T -CMV/ZYMV tole	rance		p35S-Cauliflower Mosaic Virus 35S promoter					
CMV-0	<i>cp</i> -Cucumber Mosaic	Virus C coat prot	ein gene	pPR-2d-tobacco	β-1,3-glucanase pi	omoter			
CMV-0	O cp-Cucumber Mosaic	Virus O coat pro	tein gene	pASO-ascorbate	oxidase promoter				
D-dire	ect gene transfer			RCC2-a rice ch	itinase cDNA				
funga	I ^T -fungal tolerance			S-susceptibility					
gus-β-D-glucuronidase (GUS) gene			uidA-β -D-glucuronidase (GUS) gene						
HR-hi	gh resistance			ZYMV ^S -ZYMV su	usceptibility				
I-first	intron of catalase gen	ne from castor l	bean						

3.1. Integration of the transgene

The transgenes were integrated mostly as a single copy in the *Agrobacterium*-mediated transformation and multiple copies in the direct transformation.

3.1.1. Agrobacterium tumefaciens-mediated transformation

The *npt*II gene was the commonly used selectable gene in *Agrobacterium*-mediated transformation. Single or multiple *npt*II gene was integrated and stably transmitted to R_1 progeny (11,12). In some cases, a copy number of the *npt*II gene was ten per haploid genome, including the multiple insertions (29). Raharjo et al. (16) reported single or two copies of *npt*II gene integration and Szwacka et al. (25,45) suggested single integration. The copy number of the introduced *uidA* gene was either single or few (23). Yin et al. (27) reported one or two copies of the integrated *uidA* gene.

With regard to the agronomically important genes, a single copy of CMV-*cp* gene was detected (24). Lee et al. (22) demonstrated that 3 out of 20 selected R_0 lines contained the ZGMMV-*cp* gene. The *RCC2* gene was transmitted to the T_1 progeny (18). Szwacka et al. (45) reported that the copy number of the thaumatin II gene varied in T_1 plants, appearing as one in most cases and as two or five in others. The chromosome location of the p35S::*thaumatin II cDNA*-pnos::*npt*II gene construct was determined by fluorescent *in situ* hybridization (FISH) method. The transgenes were preferentially located in the euchromatic region of chromosomes 1, 2, 3 and 4 (46).

3.1.2. Agrobacterium rbizogenes-mediated transformation

Among the plants tested for the integration of the Ri-plasmid T-DNA, two plants did not contain any Ri-plasmid T-DNA fragment, one possessed a 5.7 kb fragment of the TR-DNA and two others had the TL-DNA of a different length (8). Southern blot analysis showed that each transgenic plant appeared to contain a single copy of the integrated T-DNA.

3.1.3. Direct gene transfer

In case of the direct transfer method, preferentially multiple copies of the transgenes integrated. For 19 R_0 plants transformed with pnos::*npt*II, six contained a single copy and the remainder multiple copies (10). The plant with a single copy of the *npt*II gene transmitted it into 60-80% of the progeny. In the other case of *npt*II gene, single- as well as multiple-copy integration and rearrangement occured (37).

3.2. Expression of the transgenes

After the integration into the cucumber genome, the transgenes can be expressed at transcriptional and/or translational level, and the expression pattern of the transgenes may be further influenced by the transgene-dependent, recipient-dependent as well as environment related factors (47). Usually, expression of the transgenes was positively correlated with the transgene related phenotype, but with some exceptions.

3.2.1. Agrobacterium tumefaciens-mediated transformation

Expression of the marker/reporter genes *uidA*, *luc* and *npt*II was analysed on the protein level. A strong β -D-glucuronidase (GUS) expression occurred in very young leaves, root meristematic regions, ovule cells and cotyledons of R₀ plants (23,24). However, GUS expression was not detected in mature leaves, which had displayed strong GUS expression in very young leaves, nor in old roots, petioles, tendrils, and various tissues of male and female flowers of some plants. This was rather surprising, because the gene was driven by a strong constitutive promoter. Other authors observed GUS expression in leaves (17,32) and roots (17). However, the expression of the *uidA* gene driven by an inducible tobacco β -1,3-glucanase promoter (PR-2d) was pathogen-, salicylic acid (SA)-, and development-dependent (27). An exogenous SA treatment increased GUS activity from 2 to 11 fold over the control, whereas the inoculation with *Erysiphe polyphage* increased GUS activity from 4 to 44 fold. Under cold stress, the

PR-2d promoter was induced up to 624 fold. The elevated level of GUS activity was detected in floral organ. Furthermore, the expression level of the pPR-2d::*uidA* varied between/within homozygous lines following the SA treatment (48). The GUS activity varied between the lines from 1.7 to 18-fold, as well as between the sibling lines from 1.0 to 5.3 fold. Considerably higher variability in GUS expression levels, from 1.0 up to 56-fold, existed within the lines. The expression of firefly luciferase (*luc*) gene was confirmed by leaf luminescence recorded on the x-ray film (31). Chee (11) reported that 100 transformed kanamycin resistant R₀ plants showed the presence of neomycin phosphotransferase (NPT II) enzyme activity in their protein extracts.

The expression of agronomically important genes and the transgene-related phenotype were studied. The expression of CMV-*cp* gene, either on RNA or protein level, was positively correlated with resistance to CMV infection (12,24). The expression of rice chitinase gene enhanced resistance to gray mold (18), whereas the expression of chitinase genes from petunia, tobacco or bean did not offer resistance to the inoculation with fungal pathogens: *Colletotrichum lagenarium*, *Alternaria cucumerina*, *Botrytis cinerea* and *Rhizoctonia solani* (41). Variable levels of thaumatin II transcript as well as thaumatin II protein accumulation were observed in leaves and fruits; and there was lack of correlation between protein and mRNA accumulation (44,45). For the expression of *mSOD1* driven by the tissue specific pASO promoter, accumulation of *mSOD1* transcript was much higher in fruits of all transgenics, but with lower levels in leaves (21). SOD specific activity (approximately 150 units/mg total cellular protein) in transgenic cucumber fruits was about three times higher than in non-transformed control plants. However, it was much lower (15 units) in leaves, almost on the same level as in non-transgenic plants.

3.2.2. Agrobacterium rbizogenes-mediated transformation

For the *npt*II gene introduced by *A. rhizogenes*, NPT II assay showed that 22 plantlets were NPT II positive in the *in vitro* test and after potting into the soil (8).

3.2.3. Direct gene transfer

The expression level of the *npt*II and *uidA* gene, introduced by direct transfer, was studied. The NPT II enzyme activity was detected in only 25% of the 17 transgenic plants containing the *npt*II gene (10). Schulze et al. (37) demonstrated GUS activity in 67% of the kanamycin-resistant plants. Histochemical staining revealed GUS activity in leaves, stems, roots and petals of *npt*II-positive plants. There were transformants with a strong NPT II signal and only low or no GUS activity at all, as well as with a weak NPT II signal and strong GUS activity. Thus, the expression level from each of the two genes located on the transgene may differ considerably.

4. Genetic analysis

Inheritance of marker and reporter genes was analysed in different lines and varieties. Both Mendelian and non-Mendelian inheritance was observed. The segregation of the *npt*II gene occurred at the expected ratio for a single locus in R₁ progeny (9,10). The segregation of kanamycin resistance in 7 out of 9 independent transformants was consistent with the predicted ratio in the T₁ generation as expected for a single locus, while deviated from the expected ratio for the other two events (45). Furthermore, the segregation of kanamycin resistance was investigated in two groups of transgenic lines, one containing pPR-2d:*uidA*-pnos:*:npt*II and the second p35S:*:thaumatin II cDNA*-pnos:*:npt*II, up to the third and fifth generation (49). In case of PR-2d transformants, 78% of the progeny exhibited segregation ratio consistent with Mendelian ratio, whereas in case of the other construct, Mendelian segregation was observed in 46% of the progeny. Segregation ratio for 2 and 3 independent *loci* appeared for each construct.

However, the transmission of the agronomically important transgene and its expression were rarely studied. The single copy of the CMV-*cp* gene was detected (24). Lee et al. (22) demonstrated that 3 out of 20 selected R₀ lines contained the ZGMMV-*cp* gene. Tabei et al. (18) demonstrated a transmission of the *RCC2* chitinase gene to the T₁ progeny together with disease resistance against gray mold. The segregation of disease resistance among the progeny was in accordance with the predicted Mendelian ratio of 3:1 (resistant : susceptible). The integration of *RCC2* gene was confirmed in 7 out of 13 progeny of the CR33 line, exhibiting resistance. Szwacka et al. (45) reported that the copy number of the thaumatin II gene in 16 T₁ plants was one for the majority of cases, and single cases each with a copy number of two and five. No truncation or rearrangement of the thaumatin II expression cassette were detected. For the multiple copy events, the changes in the transgene copy number were observed in the T₂ generation.

5. Cucumber transformation experiments using one plant genotype and different plasmid vector carrying various transgenes

We have developed an *A. tumefaciens*-mediated leaf microexplant transformation system using a highly inbred line of *C. sativus* L. cv. Borszczagowski. Eight different transgene constructs including p35S::*thaumatin II cDNA* (25), pPG::*thaumatin II cDNA* (Szwacka and Jankowska, unpubl.), pPR-2d::*uidA* (26,27, Yin unpubl.), *mldh* (*Brassica napus* cytosol malate dehydrogenase gene, Yin unpubl.), *apinv* (*Saccharomyces cerevisiae* apoplastic invertase gene, Yin unpubl.), pGT::*Dhn10* (*Solanum sogarandinum* 10 kDa dehydrin gene under the control of the regulatory sequences of the S. *sogarandinum* cold-induced glucosyl transferase *Ssci17* gene; 34, Yin unpubl., Yin and Ziółkowska unpubl.), pGT::*Dhn25* (*S. sogarandinum* 25 kDa dehydrin gene under the

control of the regulatory sequences of the S. sogarandinum cold-induced glucosyl transferase Ssci17 gene, Yin and Ziółkowska unpubl.), pDefH9::iaaM (35, Yin and Ziółkowska unpubl.) were introduced (Tab. 3). They contained target genes or marker genes under the control of constitutive or tissue-specific promoters. The transformation efficiency, represented as the percentage of inoculated leaf explants that give rooted transformed plants, ranged from 0.8 to 6.3%. Independent transformation events (ITE, regenerable independent kanamycin resistant calli) ranged from 3 to 21, and the number of regenerated plantlets obtained from one independent transformation event was from 2 to 17. Some transformation events regenerated quicker and were more prolific than others. The first shoots can be recovered within 6 weeks and most of them appeared between 8 to 10 weeks after inoculation. The well-rooted plantlets are ready for transfer into the soil within 3 months. Usually, fertile transgenic plants without morphological changes were produced. The method proved reproducibility and reliability. However, some differences in time consumption and plant regeneration, which depended on the construct, were observed (pDefH9::iaaM). Acetosyringone was used during the inoculation and co-cultivation stage.

6. Future perspectives

For biotechnological progress, the development of a new transformation strategy is necessary. New transformation method should be improved in three main aspects: alternative ways of selecting for transformed plants with the use of marker-free gene constructs, omitting the *in vitro* regeneration step, and increasing the transformation efficiency. Nowadays, such procedures are not yet ready for the application in cucumber, but some good prospects seem to appear (28,50). Additionally, there is no example of organellar transformation in the cucumber, except for Havey et al. (51) proposing a system for mitochondrial transformation using MSC mutant.

6.1. Marker free transformation

There are two main strategies to generate the transgenic plants free of selectable or marker genes. One approach is to excise or segregate marker genes from the host genome after regeneration of transgenic plants. Among many attempts for such marker gene removal, the site-specific expression of a transgenic DNA sequence containing the marker gene is commonly used (52,53). The most recent example uses a chemical regulation of the Cre/lox DNA recombination system (54). Other methods include the use of co-transformation, transposase/transposable element systems, and intra-chromosomal recombination. The second approach is

based on the so-called 'marker free' transformation. Zuo et al. (55) proposed the possible strategies for generating transgenic plants without a selectable marker by appropriate manipulation of the regeneration-promoting gene. In such a system, only transformed cells can regenerate in the absence of key growth regulators. In the cucumber, green autofluorescence (GAF), a simple and visible marker of embryogenic capacity, was utilized as a reporter gene for embryogenic suspension transformation (28). This procedure makes it possible to identify the transformation events on the cellular level and gives rather high efficiency of transformation.

6.2. Use of alternative transformation method

The alternative methods such as infiltration, electroporation of cells and tissues, electrophoresis of embryos, microinjection, pollen-tube pathway, silicon carbideand liposome-mediated transformation have been suggested (56-61). Most of these methods were used for the transformation of some recalcitrant species. Among them, infiltration is used as the main transformation method for *Arabidopsis*. The adaptation of these systems to a broad spectrum of plant species, including the cucumber, should enhance the frequency of transformation events with simple transgene integration without an *in vitro* culture step and interference of somaclonal variation.

Literature

- 1. Malepszy S., (1988), *Biotechnology in Agriculture and Forestry*, Ed. Bajaj Y. P. S., Vol. 6 Crops II, 277-293, Springer-Verlag Berlin, Heidelberg.
- 2. Msikita W., Skirvin R. M., Juvik J. A., Splittstoesser W. E., Ali N., (1990), HortScience, 25, 474-477.
- 3. Colijn-Hooymans C. M., Hakkert J. C., Jansen J., Custers J. B. M., (1994), Plant Cell Tissue Org. Cult., 39(3), 211-217.
- 4. Nadolska-Orczyk A., Malepszy S., (1984), Bull. Pol. Acad. Sci., 32, 425-428.
- 5. Misra A. K., Bhatnagar S. P., (1995), Phytomorphology, 45(1-2), 47-55.
- 6. Burza W., Malepszy S., (1995), Plant Breed., 114(4), 341-345.
- 7. Burza W., Malepszy S., (1995), Plant Cell Tissue Org. Cult., 41, 249-256.
- 8. Trulson A. J., Simpson R. B., Shahin E. A., (1986), Theor. Appl. Genet., 73, 11-15.
- 9. Sarmento G. G., Alpert K. B., Punja Z. K., Tang F. A., (1989), J. Cell. Biochem., Supp. 13D, 268.
- 10. Chee P. P., Slightom J. L., (1992), Gene, 118, 255-260.
- 11. Chee P. P., (1990), Plant Cell Rep., 9, 245-248.
- 12. Chee P. P., Slightom J. L., (1991), J. Amer. Soc. Hort. Sci., 116(6), 1098-1102.
- 13. Yin Z., Pląder W., Szwacka M., Wiśniewska A., Malepszy S., (2005), Folia Horticulture, (in press).
- 14. Gelvin S. B., (2003), Microbiol. Mol. Biol. Rev., 67(1), 16-37.
- 15. Otten L., de Ruffray P., Momol E. A., Momol M. T., Burr T. J., (1996), Mol. Plant-Microbe Interact., 9, 782-786.
- 16. Raharjo S. H. T., Hernandez M. O., Zhang Y. Y., Punja Z. K., (1996), Plant Cell Rep., 15, 591-596.
- 17. Ganapathi A., Perl-Treves R., (2000), Acta Hort., 510, 405-407.
- Tabei Y., Kitade S., Nishizawa Y., Kikuchi N., Kayano T., Hibi T., Akutsu K., (1998), Plant Cell Rep., 17, 159-164.

- 19. Tabei Y., Nishio T., Kurihara K., Kanno T., (1994), Breed. Sci., 44, 47-51.
- Mohiuddin A. K. M., Harikrishna K., Chowdhury M. K. U., Abdullah Z. C., Napis S., (2000), Plant Tissue Cult., 10(2), 167-173.
- Lee H. S., Kwon E. J., Kwon S. Y., Jeong Y. J., Lee E. M., Jo M. H., Kim H. S., Woo I. S., Shinmyo A., Yoshida K., Kwak S. S., (2003), Mol. Breed., 11 (3), 213-220.
- Lee G. P., Kim C. S., Ryu K. H., Park K. W., (2002), 26th International Horticultural Congress (August 12, 2002), Metro Toronto Convention Centre, Symposium 11, Asian plants with unique horticulture potential, genetic resources, cultural practices and utilization, S11-P-11, 300.
- 23. Nishibayashi S., Kaneko H., Hayakawa T., (1996), Plant Cell Rep., 15, 809-814.
- Nishibayashi S., Hayakawa T., Nakajima T., Suzuki M., Kaneko H., (1996), Theor. Appl. Genet., 93, 672-678.
- 25. Szwacka M., Morawski M., Burza W., (1996), Genet. Pol., 37A, 126-129.
- 26. Yin Z., (1998), M.Sc. Thesis, Faculty of Horticulture, Warsaw Agricultural University.
- 27. Yin Z., Hennig J., Szwacka M., Malepszy S., (2004), J. Plant Physiol., 161, 621–629.
- Zuzga S., Malepszy S., Burza W., (2003), Book of abstracts 7th International Congress of Plant Molecular Biology, Barcelona, June 23-28, 437.
- 29. Sarmento G. G., Alpert K., Tang F. A., Punja Z. K., (1992), Plant Cell Tissue Org. Cult., 31, 185-193.
- 30. Hammar S. A., Grumet R., (1990), HortScience, 25(9), 70.
- 31. Sapountzakis G., Tsaftaris A. S., (1996), Cucurbit Genet. Coop. Rep., 19, 38-41.
- 32. Sapountzakis G., Tsaftaris A. S., (2002), Acta Hort., 579, 77-81.
- 33. Mark F., Bergervoet J. H. W., Custers J. B. M., (1989), Cucurbit Genet. Coop. Rep., 12, 35-36.
- 34. Yin Z., Pawłowicz I., Bartoszewski G., Malepszy S., Rorat T., (2005), Cell Molec. Biol. Lett. (accepted).
- 35. Yin Z., Ziółkowska A., Malinowski R., Sommer H., Malepszy S., (2005), Molecular Breed. (submitted).
- 36. Smarrelli J., Watters M., Diba L. H., (1986), Plant Physiol., 82, 622-624.
- 37. Schulze J., Balko C., Zellner B., Koprek T., Hänsch R., Nerlich A., Mendel R. R., (1995), Plant Sci., 112, 197-206.
- 38. Kodama H., Irifune K., Kamada H., Morikawa H., (1993), Trans. Res., 2, 147-152.
- 39. Burza W., Wochniak P., Wróblewski T., Malepszy S., (1995), J. Appl. Genet., 36(1), 1-10.
- 40. Gonsalves D., Chee P., Provvidenti R., Seem R., Slightom J. L., (1992), Bio/Technology, 10, 1562-1570.
- 41. Punja Z. K., Raharjo S. H., (1996), Plant Disease, 80(9), 999-1005.
- 42. Kishimoto K., Nishizawa Y., Tabei Y., Hibi T., Nakajima M., Akutsu K., (2002), Plant Sci., 162, 655-662.
- Szwacka M., Krzymowska M., Malepszy S., (1999), Plant Biotechnology and In Vitro Biology in the 21st Century, Ed. Altman A., Ziv M., Izhar S., 609-612, Kluwer Academic Publishers, Amsterdam.
- 44. Szwacka, M., Krzymowska M., Kowalczyk M. E., Osuch A., (2000), *Food Biotechnology*, Eds. Bielecki S., Tramper J., Polak J., 43-48, Elsevier Science B.V, Amsterdam.
- 45. Szwacka M., Krzymowska M., Osuch A., Kowalczyk M. E., Malepszy S., (2002), Acta Physiol. Plant., 24(2), 173-185.
- 46. Tagashira N., Pląder W., Filipecki M., Yin Z., Wiśniewska A., Gaj P., Szwacka M., Malinowski R., Kondo K., Malepszy S., (2003), Plant Science, (submitted).
- 47. Yin Z., Malepszy S., (2003), Biotechnologia, 2(61), 236-260.
- 48. Yin Z., (2002), PhD Thesis, Faculty of Horticulture and Landscape Architecture, Warsaw Agricultural University.
- 49. Yin Z., Szwacka M., Malinowski R., Malepszy S., (2004), J. Appl. Genet., (in press).
- 50. Zuzga S., Burza W., Malepszy S., (2003), Biotechnologia, 4(63), 32-46.
- 51. Havey M. J., Lilly J. W., Bohanec B., Bartoszewski G., Malepszy S., (2002), J. Appl. Genet., 43 (1), 1-17.
- 52. Hohn B., Levy A. A., Puchta H., (2001), Curr. Opin. Biotechnol., 12, 139-143.
- 53. Ow D. W., (2001), Nat. Biotechnol., 19, 115-116.
- 54. Zuo J., Niu Q. W., Møller S. G., Chua N. H., (2001), Nat. Biotechnol., 19, 157-161.
- 55. Zuo J., Niu Q. W., Ikeda Y., Chua N. H., (2002), Curr. Opin. Biotechnol., 13, 173-180.
- 56. Songstad D. D., Somer D. A., Griesbach R. J., (1995), Plant Cell Tissue Org. Cult., 40, 1-15.
- 57. Vasil I. K., (1994), Plant Mol. Biol., 25, 925-937.

58. Zhu Z., Sun B., Liu C., Xiao G., Li X., (1993), Chin. J. Biotech., 9, 257-261.

- 59. Newell C. A., (2000), Mol. Biotech., 16, 53-65.
- 60. Patnaik D., Khurana P., (2001), Electron. J. Biotechnol., 4, 1-29.

61. Rakoczy-Trojanowska M., (2002), Cellular Mol. Biol. Lett., 7, 849-858.