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On nonlinear stability of incompressible fluid flows
V. A. VLADIMIROV (NOVOSIBIRSK)

THE PRESENT paper is concerned with the stability problem of stationary flows of a homogeneous
ideal incompressible fluid which can be referred to the classes of motions possessing symmetry
of one type (translational, axial, rotational or spiral). The two types of sufficient conditions
for nonlinear stability are obtained. The stability conditions for the first type are a generaliza-
tion for the case of finite amplitude disturbances and new classes of flow of the known Rayleigh
criterion concerning the “centrifugal” stability of rotating flows. The second type conditions
represent in the same sense a generalization of the other result obtained by Rayleigh. According
to this result, the plane parallel fluid flows is stable in the absence of an inflection point of a vel-
ocity profile. For systematization the use is made of the analogy between the effects of the
density stratification and rotation [1]. The present results concern the stability problem for
a wide class of hydrodynamic flows which possesss a necessary symmetry, for example, the
flows in stationary or rotating pipes and channels, as well as those with concentrated ring and
spiral vortices.

Praca dotyczy problemow statecznodci ustalonych przeplywow idealnych, nie$ci§liwych cieczy
jednorodnych przy zalozeniu pewnej symetrii ruchu (translacyjnej, osiowej, obrotowej lub
spiralnej). Otrzymano dwa typy warunkow dostatecznych nieliniowej statecznoéci. Warunki
statecznoSci pierwszego typu stanowia uogoélnienie znanego kryterium Reyleigha dotyczacego
“centryfugalnej” stateczno$ci na przypadek zaburzen o skoriczonej amplitudzie i nowych klas
przeptywOw. Warunki drugiego typu sa w podobnym sensie uogoélnieniem innego wyniku uzy-
skanego przez Rayleigha. Zgodnie z tym wynikiem plaski przeplyw cieczy jest stateczny przy
braku punktu przegigcia na profilu prgdkosci. Zastosowano analogi¢ migdzy efektami stra-
tyfikacji gestosci i obrotu, [1]. Obecne wyniki dotycza problemu statecznoéci szerokiej klasy
przeplywdw hydrodynamicznych charakteryzujacych sie odpowiednia symetria, jak np. prze-
plyw w ustalonych lub obracajacych si¢ rurach i kanalach.

Pabora Kacaercsti mpoGneM yCTOMUMBOCTM YCTAHOBHBUIMXCA TEUECHMI HIOEANIbHBIX, HECHKH-
MaeMbIX OJHOPOOHBIX >KMJKOCTEil, NMPH INPEOIONIOMEHUY HEKOTOPOH CHMMETPHHM IBHYKEHHA
(TPAHC/IALMOHHON, OCEBOI, BPAIIATEIbHON KM CIHpaibHoi). IloydeHpl OBa THIA HOCTa-
TOUHBIX YCJIOBHH HEJIMHEHHOH yCTOHYHMBOCTH. Y CJIOBHA YCTONYHBOCTH IIEpBOIO THIIA COCTa-
BISTIOT 000OLICHHE H3BECTHOTO KpHUTEPHS Pajest, Kacalollerocs ,,leHTpoOeyKHo#’’ ycToM-
YMBOCTH, Ha CIy4yad BO3MYyLIEHHII KOHEUHOH aMIUIMTYObI M HOBBIX KJIACCOB TeueHHit, ¥cio-
BUs BTOPOTO THNA SIBJSIIOTCA, B AHAJIOTHYHOM CMBICTE, 000OINEHMeM APYTOro pe3yJsbTaTa,
nostydenHoro Pameem. CornacHO 3THMY pe3yJsbTaTy IDIOCKOE TEUEHHE MKMIKOCTH SBIAETCS
YCTOHYMBBLIM IIPH OTCYTCTBHH TOUKHM Iepermda Ha mnpodmne ckopoctd. IlpmmeHeHa aHajo-
rusa mexxnay abdexramu crpatuduranuu mrotHocty u Bpamenus, [1]. Hacrosimme peaysb-
TaThl KacaloTcA INpoOsieMbl YCTOHUYMBOCTH ILIMPOKOro HJIACCA THAPOAMHAMUYECKUX TeUeHHit,
XapaKTePH3YIOUINXCST COOTBETCTBYIOIIEH CHMMETpHel, KaK HalmpuMep TeYeHHsS B YCTaHOBH-~
BIIIMXCS WM BPAUIAIOIIMXCA TPyGax U KaHaiax.

1. Flows with a spiral symmetry

THE UNSTEADY motions of an ideal incompressible fluid homogeneous in density are con-
sidered. In a cylindrical system of coordinates ¢, r, z we denote the velocity field components
by u, v, w, and p is the pressure field. For spiral symmetry motions #, v, w and p are the
functions of three independent variables r, 4 = ap—bz and time ¢. For example,

(11) P=p(r:lu’!t):
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where b is any real number. Without restriction of generality, the parameter a can be
considered to take only two values: 0 and 1. When a = 1, all solutions of the form (1.1)
are 2n-periodic with respect to u. It is sufficient to consider the values of u throughout the
interval
(1.2) 0<p<2m.
When a = 0 (the case of a rotational symmetry), the solution can be either periodic or
nonperiodic. The notations from [1] are used:
o =au—brw, f = brutaw,
(13) R =a*+b%* g=0b*R?® K =2ab/R.
For solutions of the form (1.1) the equations of motion are reduced to
D(ra/R)+Kfrv = —p,,
Dv—Kpa—(aa/R)*[r = —p,+gf?,
DB =0, v+ovfr+a,lr=0,
a d oo d

D E—aT"r‘U*érf‘l‘TH,

(1.4)

where the indices involving the independent variables denote the corresponding partial
derivatives,

If the motions (1.1) take place in a fixed region, its boundary must possess a necessary
symmetry, i.e. they are prescribed by the function of two variables:

(1.5) Sr,w) =0.

The nonpenetration conditions for u, v, w on the boundary prescribed by the relation
(1.5) which were written down in Egs. (1.3), and (1.5) give

(1.6) o+ %f,, ~0.

The important particular case of Eq. (1.6) is circular cylindrical boundaries with the flow
region

(L.7) R, <r<R,.

When a = 1, it is convenient to consider the boundary conditions (1.6) and Eq. (1.4)
on the plane of polar coordinates r, , where r is the radial coordinate and p is the angular
one (see the relation (1.2)). On this plane the closed curves (1.5) bound the flow region z.
Under such conditions the expressions (1.4)-(1.6) turned out to be rather similar to the
equations and boundary conditions for the plane motions of the density-inhomogeneous
(stratified) fluid [1]. The value of a takes the role of the u-component of velocity, and the
variable f plays the role of density. The corresponding “field of mass forces” is directed
along the radius from the center and has a value of g (1.3). For the rotational-symmetric
motions (¢ = 0) this similarity transforms to equivalence [1].

For the general case of the problem (1.4)-(1.6) the similarity of the relation (1.1)
with the motions of an inhomogeneous fluid is so considerable that the integral of energy
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E has the form of a sum of the fictitious “kinetic” energy T and “potential” one I1: E =
= T+I1

2
T= f(% +'z}2) dr, dt =rdrdu,
(1.8) i

r

1= [ pudr, U= Ur) = [g®dt.

0

In the terms of the velocity components u, v, w the value of E represents the kinetic energy
taken for one period of the relation (1.2). The other integral of Eqgs. (1.4)-(1.6) is deter-
mined by the arbitrary functions @(f):

(1.9) I = f @(B)dr = const.

2. Analogies of states of hydrostatic equilibrium

The problem (1.4)-(1.6) has the exact solutions (with an arbitrary function f,(r))
for the “state of rest” in the form

2.1 a=v=0, B=_48(0).
In terms of the velocity components w, v, w the solution (2.1) corresponds to the flow
(2.2) u=uy(r), v=0, w=wy(r); au,= brw,

which is prescribed by an arbitrary function wuy(r).
For the rotational symmetric motions (a = 0) the equivalents of the hydrostatic states
are the circular flows

2.3) u=uy(r), 92=0, w=0,

where the function wy(r) within the interval (1.7) is arbitrary.
Now let

24 o=oalr,pt), v=orpt), B=prmut

be an exact nonstationary solution of the problem (1.4)-(1.6) considered as a disturbance
of the state of rest (2.1). The following theorem is valid.

THEOREM 1. Let throughout the whole region T of the flow (2.1) the inequality with con-
stants ¢~ and c¢* be satisfied:

2.5) 0<c <g/(Bd) < ct < o0,

Then the disturbances o, v, ¢ = p*>— S5 of the flow (2.1) are estimated by their initial values
Oyy Uy, Oy as follows:

L @ 2 42
(2.6) f -}_e—+v +c o drsf T+v*+c oyldr.

T T

13*
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Proof. The notations o = 82, oo = 5 are adopted. From Egs. (1.9), and (1.10)
a conserving functional has the form

) :
Fla, v, 0) = fl% +o2+oU+D(0) | dr
which is presented in the form of three summands:
F((Z, 2, 9) = F(05 O) '90)+F1 +F2,

Fy = [ olp(e0) + @ (eo)ldr,

T

F,

Il

2
[ (% +e2) 400001~ ten-@oa] ar.
The upper prime denotes an ordinary derivative. In F; the function U(r) is substituted
by U = ¢(0,) which is obtained when r is excluded from U = U(r) Eq. (1.9) and ¢ = 9,(r)
the flow (2.1). By virtue of the inequality (2.5) the function ¢(g,) is monotone. Using an
arbitrariness of the function @(p), we can assume @'(0,) = —@(0,). As a result, F; = 0,
and the functional F, is time-independent.
Since

; dU | doo .
@' (00) = W/W" = —g/(Bo):

then the inequality (2.5) gives the inequality
2.7 TP et

which is satisfied within an interval of g, change in the region 7. Let the function @(p)
be determined additionally for all remaining values of g, so that the property (2.7) be
valid. Then for any of the two values of # and [ by integrating the inequality (2.7), it is
obtained that

(2.8) %c-lz < D(h+1)—D(h)—D'(h)] < %cw.

Now from the inequality (2.8) and the conservation value of F, we derive the relation
(2.6). At rotational symmetry of the motions (a = 0), the estimate (2.6) for the disturbance
of the flow (2.3), (1.8) is reduced to

R, R,
2.9) f(vz+w2+c“az)rdrs f(vi+wi+c*0i)rdr,
R, Ry

where o = r?(u?—uj); the condition (2.5) gives

(2.10) e < [Pr2ud)] ™t < et

The upper bounds of the arbitrary disturbance by the initial data (2.6), (2.9) indicate the
root-mean-square stability of the solution (2.1)-(2.3) in the sense of the Lyapunov defini-
tion.
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The bound (2.9), (2.10) represents a nonlinear version of the Rayleigh criterion which
is well-known in the linear stability theory. It guarantees the stability of the rotational
symmetric flow (2.3) with respect to the same type disturbances if the circulation square
r2ud increases with radius r. Theorem 1 gives a nonlinear analogy of the Rayleigh criterion
for the flows (2.2) with a more complicated (spiral) geometry.

3. Analogies of plane motions of a homogeneous fluid

By virtue of the equation Df = 0, the solutions of the system (1.4) with § = const form
an independent class. If the initial data are prescribed in this class, the solution also belongs
to it. In this case the time derivative order of the system of equations (1.4) decreases by
unit, it becomes the first-order system. After elimination of pressure from the first two
equations (1.4), the following system is obtained:

Di=0, o+tofr+olr=0,

(3.1) _ 2abp 1 [{ra
)» = w+ _R N w = T T)r —'v# .
Then, after introducing the stream function yp(rv = —v,, « = y,) the relation (3.1) is

reduced to one equation of y. The boundary condition (1.6) takes the form of ¢ = const
in Eq. (1.5).

For the class of motions under consideration the integral I (1.9) is trivial and useless.
At the same time there is the other integral determined through the arbitrary functions
@d(A):

(3.2) I= [ ®(A)dv = const.

Let the certain stationary solution of Eqs. (3.1) and (1.6) be as follows:

(3.3) ¥ =wo(r,p), B =Ppo=const; 1= Ar,p,po).
The equation DA = 0 gives the functional dependence y, = ¥(4,). Then, let

'/’("9ﬂ’t)=‘#o+‘)9("=!‘, t)) }.(",[l,l): lo+"("»!‘>t)
be the certain nonstationary solution of Eq. (3.1) and (1.6) considered as a disturbance
of the flow (3.3).

THEOREM 2. Let throughout the region v of the flow (3.3) the inequality with constants
¢~ and ¢t be satisfied:

(3.4) 0<c¢™ <d¥ldiy < et < .
Then the disturbances @, » are estimated by their initial values ¢*, »* as follows:
2 2 2 2
Pr 14 = Pxr , @
(3.5 f(T{ +—rzi+c xz)d't < f( 1’; -+ r’;‘"— +c+xi) dr.

The proof is based on consideration of the integrals (1.8), (3.2) and (3.3) and is not given
here. The result obtained can be essentially improved for the important cases of the rota-
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tional symmetric solutions (3.3) and circular geometry of the boundaries (1.7). In terms
of the velocity components u, , w, such flows are prescribed by two interconnected func-
tions of:

(3.6) u=uy(r), v=0, w=we(r); brugt+awy,=f,.

Such flows and the nonpenetration conditions on the boundary (1.7) are invariant with
respect to the translation along the axis z. This allows us to consider the stability problem
in any coordinate system moving along the z-axis with constant velocity M. As a result,
the same Theorem 2 is obtained in which the inequality (3.4) takes a more useful and

concrete form

__d¥  agt+brM &
(3.7 R i AR

Here oo = auo—brwo. The value A = dio/dr is independent of M and is prescribed by

‘ _ | (ruo) | [ Wor
o],

THEOREM 3. If there exists such constant M that throughout the interval (1.7) the in-
equality (3.7) is fulfilled, then the flow (3.6) is stable in the root-mean-square (3.5).

This stability condition comprises, in particular, the following Theorem.

THEOREM 4. If the continuous function A(r) (3.8) has no zero values within the interval
(1.7), then the flow (3.6) is stable.

Theorems 2-4 are a generalization for new classes of motions (1.1) and finite-amplitude
disturbances of the well-known Rayleigh result concerning the stability of a parallel flow
in the absence of the inflection point in the velocity profile. In the particular case (b = 0),
the motions of the class (1.1) are plane and Theorems 2—4 give the results obtained previ-
ously by Rayleigh, Fjortoft and Arnold. When a = 0 (for the problem of stability of the
axisymmetric flow in a circular pipe), the linear version of Theorem 4 is also obtained

by Rayleigh.

4. Rotating flows with translational symmetry

The motions of a homogeneous fluid are considered in the coordinate system rotating
with the constant velocity £2/2. The equations of motion are written as follows:

Du+ Q2 xu = —Vp*,

1) divu =0, DE%+u-V,

where u is the velocity vector, p* is the modified pressure inclusing the “centrifugal” addi-
tion. Let k be a unique vector which prescribes the fixed (in the rotating system) direction
and forms an angle 6 (0 < 0 < n) with the vector . The class of solutions of Egs. (4.1)
where u and p* are invariable in the k-direction is investigated. The system of the Cartesian
coordinates x, y, z is introduced so that the z-axis is parallel to the k-vector and the vector
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L lies in the plane of x, z. For the considered motions the field of velocities u = (v, v, w)
and pressure p* are independent of the coordinate z:

(42) Uzu(x,)’;t), P*=P*(X,y, t)
If we introduce the notations [1]
Q2= (91505 QJ), 0= W—Qly’

@3 g=kxQ=(0,g0), g=2,,

the system of equations (4.1) for the motions (4.2) may be reduced to

Du = —Px> Dy = _py+9g:

(4.4) d ] d
= =0 D=— S ot
Do =0, u,+v, ] En +u e +v e
where p = p*—Q2;9p+821y%/2; v is the stream function for which u = —y,, v = p,.
If the motion (4.2) takes place in the fixed region, its boundary must have the form of
a cylindrical surface with a generatrix parallel to the z-axis, i.e. it is prescribed by

4.5) Jx,») = 0.

On the plane x, y the curve (4.5) restricts the flow region 7. The nonpenetration conditions
on the boundary (4.5) give

(4.6) uf,+vf, = 0.

It is remarkable that the expressions (4.4)-(4.6) coincide with the equations and the corres-
ponding boundary conditions in the case of the plane motions of an inhomogeneous
(stratified) fluid in the Boussinesq approximation. The integral of kinetic energy E
for Egs. (4.1) and (4.6) in terms of (4.3), (4.4) is written in the form of a sum of the fictitious
“kinetic” and “potential” energies T and I7:

E = T+II = const,

“4.7) 1
T = 'y ((uz +03)dr, II = fQUdT, dt = dxdy,
where U is the potential introduced according to g = — VU. The other integral of Egs.
(4.4)-(4.6) is
(4.8) I= [ ®)dr

with the arbitrary function @(p).
The analogies of states of the hydrostatic equilibrium in the class (4.2) are the exact
solutions of Eqs. (4.4) having the form

(4.9) u=v=0, p=0).
In the initial terms of Eqs. (4.1) the parallel flow is prescribed by the relations (4.9):
(4.10) u=v=0, w=wy(y).
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The functions go(y) and we(y) in Egs. (4.9) and (4.10) are arbitrary. Now let
u=u(x,y,t), v=uo(xy1), o=e(+ox, 1)
be an exact nonstationary solution of Eqs. (4.4)-(4.6) considered as a disturbance of
“the state of rest” (4.9). The next Theorem is valid:
THEOREM 5. Let throughout the region T the inequality with constants ¢~ and ¢* be sat-
isfied.
0<c™ <glogy, ¢t <.

Then the disturbances u, v, ¢ of the flow (4.9), (4.10) are estimated by their initial values
as follows

f(uz-i-vz-l-c‘az)dr sf(ui+v§+c+ai)dr.
T T

The proof is based on the availability of the integrals E (4.7) and 7 (4.8). Theorem 5 is the
analogy of the Rayleigh criterion of centrifugal stability for the translational invariant
motions. In conclusion it should be noted that all the above-mentioned statements con-
cerning stability are conditional in the sense that the stability is guaranteed only for the
special classes of disturbances which possess the same symmetry as main flows. The stability
proofs in such classes have evidently a limited physical significance. However, the diffi-
culties of investigating the nonlinear hydrodynamic problems are so significant that the
information about the properties of particular classes of motions is, to the author’s opinion,
of indubitable interest.

REeEMARK. The proofs of Theorems (1, 2, 5) are performed by the method presented
in [2].

References

1. V. A. VLADIMIROV, On similarity of effects of density stratification and rotation, PMTF, 3, 1985 [in Rus-
sian).

2. V.1. ARNOLD, On the a priori estimate of the hydrodynamic stability theory, Izv. vuzov, Matematika,
5, 1966 [in Russian].

LAVRENTYEV INSTITUTE OF HYDRODYNAMICS
SIBERIAN DIVISION OF THE USSR ACADEMY OF SCIENCES, NOVOSIBIRSK, USSR.

Received March 10, ‘1986.





