10.

NOTE ON ELIMINATION.

[Philosophical Magazine, xvir. (1840), pp. 379, 380.]
The object of this brief note is to generalise Theorem 2 in my paper on Elimination* which appeared in the last December number of this Magazine. The theorem so generalised presents a symmetry which before was wanting. Here, as in so many other instances, the whole occupies in the memory a less space than the part.

To avoid the ill-looking and slippery negative symbols, I warn my reader that I now use two rows of quantities written one over the other, to denote the product of the terms resulting from taking away each quantity in the under from each in the upper row.

Let $h_{1}, h_{2} \ldots h_{m}$ be the roots of one equation of coexistence,
$k_{1}, k_{2} \ldots k_{n}$ of the other,
and let the prime derivative of the degree r be required. Take any two integers p and q, such that $p+q=r$. The derivative in question may be written

$$
\left.\Sigma\left\{\left(x-h_{1}\right) \ldots\left(x-h_{p}\right)\left(x-k_{1}\right) \ldots\left(x-k_{q}\right) \frac{\left(\begin{array}{lll}
h_{1} h_{2} & \ldots & h_{p} \\
k_{1} k_{2} & \ldots & k_{q}
\end{array}\right) \cdot\left(\begin{array}{l}
h_{p+1} h_{p+2}
\end{array} \ldots h_{m}\right.}{k_{q+1} k_{q+2}} \ldots k_{n}\right) ~\left(\begin{array}{llll}
h_{1} & h_{2} & \ldots & h_{p} \\
h_{p+1} & h_{p+2} & \ldots & h_{m}
\end{array}\right) \cdot\left(\begin{array}{llll}
k_{1} & k_{2} & \ldots & k_{q} \\
k_{q+1} k_{q+2} & \ldots & k_{n}
\end{array}\right)\right\}
$$

N.B. Whatever p and q be taken, so long only as $p+q=r$, the above expression changes nothing but its sign; which, therefore, upon transcendental grounds, it is easy to see is of one name or another, according as p is odd or even.

In the original paper, I asserted this theorem only for the case of $p=0$, or $q=0$.

$$
\text { [* p. } 43 \text { above. Ed.] }
$$

