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Lanchester and other models of competition or conflict 
as dynamical systems. I 

R. K. COLEGRAVE (LONDON) and F. M. F. EL-SABAA (KUWAIT) 

THE DIFFERENTIAL equations describing Lanchester and other models of competition or conflict 
are recast in Lagrangian or Hamiltonian form. The canonical transformation theory is invoked 
and it is shown that an advantage of the method is to reveal invariants which otherwise could 
be obscured. Some operational applications are indicated. 

R6wnania r6zniczkowe opisuj(!ce model Lanchestera i inne modele wsp6lzawodnictwa i kon
fliktu przeksztalcono do postaci lagrani:owskiej lub hamiltonowskiej. Zastosowano teori~ 
transformacji kanonicznej i wykazano, ze zalet(! tej metody jest ujawnienie niezmiennik6w, 
kt6re w przypadku stosowania innych metod pozostalyby ukryte. Wskazano na pewne mozli
wosci zastosowan otrzymanych wynik6w . 

.lln<P<PepeHIJ;HaJihHhi~ ypaBHeHIDI, onHChiBaiOI.l\He Mo,ZJ;eJih JlaHtJecrepa n .D;pyrne Mo.D;eJIH co
peBHOBaHHH H KOH<lJJIHKTa, npeo6pa3oBaHbl K JiarpaH>KeBOMY HJIH raMHJibTOHOBOMY BH.ZJ;Y. 
IlpHMeHeHa TeopHH KaHOHH:tJeCKOrO rrpeo6pa30BaHHH H llOKa3aHo, liTO ,ZJ;OCTOHHCTBOM 3TOrO 
MeTo,ZJ;a HBJIHeTCH BbiHBJieHH:e . HHBapHaHTOB, KOTOphie B CJiytJae npHMeHeHH:H ,ZJ;pyr.HX MeTO
,IJ;OM OCTaJIHCb 6hi HeH3BeCTHhiMH. YKa3aHbl HeKOTOpbie B03MO>KHOCTH npH:MeHeHHH IIOJiy
tJeHHblX pe3yJibTaTOB. 

1. Introduction 

SYSTEMS of equations that arise in modelling in the sphere of economics or operational 
research may often, and perhaps always, be regarded as equivalent problems in mechanics. 
We shall consider in detail some simple Lanchester models for armed conflict together 
with some other models of competition. The whole content of the original system of 
equations will be expressed in terms of a single Hamiltonian or Lagrangian function. 
A similar identification has long been applied to the coupled equations giving the currents 
in electrical circuits or electronic devices, and seeking suitable Lagrangians has always ' 
been a central problem in the classical and quantum field theory. One advantage of such 
a procedure is that the powerful and well-known methods of ami.lytical dynamics such 
as the canonical transformation theory may be applied and new light shed on the model. 
Identifying the equivalent dynamical system via the Lagrangian constitutes the so-called 
inverse problem of Lagrangian dynamics which has a long history starting with the cel
ebrated work of HELMHOLTZ [7]. The procedure has recently been reviewed and extended 
by SARLET [16], whose method we shall apply in the present paper. 

An extensive literature exists on the models of LANCHESTSER [9]. An introduction to 
the subject and further references are given by CoNOLLY [5]. In the simplest Lanchester 
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404 R. K . COLEGRAVE AND F. M. F. EL-S ABAA 

model, called the square law model, the strengths x and y of the opposing forces at time 
t are governed by the equations 

(1.1) 

with ever positive attrition rates A. 1 and A. 2 • The solution for constant A. 1 and },2 is discussed 

by Conolly. TAYLOR and CoMSTOCK [19] and TAYLOR and BR.owN [18] are amongst those 
who have considered time-dependent A. 1 and A. 2 • With the replenishments JT 1 and n 2 ~ 

which may be taken as positive functions of the time, Eqs. (1.1) generalize to 

(1.2) X=n 1(t)-},1 (t)y , .Y=n2 (t)-A.2 (t)x , x ~O, y~O. 

Opr discussiqn in the present paper will be concerned largely with the systems of Eqs. 
(1.1) or (1.2). In Sect. 2 we shall determine the Lagrangian and Hamiltonian fu nctions 
for Eqs. (1.2) and some other models of competition or conflict. In Sect. 3 we shall illu
strate the use of the canonical transformation theory and the determination and applica~ 
tion of some time-dependent invariants. Such invariants have been extensively discussed 
in classical and quantum mechanics (LEWIS and RIESENFELD [12), PRINCE and ELIEZER 
[14], LEWIS and LEACH [11], WoLLENBERG [22, 23], RAY and REm [15], CoLEGRA \'E et al. 
[3], [4]). Time-independent invariants were used from the beginning by Lanchester as 
criteria for victory. For example, for constant A. 1 and A.2 the famous "square law" . , 

(1.3) 

shows that X is the victor if and only if the right hand side is positive. 

2. Lagrangian and Hamiltonian functions for some models of competition and conflict 

We consider , the problem of constructing Hamiltonians for some well-known Lao
chester or competitive models. We shall use Sarlet's method to construct a Lagrangian. 
For simplicity we shall consider only one degree of freedom. 

Given a second-order differential equation 

(2.1) q = f(q, q,t) , 

we wish to determine a multiplier rx(q, q, t) to that Eq. (2.1) may be identified with a La
grangian L according to 

(2.2) rx(q-f) = !!_ ( a~) _ oL. 
dt oq oq 

Following Sarlet we define 

(2.3) A(q, q, t) = - ~ (offoq.), 

then Theorem 1 of SARLET [16] states that rx is a solution of the equation 

(2.4) drxfdt = 2Arx. 
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Thus ex always exists in a case of one degree of freedom although, as Sarlet warns us, 
it may not always be easy to find. Some care has to be taken to assign the coordinate 
q = q(x) in such a way that Eq. (2.4) is immediately integrable. 

2.1. The square law model 

O rigi nally with the constant A1 and A2 , Eqs. (1.1) were proposed by Lanchester as 
a model of "modern warfare" , embodying the notion of concentration. Equations (1.2) 
were introduced more recently to incorporate the idea of replenishment. 

For Eqs. (1.2) and with A1 , A2 , n 1 , n 2 any functions of the time, we may find the 
Hamil t oni an very easily by identifying x ~ q, y = p as conjugate dynamical variables 
and Eqs. ( 1.6) as the Hamilton equations: 

q = n 1 - A1 p = oH jop => H = n 1 (t)p-+ A1 (t)p 2 +f(q, t), 

(2.5) 

p = n 2 -A2 q = - oHjoq=> H = -n2(t)q+~- A2 (t)q 2 +g(p, t). 

Hence the Hamiltonian function is 

(2.6) 

The corresponding Lagrangian function is given by 

(2.7) 

and, discarding a constant, this yields a Lagrangian L which may be found alternatively 
by Sarlet's method: 

(2.8) 

2.2. The mixed model 

The model is discussed by CoNOLLY ([5], Eq. {1.45)). The equations for the strengths 
x and y of the opposing forces are 

(2.9) .\: = - }L 1 ( t) X y' y = - A 2 ( t) X ' X 2:: 0 ' y 2;; 0 . 

We put x = q and eliminate y. This leads to 

(2.10) 

(2.11) 

Equation (1.4) integrates to give 

(2.12) 
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406 R. K. COLEGRAVE AND F. M. F. EL-SABAA 

We split up Eq. (1.2) into 

1 q q2 it iJ • d ( aL ) 
--,---~-~12- ~+F(q,q,t)= -d ~. 
At q At q At q f uq 

· . aL 
A.2 +F(q, q, t) = oq . 

(2.13) 

Taking F = -q2j(J.tq 3
), Eqs. (2.13) give 

oL 1 q I q2 

~= --,--- ~=>L= - 2 , -2 +A(q,t), 
uq At q At q 

aL .2 .2 

~=A2-~=>L=A2 q+ 2
; 2 +B(q,t), 

uq At q Atq 

from which we see that 

(2.14) 

We can now calculate the Hamiltonian: 

(2.15) 

(2.16) ) - . 1, 2 2 1 H(q,p, t = pq-L = 2AtP q -A2q. 

2.3. The linear model 

The "linear" model (CoNOLLY [5] Eqs. (2.60)), which Lanchester proposed as em

bodying the notion of "ancient warfare" is 

(2.17) 

We follow the same procedure as in our Jast example and put x = q, eliminating y. This 
leads to 

q =!= iJ 2/q+(itfJ.t)q+J.2qq, 
(2.18) 

(1/rx)drxjdi = -(2qfq+it!At+J.2q) = -(2qfq+i]!A.t-Yfy), 

where we have used Eq. (2.17)2 • Thus 

(2.18') rx = - (}.iqq)-t (q = x). 

However, the integration of Eq. (2.4) leads to an extremely awkward expression for L 
and we try a better assignment of q. Let us put x = eq, then the elimination of y leads to 

q =!= (it!At)q+J.2eqq, 

(Ijr:x)drxfdt = -cJ.t/AJ +J.2eq) = -qfq. 
(2.19) 

Thus the integrating factor is 

(2.19') rx = - 1/ q (q = lnx) 

and Eq. (2.4) is easily solved to give 

(2.20) 
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where it should be noted that Eq. (2.17) 1 gives q :2: 0 since A1 (t) > 0. The conjugate 
momentum is 

(2.20') 

and the Hamiltonian is 

(2.20") 

A quicker way would be to use the symmetry of the model equations (2.17) and to assign 
(subject to consistency) 

(2.21) 

Then an identification of Eqs. (2.17) with Hamilton's equations as in Eqs. (2.5) leads 
directly to (2.20"), (2.20') is a Hamiltonian equation and canonical consistency is manifest. 

2.4. The predator-prey model of' Volterra 

For our next example we consider the predator-prey model (CoNOLLY [5] p. 14) with 
the equations 

(2.22) 

where A1 , A2 , fl 1 , fl 2 are non-negative functions of the time. Following the success iri 
our last example, we put x = eq; then on eliminating y we obtain 

(2.23) 
q =!= -(jl,t!fltHAt-q)-(A2-fl2eq)q-Atfl2eq+A+AtA2, 

(1/a)dajdt = -#t!flt-(A2-fl2eq) = -jl,t!flt-Y!Y, 

where we have used Eq. (2.18)2, cf. Eq. (1.18h. Thus 

(2.23') 

From Eq. (2.22)1 it is clear that A1 - q :2: 0. 
We find that we may write Eq. (2.2) in the form 

d . d ( oL) oL dt [lnfl1 -In(Al-q)]-(A2-fl2eq) = dt oq - oq 

from which it follows easily that 

L(q, q, t) = q lnfl1 + (A1 - q)[ln(A1 - q) -1] + A2 q- fl2 eq, 

(2.24) p = oLfoq = In [fll /(At- q)], 

H(p, q, t) = (p-lnfll}(At-fl1 e-P)+flle-P[1-In(pte-P))-A2q+fl2eq. 

2.5. A model from epidemic theory 

As our final example let us consider the. model of KERMACK and McKENDRICK [8] 
(see CoNOLLY [5] p. 26) with the equations 

(2.25) 
x = -Axy+vz, y = AXY-flY, z = {ly-vz, 

X :2: 0, y ~ 0, Z :2: 0, 
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where x, y , z are, respectively, the numbers of susceptibles, infectives and removals at 

timy t and A, p,, Y are functions of the time. We ·use the integral 

(2.25') x+ y + z = N 

and set y = q. Then the relation (2.23) may be rewritten in the form 

(2.26) x = - J.xq + Y( N- x- q) , q = (Ax - p,) q. 

On eliminating x we find 

(2.27) q = I = ( q + p,q) [ ( Aq + lq) I ( Aq) - J.q- 'V] + AYq( N- q) - p,q - jl,q. 

The equation for IX is 

(2.28) daldt =foiXIoq+qo~XIoq+oalot = 2Aa = - [2llfq+liA+p,+Y+Aq.]a. 

We note that this is the first example in which IX depends on q. The solution of Eq. (2.28) 
has the form 

a(q , q, t) = (Aq 2
)-

1A(t)F(q , q , t) , 

t 

(2.29) A(t) = exp [- J (p, +Y)dt J, 

t 

F(q , q, t) = exp [-J ).qdt]. 

To find F we need to solve the equation 

(2.30) ( d I dt) F( q ' q' f) = - },q F( q' q' t) , 

i.e. using Eq. (2.27) 

(7.30') qoFioq+f(q , q, t) oFioiJ+ oFiot+AqF = o. 
We cannot proceed any further at present in our search for L (or H). 

We feel that this example is useful because it illustrates a difficulty that may be en
countered in applying Sarlet's method. We recall the simplification in the treatment of the 

model (2.17) when the canonical variables q, p were used. It seems desirable to reformulate 
Sarlet's procedure directly in terms of Hamiltonian. We hope to report progress on this 
at a later date. 

3. Applications 

In this section we consider some applications of a Hamiltonian formulation for the 
models considered in Sect. 2 Our examples will mostly be concerned with the Lanchester 
square law model (1.1) or (1.2). The advantages of the method may be classified under 

two headings: a) applications of the canonical transformation theory, b) the discovery 

and application of invariants. Further advantages may well appear in the future , e.g. 

applications of the (nonlinear) stability theory, adiabatic invariants and an extension to 
include stochastic processes. 
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3.1. The square law model with exponentially growing or decaying attrition rates 

We return to the example of Sect. 2 and for simplicity we take the case of no replen
ishment. Then the Hamiltonian is given by Eq. (2.7) with n 1 = n 2 = 0. We shall suppose 
that the attrition rates ;.1 and ;.2 are 

(3.1) 

with .1. 1 (0) > 0, A2 (0) > 0. We seek a solution of the form 

(3.2) 

for the stengths of the two combatants X and Y. Substituting into Eqs. (1.1) we find that 
a solution with constant m1 and m2 is possible in the case y 1 = -y2 = y. This condition 
describes a situation of "demoralization" where the ability of one participant to press 
home his advantage is matched by his opponent's diminishing aggressive power. Then 
the solution is 

x = q = [J. 1 (0)]ll2e"t[A 1(F-y)ll2ert+A 2(F+y)ll2e-rt], 

y = p = [.?.2(0)]l/2e-~[-Al(F+y)l/2ert+A2(F-y)ll2e-rt], (3.3) 

where 

(3'3.) 

and A 1 , A 2 are arbitrary constants. We note that a solution (3.3) with A2 = 0 is not 
possible since this would violate the constraints x ~ 0, y ~ 0. The solution with A 1 = 0 
would require the initial force strengths x(O), y(O) to satisfy 

(3.4) 

Let us now return to the more general problem with attrition rates described by Eqs. 
(3.1) with y 1 ¥= - y 2 • 

3.1.1. An exact solution. The Hamiltonian (1.6) with n 1 = n 2 = 0 may be written in the 
form 

(3.5) 

where 

(3.5') 

By using the method of LEWIS and LEACH [11], the Hamiltonian (3.5) can be reduced 
to a time-independent form, thus rendering the equations of motion trivially solvable. 
However, since the transformation involved is complicated · and not amenable to explicit 
analytic expression, we prefer to reduce Eq. (3.5) to a simpler form which is not entirely 
time independent. This leads to an exact solution in terms of Bessel functions. 

First we apply the scaling transformation (q, p, t)--. (Q, P, t): 

(3.6) 

5 Arch. Mech. Stos. nr 4/86 · 
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- ------- - - ---------- - - --- - -----·---

then ( cf. COLEGRA VE and ABDALLA [2]) 

(3. 7) H -+ K = e2
"' [- ~ - A, (0) P2 + + A2 (0) Q2

- fie- 2"'QP]. 

Secondly we apply the "generalized" canonical transformation (LEWIS and LEACH [I 1]) 
(Q, P, t) ~. (Q, P, r): 

t 

(3.8) Q = 0, P = P, r(t) = Je2 cwdt' = (e 2ar- I) /2a 
0 

so that 

(3.9) 

The idea of a "reduced" time r was introduced by LEVI CIVITA [10] and is discussed by 
CALDIROLA [1]. It is referred to as operational time by some workers in operational research. 
Denoting differentiation with respect to r by a prime, the relation (3.9) gives the equation·s 
of motion (from now on we drop the unnecessary bars on Q, P): 

Q' = oKjoP = - A1 (O)P- fJQ/(2ar+ 1) , 
(3.10) 

P' = -:-oKfoQ = -A2(0)Q+fJP/(2ar+l). 

The elimination of P gives 

(3.11) 
d 2Qjdr2 = [A.2+fJ(fJ+2a)j(2ar+I)2]Q , 

This equation is recognised as being of the Bessel type. To reduce it to standard form we 
write 

(3.12) 

when we obtain 

(3.13) 

The general solution may be written 

(3.14) 

where A, B are suitable (complex) constants and 

(3.14') 
k = Aj2a = Ai '2 (0)Ai12(0)/(Yt +y2) , 

Y = (a+fJ)j2a = Yt!CYt +y2). 

The solution may be more conveniently expressed in terms of the modified Bessel functions 
I,(ka) and K,(ka), see for instance WATSON, [21], but we shall not discuss computational 
details here. We wish to emphasize that a canonical reduction of the Hamiltonian has 
led us to an exact solution, the existence of which was previously unknown to the authors. 
It is interesting to compare this with the Bessel function solution ofT AYLOR and CoMSTOCK 
[19] for power attrition rates. 
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3.1.2. Special solutions. We shall now examine some interesting special cases of our general 
solution. 

a) From Eq. (3.11) 1 we see that, besides the case ex= 0 (y 1 :;::: -y2 : one combatant 
demoralized) described by the solution (3.3), the cases f3 = 0 (y 1 = y 2 : a flagging or 
exacerbated conflict), f3±2cx=0 (3y 1 = -y2 /y 1 = -3y2 ) and cx±f3=0 (y 1 =0 or 
y 2 = 0) are solved simply in terms of exponential functions. 

b) In the case of demoralization (y 1 = - y 2 = y) Eq. (3. 7) reduces to 

(3.15) 

Since K is the Hamiltonian we know that 

(3.16) dK/dt = oK/ot = o 
and, somewhat fortuitously, we have discovered an invariant. In terms of the original 
variables this reads 

(3.17) 
1 · I 

-
2 

}.2 (0) e- 2
1'

1x 2 - 2- A1 (0) e2 Y1y 2 -yxy = const = K, 

cf. CoNOLLY [5] Eq. (1.29) in the case y = 0. We do not think that Eq. (3.17) is a very 
obvious consequence of the model equations (1.1) with J. 1 (t) = [J.2 (t)]- 1 = e2

Y
1

• A cor
responding invariant exists in the general case (cf. LEWIS and LEACH [11]). From the solu
tion (3.3) we find that 

(3.18) K = 2A 1 A 2 F 2 [A 1 (0)J. 2 (0)]1 12
• 

Let us consider the case K = 0; then a timet= 0 Eq. (3.17) gives a quadratk equa
tion for i = x(O) /y (O). rn view of the constraints x ~ 0, y ~ 0 the acceptable solution 
is z = (y +F) I A2 (0). After time t the model (2.17) shows that the following relation exists 
between x (t) and y (t): 

(3.19) x(t) = [(y+F)/J. 2 (0)]e 2Yty(t). 

From Eq. (3.18) we know that K = 0 corresponds to A1 = 0 (A 2 = 0 being unaccep
table). Equation (3.19) is thus the evolution of the relation (3.4) for t < 0. Obviously 
neither x nor y will go to zero at a finite time in this case. If a combatant surrenders when 
his force is reduced to (say) one tenth of the initial size, it is clear from Eq. (3.19) that 
Y will surrender first if y > 0. 

" Let us suppose now that K > 0 ; then from Eq. (3.17) 

(3 .20) 
1 1 

2 A2 (0)e- 2Y'x 2 (t)- T ).1 (O) e2 Y'y 2 (t)- yx (t) y (t) 

= _!__ J. 2 (0) x 2 (0)- -
2
1 

J.1 (0)y 2 (0)-yx(O)y(O) > 0. 
2 . 

Suppose y (t 1) = 0, then the relation (3.20) confirms that x{t1 ) > 0, so that X is the victor. 
Similarly, if K < 0, then Y is the victor. Thus accepting the limitations of a deterministic 
model, the invariant K is of special importance in the planning of force levels (see for 
instance TAYLOR [17]). To summarize: in order to win x must ensure that his initial force 
satisfies the relation (3.20). 

5* 
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c) In a flagging conflict where there is no demoralization, but the combatants, aggres

s~eness wanes exponentially at the same rate, we have y 1 = y2 < 0 so that 

(3.21) 

From Eq. (3.9) we see that K is independent of the time: 

(3.22) 

Equations (3.10) reduce to 

(3.23)' 

or, on eliminating p and writing ,1,2 = A. 1 (0) A. 2 (0) 

(3.23') d 2qjd-r2 = A.2q, T = {l-e- 211*)/21al. 

Reverting to the original variables (q-+ x, p-+ y) the combatants are seen to have strengths 

at time t given by 

x(t) = x(O)cosh[A.(1- e- 21'*)/21al]- y(O) [A. 1 (0)/ A.2(0)]1 ' 2sinh [A.{l-e- 21cxlt)/21al], 

(
3

·
24

) y(t) = y(O)cosh[A.(1- e-lJcxlt)/21 al]- x(O) [A.2(0)/ A. 1 (0)]112sinh [A. (I:- e- 2tcxJt)/21a l]. 

On the assumption that the conflict has not previously ended, the long-time limits are 

x( oo) = x(O)cosh [A./21 al]- y(O)[A. 1 (0)/ A.2(0)]1 12sinh [A./21al], 

y(oo) = y(O)cosh [A./21al]-x(O) [A.2(0)/A.1 (0)]112sinh [A./21al]. 
(3.25) 

The contest must finish when either x or y first becomes zero. In the case A. ~ I a l and 

x(O) > y(O)[ A. 1 (0) 1 A.2 (0))1 '
2 we see that X is sure to be the victor. On the other hand, if 

~ ~ I <XI we see from Eq. (3.25)1 that X survives provided x(O) > + A. 1 (0) y(O)/Ial but 

wins only if x(O) > 21«1 y(O)/ A2 (0)( ~ -~ A1 (0) y(0)/1«1 ). These may be important opera

tional conclusions. 

3.2. The square law model with periodic attrition rates 

Let us consider a situation in which the attrition rates in the square law model (1.1) 
show slight periodic fluctuations. Furthermore, let us suppose that each side experiences 

encouragement or demoralization as his opponent shows weakness 5)r strength. This 

model could be of interest in psychology or in the control theory. We take 

(3.26) A_ 1 (t) = A_ 1 (0)e-2Juinvt, A_2(t) = A_ 2 (0)e2Jlsinvt, (p, ~ 1). 

The canonical transformation (CoLEGRA VE and ABDALLA [3]) 

(3.27) Q = qe"'slnvt, p = pe-Jlslnt•t 

leads to the new Hamiltonian 

(3.28) 
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and equations of motion of the generalized Hill type (MAGNUS and WINKLER [13]), with 
A2 = A1 (0) A2 (0): 

(3.29) 

with P given by 

(3.29') 

For p, ~ 1 these equations may be solved in a straightforward manner by the variation 
of the parameters method. To the second order in p, we find the solution 

(3.30) -Q = Qo+P,Qt +p,2Q2 

where, on writing 

() = v2f(v2+4A2), £5 = Ajv, 

Q0 = Q(O)cosh At- [P(O)/ A2 (0)]sinh At, 

<
3

·
30

') Q1 = 20Q(O)cos(vt/2)(2£5sinh Atcosvt/2 +cosh Atsinvt/2) 

+ 20[P(O)/ A2 (0)]sin(vt/2) (2£5cosh Alsinvt/2+sinh Atcosvt/2), 

Q2 = - OQ(O) [ (! -0 )cosh At- ~ (2dsinh Atsin2vt-cosh Atcos2vt) 

- 20d(2dcosh Atcosvt+sinh Atsinvt)- Atsinh AI]+O[P(O)/ A2 (0)] [ (! -0) 

x sinh At- ! (2£5cosh Atsin2vt- sinh Atcos2vt)- 20£5(2£5sinh Atcosvt 

-cosh Atsinvt- At cosh At], 

P may be derived from this solution by using Eq. (3.29'). In the case A ~ v our solution 
becomes approximately, with Q 0 growing only slowly, 

Qt ~ sinvtQ0 (-t), 

(3.31) 
Q2 ~ + sin2vtQ0 (t) + tQ0 (t). 

The last term in the relation (3.31)2 shows a gradual build-up or instability caused by the 
periodically fluctuating attrition rates. For long-term survival the combatant X must 
ensure that Q0 (t) > 0 for t ~ 0. From Eq. (3.30'h this means 

(3.32) x(O) > y(O) I A2 (0). 

A similar result is found for the attrition rates 

(3.33) A1 (t) = At (0) (I+ 2p,sinvt)-t, A2 (t) = A2 (0) (I+ 2,usinvt) 

with ,u ~ 1. This agrees with the relations (3.26) to first order and Q 1 is still given by 
Eqs. (3.30') 3 • Q2 again contains nonperiodic terms which give a long term build up. Second 
order aperiodicity is a feature of the response of this Lanchester model with A1 (t), A2 (t) 
slightly fluctuating and periodic, but connected by At (t) A2 (t) = constant. 
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3.3. Time-dependent invariants 

Time-dependent invariants have been studied widely in classical and quantum mechan
ics. In Eq. (3.17) we have already met such an invariant. They may be sought systemati
cally by the method of LEWIS and RIESENFELD ( 12] and recent applications to the time
dependent harmonic oscillator have been made by WoLLENBERG [22, 23] and by CoLE
GRAVE et a/. (3, 4]. 

Suppose that J(q, p, t), with the time entering in certain coefficients is to be constant 
in time, then it must satisfy (GOLDSTEIN [6]) 

(3.34) o = dJ/dt = oJ/ot+(oJ/oq)oH/op-(oJ/op)oH/oq. 

To illustrate the method, we take the s~stem (1.2) but with the constans A1 , A2 , n 1 , n 2 

as treated by CoNOLLY [5] p. 23. Let us consider the possibility of an invariant of the form 

(3.35) J = rx(t)q+fJ(t)p+y(t) 

for the model described by the Hamiltonian (2.6) (cf. VAIDYANATHAN [20] who finds a simi
lar invariant for a driven oscillator). Equations (3.34) and (3.55) require 

(3.36) 

so that 

(3.37) 

The solution is 

rx = A~ /2 [AeAt +Be- At], 

(3.38) fJ = A~12 [AeJ..t _Be-At], 

y = -n 1 X; 112(AeJ.t-Be-A 1)-n2 A2 112(Aeu+Be-A 1
) (A> 0). 

Writing J = AJ1 + BJ2, we see that we have discovered two linear invariants for our 
model: 

(3.39) 
J1(t) = (A~12 q+Al 12p-n1A1 1 1 2 -n2A2 112)eu, 

J2(t) = (A~f2q- Al f2p+nt A11f2_n2 A21f2)e-At. 

In terms of these invariants, the solution of the problem may be written in the form 

(3.40) 
1 1 

Y = p = n /A _ _ A-1f2J (O)eJ..t+ __ A-tf2J (O)e-At 
1121 2 21 1 ' 

and J 1 (0) and J2 (0) correspond to B and A in Conolly's notation. The condition for side 
X to be the victor is obviously that J2 (0) > 0. 

Equations (3.36) still hold if At. A2 , n 1 , n 2 are time dependent and their solutions 
give more general linear invariants of the form (3.35) which should have useful operational 
applications. · 

The Hamiltonian (2.6) is the same as for a driven harmonic oscillator (of imaginary 
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frequency). We are very familiar with the associated dynamics and invariants in this case. 
We turn our attention to the more exotic Hamiltonians derived in Sect. 2. 

It seems unlikely that any invariants can be found for the "mixed" m,odel described 
by the Hamiltonian (2.16), or for the predator-prey model Hamiltonian (2.24). For the 
"linear" model with the Hamiltonian (2.20) we may seek an invariant of the form 

(3.41) 

To satisfy Eq. (3.34) we need to choose ex, (J to satisfy 

(3.42) 

i.e. 

(3.43) a= o, 
A solution exists only if At, it2 have the same time factor, e.g. At (t) = At (0) e-Yt, it2(t) = 
= it2 (0) e-Yt. Then Eq. (3.43) is satisfied by ex = At (0), (J = - it2 (0) and an invariant is 

(3.44) J(x,y) = it2 (0)x-itt(O)y = const = J. 

The existence of Eq. (3.44) is manifest from the model (2.17). If X arranges that x(O) > 
> it 1 (0) y(O)/ it2 (0), then J > 0 and he is sure to win the contest. The invariant (3.44) 
is equivalent to the form obtained, by Lanchester for time-independent At, it2 • 

4. Discussion 

We have demonstrated the usefulness of representing systems of equations from Lan
chester and other models by a Hamiltonian function which summarizes their whole con
tent. ln Sect. 2 we have shown how the Hamiltonian may be constructed by taking a series 
of examples of models with one degree of freedom. Some ingenuity needs to be exercised 
in the choice of the coordinate, as this seriously affects the complexity of the Hamiltonian. 
This is shown in our example in Sect. 2.3. In Sect. 3.1 we have seen that a systematic cano
nical reduction of the Hamiltonian leads to an unsuspected exact solution of the model 
equations. We have shown how invariants are revealed. Subject only to our acceptance 
of the limitation of deterministic inodels, these have operational significance, as shown 
in Sect. 2.1. 

We conclude that the consideration of models of conflict or competition as Hamil
tonian dynamical systems is a fruitful one. The model is seen from a different point of 
view and in many cases this leads to new insight into the solution or properties of the 
model. 

Models in operational research are either deterministic or probabilistic. In this paper 
we have confined our attention to the former class and this approach to modelling is 
identifiable with classical mechanics. We feel that a probabilistic or stochastic model 
could similarly be regarded as a quantum mechanical system associated with the same 
Hamiltonian. 
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