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Characterizations of entropy in thermodynamics 
Part I 

V. C. DANNON (ATHENS) 

FREQUENTLY, the analysis of entropy in thermodynamics is second in priority to the wish of 
having its existence assured. Missing are characterizations of entropy and, in particular, a quan
titative one. Furthermore, the methods of Caratheodory's entropy surfaces and Carnot cycels, 
used to estabilish the existence of entropy, are not popular with many authors. Consequently, 
the existence of entropy is frequently postulated in the literature. We seek here characterizations 
of entropy and derive them without using either entropy surfaces or Carnot cycles. Our quanti
tative characterization allows for the checking of the existence of entropy, rather than postula
ting it. ·we illustrate its power with some examples and apply it to obtain further character
izations. 

Analiza entropii w termodynamice ust~puje cz~sto miejsca badaniom dotyc~cym problemu 
jej istnienia; brak jest danych dotyc~cych charakterystyk entropii, a zwlaszcza odpowiednich 
danych ilosciowych. Ponadto metody powierzchni Caratheodory'ego i cykly Carnota stosowane 
do rozwiClzania problemu istnienia entropii nie ciesz'l si~ duZC\ popularnosciCl wsr6d wielu auto
r6w. W zwiClzku z tym w literaturze cz~sto postuluje si~ istnienie entropii. W pracy poszukuje si~ 
i okresla charakterystyki entropii bez poslugiwania si~ powierzczniami entropii i cyklami Carno
ta. Otrzymana charakterystyka ilosciowa pozwala raczej sprawdzic nii: udowodnic istnienie 
entropii. Moi:liwosci omawianej metody analizy ilustrujCl podane przyklady. 

AHaJIH3 3HTponnn B TepMo.QHHaMni<e ycrynaeT qacro MecTa HCCJie~oBaHHHM, I<acaro~HMCR 
npo6JieMbl ee cy~eCTBOBaHHH; OTCYTCTByiOT ~aHHbie, I<aCaiOIIUieCH xapai<TepHCTHI< 3HTpODHH, 
a oco6eHHo cooTBeTCTByromnx I<OJIHqecrBeHHbiX ~aHHbiX. KpoMe 3Toro MeTo~hi noBepXHo
creii KapaTeo~opn H IJ;HI<JIOB KapHo, npnMeHHeMbie ~JIH pememrn npo6JieMbi cymecrBoBa
HHH 3HTpomm, He HMeroT 6oJibiiiOH nonyJIHpHoCTH cpe~ MHornx aBTopoB. B CBH3H c 3THM 
B JIHTepaTYpe qacro noCTYJIHpyeTcH cymecrBoBaHne 3HTponnn. B pa6oTe nmyTcH H onpe
~eJIHIOTCH xapai<TepHCTHI<H 3HTpOOHH 6e3 llOCJIY>HHBaHHH llOBepXHOCTHMH 3HTpOOHH H IJ;H
I<JiaMH KapHo. lloJiyqeHHaH I<oJinqecrBeHHaH xapai<TepnCTHI<a no3BOJIHeT CI<opee npoBepHTb, 
qeM ~oi<a3aTb cymecrBoBaHne 3HTpoDHH. Bo3MO>HHOCTH o6cy>H~aeMoro MeTo~a aHannsa 
HJIJIIOCTpHpyiOT DpHBe~eHHbie npHMepbl. 

List of symbols 

«5Q infinitesimal change of heat, 
s specific entropy, 
r empirical temperature, 
v concentration, 
«5 W infinitesimal change of work, 
p 

c 
'JI 

u 
() 

pressure, 
specific heat at constant volume, 
latent heat = specific heat at constant temperature, 
specific internal energy, 
empirical temperature, 
()p 

- at constant volume, ar 
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1. Introduction 

()() 
- at constant volume, 
OT 
absolute temperature, 
ar 
OT 

V. c. DANJ\ON 

THE HEAT absorbed by a system undergoing a process does not depend just on the initial 
and final temperature and density but on their many intermediate values that appear 
in the process. Hence an infinitesimal change in the heat added or absorbed is not an 
exact differential and is denoted by <5Q. 

The aspiration to relate <5Q of an ideal (reversible) process to an exact differential 
has led to the concept of entropy. Roughly speaking, an entropy is a civilized heat func
tion that does not depend on the process but only on initial and final thermodynamic 
states. 

If there is a nonvanishing function (}, so that <5Qj(} is an exact differential ds, we call s 
the specific entropy of the system. 1/0 is called an integrating factor for <5Q. (ds = <5Qf0 
is considered the mathematical form of the second law [e.g. [PAULI P. 25]). 

For the perfect gas system given by pv = T where Tis the perfect gas temperature 
(we shall see that) <5Q/T = ds. So 1 /Tis an integrating factor and the perfect gas system 
is endowed with an entropy function but, in general, the existence of an integrating factor 
for <5Q (and hence of entropy) of a frictionless system is far from obvious. For instance, 
the simple form 

w(x, y, z) = xdy+dz 

does not have an integrating factor (see PIPPARD pp. 32-33). 
In spite of that, some introductory books (e.g. CALLEN; BADGER, p. 239; ABBOTT and 

NEss) tell the reader that entropy always exists (an open question, in fact) and some axio
matic treatments (e.g. DoMINGOS, p. 7; "Critical review of Thermodynamics", pp. 38, 239; 
HERMANN, p. 259) start by postulating the existence of an entropy function. 

This faulty approach dates back to the 19-th century when the concept of entropy was 
introduced without a proof into thermodynamics by Clausius' insight. Clausius' paper 
can be found in KESTINE's source book "The second law of thermodynamics" [28]. 

A common derivation of the so-called Clausius inequality (see for example AsTRON 
and FRITZ, p. 61; SEARS, p. 130; FERMI, p. 46) would apply the 2-nd law to Carnot 
cycles (paths composed exclusively from isothermal and adiabatic segments) and con
clude from 

that f <5Q < 0 
T -

is true for any cyclic process of a thermodynamical system (that obeys the second law). 
This derivation extends a result proven for a special path, to an arbitrary path, through 
a limiting process that is seldom explained in detail. The method assumes implicitly that 
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the limit possesses the properties of the approximations. Generally, this is not true (see 
also HSIEH, p. 21; DODGE, p. 64; MUNSTER, p. 9; SILVER, p~ 73; SOCRATES, p. 74; Buc
KINGHAM, p. 24). 

This flaw initiated attempts to approach otherwise the concept of entropy. An estimable 
attempt was made by Caratheodory in 1909. (See "the 2-nd law of thermodynamics", edited 
by KESTIN, pp. Z29-243). This was interpreted and popularized by Born [KESTIN, p. 306] 
and eventually was accepted as THE mathematical treatment of thermodynamics. The 
Carnot cycles method precedes this treatment sometimes when an author wishes to present 
an intuitive introduction to the subject, but rarely would the heuristic approach appear 
alone in the modern texts. Among the many texts that follow Caratheodory's approach 
are: Pauli, Pippard, Bazarov, Hsieh, Buchdal, Landsberg, Adkins and Kestin's Thermo
dynamics. 

For systems depending on two state variables T and v, Caratheodory's method considers 
those satisfying the relation ~Q = Cd-c+vdv and studies the equation ~Q1 + ~Qu = 0 
of adiabatic cyclic processes of the union of the systems I and II. The state variables here 
are T, v 1 and v u. A process geometrically is represented by curves in the ( -c, v 1 , v u) state 

T 

0 
Cyclic process oF the union 
oF the system I and 11. 

FIG. 1. 

space (Fig. 1). Caratheodory's version of the 2-nd law says that, for a given point P in 
this state space, there are points arbitrarily close to P that cannot be joined to P by adia
bates. 

Using this (so-called axiom of adiabatic inaccessibility) he shows, rather intuitively, 
that the state space is foliated uniquely into a family of surfaces of equal entropy (that 
do not intersect each other), from which follows the existence of an integrating factor (which 
is the same for both systems I and II). 

While this geometric argument captures one's imagination, the integrating factor is not 
explicit and the surfaces of equal entropy do not seem to be a natural product of the pro
blem. We start with two state variables, construct a three-dimensional space and return 
to our initial two variables. Could this be done without the construction of surfaees? 

Furthermore, either approach to entropy (Carnot's cycles or Caratheodory's) does 
not equip us with a quantitative measure allowing us to determine whether entropy exists, 
nor does it supply us with an explicit intergrating factor. 

http://rcin.org.pl



502 V. C. DANNON 

The above may explain why in texts on irreversible thermodyn~mics many authors 
(Yourgrau, Prigogine, DeGroot, Fitts, Lavenda) avoid both approaches and postulate 
the correctness of the Gibbs equation 

Tds = du+pdv-}; p,;dx; 
i 

(where Tis the absolute temperature, sis the specific entropy, u the specific internal energy, 
v the specific volume, pis the pressure, fti chemical potentials and xi specific concentrations 
of the i-th component). Clearly, this amounts to the implicit assumption that 

~ (du+pdv-~ fl;dxt} 
I 

is a total differential. All of these authors prefer this assumption to a specific reference 
to any of the existing approaches to entropy~ 

This is not entirely satisfactory. Either approach is based on the 2-nd law, hence founds 
the existence of entropy on physical laws. On the other hand postulating the 2-nd law 
is not logically superior to assuming the Gibbs equation. Moreover, neither assumption 
enables us to check whether entropy exi.sts. 

Thermodynamics contains several derivations of the existence of entropy. If one is 
ready to accept the 2-nd law, then the existence of entropy can be derived. Missing are 
characterizations of entropy and, in particular, quantitative ones. The choice of the 
Gibbs equation as a starting point indicates a clear preference for a quantitative measure. 

We pose our question in three parts: 
A) Are there characterizations of entropy? 
B) If so, can they be derived without using either the not very popular entropy surfaces 

or the Carnot cycles? 
C) In particular, is there a quantitative measure for the existence of entropy? 
Our basic result is an affirPnative answer to C) [See the abstract in "Notices" of A. M.S. 

Oct. 79, A-520]. A necessary condition for the existence of entropy is that 

P-r . f . . f 1 -- ts a unctiOn o r a one. 
'V 

(Here p is the pressure, "' is the latent heat and T is the empirical temperature). This was 
established by the use of entropy surfaces in [44] and in [53, p. 67] by the use of Carnot 
cycles. Using neither, we establish for systems obeying the first law of thermodynamics, the 
equivalence of this condition to the existence of entropy. Thus the existence of entropy 
can be checked instead of being postulated. 

In [Abstracts of A.M.S.Aug. 1980, p. 490] we indicated that A) and B) can be answered 
positively and stated other characterizations of entropy. 

The questions that motivate this paper are close to the ones posed so far. Yet they 
are distinct. Frequently (e.g. [31]) the analysis of entropy is second in priority to the wish 
to have its existence assured. In this paper we make that analysis our prime concern. We 
wish to refine the concept, to understand it better and to elaborate on its meaning and 
on its implications. 
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Our analysis holds for nonfrictional ideal system in reversible thermodynamics. In 
a later paper we plan to discuss frictional systems in irreversible thermodynamics that 
obey an ideal form of the first law of thermodynamics. 

Now we turn to a description of non-frictional systems. 

2. Thermodynamical systems 

We start with a system characterized by its empirical temperature T (one to one bicon
tinuous function) and by a concentration v. The points in T x v, range through a domain 
called the state space of the system. A process of the system is assumed to be represented 
by. a continuous curve of bounded variation. 

If the system is ideal (that is frictionless), the infinitesimal work done in any process 
is assumed to be 

oW= pdv, 

where p ~ p( •, v) is the pressure. p and [ ~~ ]. ~ p, are continuous functions and p, 

is nonvanishing. The infinitesimal heat absorbed in a process is assumed to be 

()Q ·= Cd-r+vdv, 

where C = C( T, v) is the specific heat at constant volume and v is the latent heat. C, 

[-~ J. ~ C., v, and [!:. 1 ~ v, are continuous and v is nonvanishing. 

We shall assume the first law of thermodynamics. It states that in any cyclic process 
(represented by a closed curve y), energy is conserved, i.e. 

f ()Q = f ow. 
This is equivalent to the assumption that ()Q- () W is an exact differential. It is denoted 
by du, where u is called the internal energy. Alternatively, 

0 = f du = f OQ- ()W = f Cd-r+(v-p)dv = if [(v-p)T-Cv]d-rdv 
i' i' i' (interior of y) 

implies that 

(since y is arbitrary). Note that assuming the correctness of the first law is consistent with 
our assumption that ()Q and () W are inexact differentials. The 1-st law with ~ oQ = 0 

i' 

or ~ oW= 0 implies that pT = 0 (clearly, the pressure does depend on temperature). 
y 

Observe that 

du+pdv = Cd-r+vdv. 

We shall call it the Gibbs (differential) form of the system. 
We are now ready to investigate the concept of entropy. 
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3. A quantitative characterization of entropy 

Given such a thermodynamical system that satisfies the first law, the following state
ments are equivalent: 

Cdr+Pdv 
E) The system has an entropy; A state function s( r, v) such that ds = 

0 
where· 0 is an empirical temperature. 

I) The Gibbs form du + pdv has an integrating factor -}. 

T 

II) .!!.!_ is a function of r alone and 0 = exp J l!!_ dr. 
p 0 p 

The following direct proof uses no figures and does not employ much more than partial 
differentiation. 

We first show I=> II. 

If --} is an integrating factor, then for an arbitrary cyclic process (described by the 

closed curve y ), 

Hence 

Performing the differentiation and simplifying, we derive 

PO.- COv = O(vl:- Cv). 

Applying the 1-st law (11.- Cv = p.), we have 

PO.- cov = fJp •. 

The solution to this partial differential equation for 0 is given by 

dr dv 

I . h . dr dv b . ntegratmg t e equation - = - - , we o tam 
p c 

dO 

f Cdr+Pdv = cl 

and integrating the equation d: = -:· dr we derive 

T 

0 = exp J :· dr+f(Ct), 
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where f is an arbitrary function. For an adiabatic process, we have C1 = 0 and so 

't' 

() = exp J :-r dr+f(O). 

Hence 

() 't' = () !!.!__ • 
'V 

Substituting this back into v8't'- C()v = ()pl" we get C()v = 0. Since C is not identically zero, 

8v = 0, i.e. () is a function of r alone. Hence ~ = ~-r is a function of r alone and (} 

't' 

has the form exp J .!!.!_ dr. 
0 'V 

Conversely, to show that II implies I, assume that !!.!__ is a function of r alone and 
'V 

d fi () f't' P-r d Th d() () PT H 'V P-r 1 . 
e ne = exp v r. en dr = ----;-· ence 0 = 0: = p0 • To show that 0 ts an 

integrating factor for Cdr+vdv, consider an arbitrary path y in the (0, v) plane (being 
a monotone increasing function of r alone, () serves here as an empirical temperature). 
We then have 

f { ~ d< + ; dv} = f { ~ :; dO+ ; dv} = # ([ ; ). - [ 0~< l) dO dv 

= # ( ~ - ;, - ~:) dOdv = # O~< ((v6-p6)0,- C,]dfJdv = 0 

since (v0 -p0)0-r-Cv = 'V-r-P-r-Cv = 0, by the first law. 
The integrating factor () is an empirical temperature which is the same for all systems 

with the same r. We soon identify it with the absolute temperature. 

4. Absolute temperature 

Our experience says that thermometric materials do not exist for the . whole hotness 
range. Rather we shall assume that each hotness level belongs to the domain of an empirical 
temperature of some thermometric material. For instance, a mercury glass thermometer 
serves for up to 850°K, a thermocouple for up to 2000oK and magnetic salts are used for 
very high temperatures (see Experimental Thermodynamics, P.l5). 

os' 
On the overlap of two hotness ranges we have ()' ds' = Ods. Hence or = 0. Therefore 

ds' (} () 
s' depends on s alone. Thus ds = 0' depends on s alone. On the other hand 0' depends 

only on r. So in conclusion both quotients must be constant and () equals ()', i.e. up to 
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a multiplication by a constant. Thus we can construct a unique temperature scale T and 
refer to it as the Absolute Temperature. To fix a more familiar scale for T, we set 

Ts 

f 1 ap 
T = T1exp --- dr 

s v ar and Ts- Ti = 100, 
Tj 

where Ti is the temperature of freezing water at atmospheric pressure and Ts is the tempera
ture of boiling water at atmospheric pressure. Thus we obtain Ti = 273.15 (in the Kelvin 
scale). 

We illustrate · the power of our characterization with the following examples. 

5. Examples 

5.1. Ideal gas system 

This term is used to describe a frictionless system that obeys the relation 

T 
v = p = v- (here we denote r = T). 

By the 1-st law Cv = 0. Hence C = C(T) is a function ofT only and the internal energy 

ap a ( r) 
is given by u(T) = J C(T)dT which is a function ofT only. Now _a!_ = oT v T . 

v (T/v) 

i.e. _l!T_ is a function of T only. Hence () = T and the Entropy is given by 
l ' 

To comprehend the complexity of an analysis that follows Caratheodory, the reader is 
referred to Marshall's "Simplified Version of Caratheodory" applied to the same system. 

5.2. System with no entropy 

Consider the system that in the region r > 0, v > 0 obeys the constitutive equations 

C = r+v, 

v = 2(r+v), 

p = r. 

This system satisfies the first law since vT-Pr = Cv and has an internal energy function 
u = !r2 +v2 +vr. However, we have 

Hence there does not exist an Entropy function. 
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6. Generalization to higher order systems 

In the presence of external force fields (electric, magnetic, etc.) or internal forces (elastic 
stress, osmotic pressure, etc.), the infinitesimal changes of heat and work are assumed 
to be given by 

lJQ = Cdr+}; vldvl 
I 

(i = 1 ... k), 

(i = 1 ... k), 

where v 1 ... vk are chemical concentrations (also strains, electric or magnetic moments, 
etc.), Y 1 •.• vk are specific heats due to the additional forces and p 1 ••• Pk are chemical 
potentials (also mechanical pressures, elastic stress, magnetic or electric forces, etc.). 
(see CALLEN [9] for a detailed description). The assumptions on P;, C, v1, are natural 
extensions of the assumptions given for the 1-st order system. 

Assuming the first law, i.e. that lJQ- lJW is an exact differential du where u is the 
internal energy, we have 

Or(V;- p,) = a,l c. 
Then the following statements are equivalent: 

1 
(I) The Gibbs form du+ f p1dv1 = Cdr+ ;Y1dv1, has an integrating factor -0-. 

r 

(II) Or Pi = f( r) for any i = 
Vt 

I ... k and 0 = exp J f(r)dr. 
0 
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