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On nonlinear stability of incompressible fluid flows 

V. A. VLADIMIROV (NOVOSffiiRSK) 

THE PRESENT paper is concerned with the stability problem of stationary flows of a homogeneous 
ideal incompressible fluid which can be referred to the classes of motions possessing symmetry 
of one type (translational, axial, rotational or spiral). The two types of sufficient conditions 
for nonlinear stability are obtained. The stability conditions for the first type are a generaliza­
tion for the case of finite amplitude disturbances and new classes of flow of the known Rayleigh 
criterion concerning the "centrifugal" stability of rotating flows. The second type conditions 
represent in the same sense a generalization of the other result obtained by Rayleigh. According 
to this result, the plane parallel fluid flows is stable in the absence of an inflection point of a vel­
ocity profile. For systematization the use is made of the analogy between the effects of the 
density stratification and rotation [1]. The present results concern the stability problem for 
a wide class of hydrodynamic flows which possesss a necessary symmetry, for example, the 
flows in stationary or rotating pipes and channels, as well as those with concentrated ring and 
spiral vortices. 

Praca dotyczy problem6w statecznosci ustalonych przeplyw6w idealnych, niescisliwych cieczy 
jednorodnych przy zaloi:eniu pewnej symetrii ruchu (translacyjnej, osiowej, obrotowej lub 
spiraln~j) . Otrzymano dwa typy warunk6w dostatecznych nieliniowej statecznosci. Warunki 
statecznosci pierwszego typu stanowi~ uog61nienie znanego kryterium Reyleigha dotyc~cego 
"centryfugalnej" statecznosci na przypadek zaburzen o skonczonej amplitudzie i nowych klas 
przeplyw6w. Warunki drugiego typu s~ w podobnym sensie uog6lnieniem innego wyniku uzy­
skanego przez Rayleigha. Zgodnie z tym wynikiem plaski przeplyw cieczy jest stateczny przy 
braku punktu przegi~cia na profilu pr~dkosci. Zastosowano analogi~ mi~dzy efektami stra­
tyfikacji g~stosci i obrotu, [1]. Obecne wyniki d.otyc~ problemu statecznosci szerokiej klasy 
przeplyw6w hydrodynamicznych charakteryzuj~cych si~ odpowiedni~ symetri~, jak np. prze­
plyw w ustalonych lub obracaj~cych si~ rurach i kanalach. 

Pa6oTa KacaeTc.R: npo6neM yCToHtnmocm yCTaHOBHBIIIHXC.R: Tel.leimii u~eaJibHbiX, HecmH­
MaeMhiX O~opo~IX >KH~OCTeif, npH npe~OJIO>KeHHH HeKOTOpOH CHMMeTPHH ~H>KeHH.R: 
(TPaHCJI.R:quonnoii, ocesoii, Bpaii.laTeJibHoii HJIH cnupani:.Hoii). IIonyqeHhi ~Ba THrra ~ocTa­
TO'tiHhiX YCJIOBHH HemmeiiHOH yCTOHl.IHBOCTH. Y CJIOBH.R: yCTOHl.IHBOCTH nepsoro nma coCTa­
BJUIIOT o6o6~eime H3BeCTHoro KpHTepH.R: P:meH, Kacaro~erocH ,~eHTpo6emHoii" yCToii­
l.IHBOCTH, Ha CJiyqaif B03My~eimif KOHel.IHOH aMIIJIHTY~bl H HOBbiX KJiaCCOB Tel.leHHH. Y CJIO· 
BH.R: BTOporo THIIa HBJI.R:IOTCH, B aHaJIOrHl.IHOM CMbiCJie, o6o6~eHHeM ~pyroro pe3yJibTaTa, 
nonyqennoro P:meeM. CornacHo 3THMY pe3yJibTaTY nJIOCKoe Te'tleHHe >KH~OCTH HBJI.R:eTcH 
YCTOHl.IHBbiM npH OTcyTCTBHH TOl.IKH neperlf6a Ha npo<flHJie CKOpOCTH. IlpHMeHeHa aHaJIO­
rH.R: Me>K~ 3$cpeKTaMH crpamcpHKa~u:H nnornocTH H apa~eHu:H, [1]. HaCTO.R:llUie pe3yJII>­
TaTbi KaCaiOTC.R: npo6JieMbl yCTOHl.IHBOCTH IIIHpOKOro KJiacca ru:~pO,ll;U:HaMU:l.leCKHX TeqeHHif, 
XapaKTepu:3yiO~HXCH COOTBeTCTBYIO~eif CHMMeTpu:eif, KaK Harrpu:Mep Tel.leHU:.R: B yCTaHOBH· 
BIIIHXCH HJIH Bpa~aiO~HXC.R: Tpy6ax H KaHaJiaX. 

1. Flows with a spiral symmetry 

THE UNSTEADY motions of an ideal incompressible fluid homogeneous in density are con­
sidered. In a cylindrical system of coordinates q;, r, z we denote the velocity field components 
by u, v, w, and p is the pressure field. For spiral symmetry motions u, v, w and p are the 
functions of three independent variables r, p, = aq;-bz and time t. For example, 

(1.1) p=p(r,p,,t), 
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where b is any real number. Without restriction of generality, the parameter a can be 
considered to take only two values: 0 and l. When a = I, all solutions of the form (1.1) 
are 2n-periodic with respect to !-'· It is sufficient to consider the values of!-' throughout the 
interval 

(1.2) O:s;;f.t:s;;2n. 

When a = 0 (the case of a rotational symmetry), the solution can be either periodic or 
nonperiodic. The notations from [1] are used: 

IX = au-brw, {3 = bru+aw, 

R = a2 +b2r2
, g = b2r/R2

, K = 2ab/R2
• 

(1.3) 

For solutions of the form (1.1) the equations of motion are reduced to 

D(r!X/ R) + K{3rv = - p1H 

(1.4) 
Dv-K{31X-(a1X/R)2 /r = -p,+gf32 , 

D{3 = 0, v+vfr+IX~-'/r = 0, 

a a (X a 
D=-+v - +--, 

ot or r Oft 

where the indices involving the independent variables denote the corresponding partial 
derivatives. 

If the motions (1.1) take place in a fixed region, its boundary must possess a necessary 
symmetry, i.e. they are prescribed by the function of two variables: 

(1.5) f(r, f.')= 0. 

The nonpenetration conditions for u, v, w on the boundary prescribed by the relation 
(1.5) which were written down in Eqs. (1.3), and (1.5) give 

(1.6) 
(X 

vfr+ -!,.. = 0. 
r 

The important particular case of Eq. (1.6) is circular cylindrical boundaries with the flow 
region 

(1.7) 

When a = 1, it is convenient to consider the boundary conditions (1.6) and Eq. (1.4) 
on the plane of polar coordinates r, .f.t, where r is the radial coordinate and p, is the angular 
one (see the relation (1.2)). On this plane the closed curves (1.5) bound the flow region r. 
Under such conditions the expressions (1.4)-(1.6) turned out to be rather similar to the 
equations and boundary conditions for the plane motions of the density-inhomogeneous 
(stratified) fluid [1]. The value of IX takes the role of the !-'-component of velocity, and the 
variable {3 plays the role of density. The corresponding "field of mass forces" is directed 
along the radius from the center and has a value of g (1.3). For the rotational-symmetric 
motions (a = 0) this similarity transforms to equivalence [1]. 

For the general case of the problem (1.4)-(1.6) the similarity of the relation (1.1) 
with the motions of an inhomogeneous fluid is so considerable that the integral of energy 
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E has the form of a sum of the fictitious "kinetic" energy T and "potential" one II: E = 
= T+II 

T = J ( ~ +v') dr, dr = rdrdp, 
T 

(1.8) 

II= J {PUdr, U = U(r) = J g(~)d~. 
0 

In the terms of the velocity components u, v, w the value of E represents the kinetic energy 
taken for one period of the relation (1.2). The other integral of Eqs. (1.4)-(1.6) is deter­
mined by the arbitrary functions l/>({3): 

(1.9) I = J l/>({3) dr = const. 

2. Analogies of states of hydrostatic equilibrium 

The problem (1.4)-(1.6) has the exact solutions (with an arbitrary function f3 0 (r)) 
for the "state of rest" in the form 

(2.1) ex= v = 0, f3 = /30 (r). 

In terms of the velocity components u, v, w the solution (2.1) corresponds to the flow 

(2.2) u = u0 (r), v = 0, w = w0 (r); au0 = brw0 

which is prescribed by an arbitrary function u0 (r). 
For the rotational symmetric motions (a = 0) the equivalents of the hydrostatic states 

are the circular flows 

(2.3) u = u0 (r), v = 0, w = 0, 

where the function u0 (r) within the interval (1.7) is arbitrary. 
Now let 

(2.4) ex= ex(r, p,, t), v = v(r, p,, t), f3 = f3(r, p,, t) 

be an exact nonstationary solution of the problem (1.4)-(1.6) considered as a disturbance 
of the state of rest (2.1 ). The following theorem is valid. 

THEOREM 1. Let throughout the whole region r of the flow (2.1) the inequality with con­
stants c- and c+ be satisfied: 

(2.5) 

Then the disturbances ex, v, a = {3 2
- {3~ of the flow (2.1) are estimated by their initial values 

ex*, v*, a* as follows: 

(2.6) J ( ~2 +v' +c-u') dr .,;; J ( ~ +v! +c+u!) dr, 
T T 

13* 
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P r o o f. The notations e = {P, eo = {3~ are adopted. From Eqs. (I .9), and ( 1.1 0) 

a conserving functional has the form 

F(rt, v, e)~ J[ ~ +v'+eU+<P(e)] a. 
1' 

which is presented in the form of three summands: 

F(r:t, v, e)= F(O, 0, eo)+F1 +F2, 

F1 = J a[<p(eo)+(l>'(eo)]dr, 
1' 

F, = J [-} ( ~ +v'} + <P(eo + u) -<P(eo) -<P'(eo)u] dr. 
1' 

The upper prime denotes an ordinary derivative. In F1 the function U(r) is substituted 

by U = <p(eo) which is obtained when r is excluded from U = U(r) Eq. (1.9) and e = e0 (r) 

the flow (2.1). By virtue of the inequality (2.5) the function <p(e 0 ) is monotone. Using an 

arbitrariness of the function (!>(e), we can assume (!>'(eo) = -<p(e0 ). As a result, F1 = 0, 

and the functional F2 is time-independent. 
Since 

'( ) - au; deo - - gf(f3o2)r IP eo - dr dr-

then the inequality (2.5) gives the inequality 

(2.7) 

which is satisfied within an interval of eo change in the region r. Let the function (!>(e) 

be determined additionally for all remaining values of e, so that the property (2. 7) be 

valid. Then for any of the two values of h and I by integrating the inequality (2. 7), it is 

obtained that 

(2.8) 

Now from the inequality (2.8) and the conservation value of F2 we derive the relation 

(2.6). At rotational symmetry of the motions (a = 0), the estimate (2.6) for the disturbance 

of the flow (2.3), (1.8) is reduced to 

R2 R2 

(2.9) J (v2 +w2+c-a2)rdr ~ J (v! +w! +c+a!)rdr, 
Rt R1 

where a = r 2 (u2
- u6); the condition (2.5) gives 

(2.10) 

The upper bounds of the arbitrary disturbance by the initial data (2.6), (2.9) indicate the 

root-mean-square stability of the solution (2.1)-(2.3) in the sense of the Lyapunov defini­

tion. 
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The bound (2.9), (2.10) represents a nonlinear version of the Rayleigh criterion which 
is well-known in the linear stability theory. It guarantees the stability of the rotational 
symmetric flow (2.3) with respect to the same type disturbances if the circulation square 
r2 u6 increases with radius r. Theorem 1 gives a nonlinear analogy of the Rayleigh criterion 
for the flows (2.2) with a more complicated (spiral) geometry. 

3. Analogies of plane motions of a homogeneous fluid 

By virtue of the equation D{J = 0, the solutions of the system (1.4) with fJ = const form 
an independent class. If the initial data are prescribed in this class, the solution also belongs 
to it. In this case the time derivative order of the system of equations (1.4) decreases by 
unit, it becomes the first-order system. After elimination of pressure from the first two 
equations (I .4), the following system is obtained: 

D), = 0, v,+vfr+rxp/r = 0, 

(3.1) 
A=w+ 

2~P, w=+[(~),-v•l 
Then, after introducing the stream function 1p(rv = -1p11 , rx = "Pr) the relation (3.1) is 
reduced to one equation of "P· The boundary condition (1.6) takes the form of 'P = const 
in Eq. (1.5). 

For the class of motions under consideration the integral I (1.9) is trivial and useless. 
At the same time there is the other integral determined through the arbitrary functions 
W(A): 

(3.2) I= J W(A)d-,; = const. 
T 

Let the certain stationary solution of Eqs. (3.1) and (1.6) be as follows: 

(3.3) 'P = 'Jlo(r,p,), fJ = {30 = const; A= Ao(r,ft,fJo)· 

The equation DA = 0 gives the functional dependence "Po = P(A0). Then, let 

1p(r, p, t) = 'Jlo+<p(r, p, t), A(r, ft, t) = A0 +u(r, ft, t) 

be the certain nonstationary solution of Eq. (3.1) and (1.6) considered as a disturbance 
of the flow (3.3). 

THEOREM 2. Let throughout the region -,; of the flow (3.3) the inequality with constants 
c- and c+ be satisfied: 

(3.4) 

Then the disturbances <p, u are estimated by their initial values <p*, u* as follows: 

(3.5) (( <p; + <p; +c-u2)d-,; ~ J(<p;, + <p;P +c+u2)d-,;. 
.., R r2 R r2 * 
T T 

The proof is based on consideration of the integrals (1.8), (3.2) and (3.3) and is not given 
here. The result obtained can be essentially improved for the important cases of the rota-
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tional symmetric solutions (3.3) and circular geometry of the boundaries (I. 7). In terms 

of the velocity components u, v, w, such flows are prescribed by two interconnected func­

tions of: 

(3.6) u = u0 (r), v = 0, w = w0 (r); bru0 +aw0 = {10 • 

Such flows and the non penetration conditions on the boundary (1. 7) are invariant with 
respect to the translation along the axis z. This allows us to consider the stability problem 

in any coordinate system moving along the z-axis with constant velocity M. As a result, 

the same Theorem 2 is obtained in which the inequality (3.4) takes a more useful and 

concrete form 

(3.7) 
_ d'l' rt0 +brM + 

c ~ dA
0 

= A ~ c . 

Here cx0 = au0 - brw0 • The value A = dA0 /dr is .independent of M and is prescribed by 

(3.8) A = [ (ruo)r ] . = _ (~~) . 
ar r br r 

THEOREM 3. If there exists such constant M that throughout the interval (1. 7) the in­
equality (3.7) is fulfilled, then the flow (3.6) is stable in the root-mean-square (3.5). 

This stability condition comprises, in particular, the following Theorem. 

THEOREM 4. If the continuous function A(r) (3.8) has no zero values within the interval 
(1. 7), then the flow (3.6) is stable. 

Theorems 2-4 are a generalization for new classes of motions (1.1) and finite-amplitude 

disturbances of the well-known Rayleigh result concerning the stability of a parallel flow 

in the absence of the inflection . point in the velocity profile. In the particular case (b = 0), 

the motions of the class (1.1) are plane and Theorems 2-4 give the results obtained previ­

ously by Rayleigh, Fjortoft and Arnold. When a = 0 (for the problem of stability of the 
axisymmetric flow in a circular pipe), the linear version of Theorem 4 is also obtained 

by Rayleigh. 

4. Rotating flows with translational symmetry 

The motions of a homogeneous fluid are considered in the coordinate system rotating 

with the constant velocity Q.j2. The equations of motion are written as follows: . 

(4.1) 

Du+nxu = -Vp*, 

divu = 0, 
a 

D=-+u·V at ' 
where u is the velocity vector, p* is the modifi~d pressure inclusing the "centrifugal" addi­

tion. Let k be a unique vector which prescribes the fixed (in the rotating system) direction 

and forms an angle 0 (0 ~ 0 ~ n) with the vector n. The class of solutions of Eqs. ( 4.1) 

where u and p* are invariable in the k-direction is investigated. The system of the Cartesian 

coordinates x, y, z is introduced so that the z-axis is parallel to the k-vector and the vector 
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n lies in the plane of x, z. For the considered motions the field of velocities u = (u, v, w) 
and pressure p* are independent of the coordinate z: 

(4.2) u = u(x, y, t), p* = p*(x, y, t). 

If we introduce the notations [I] 

(4.3) 
Q = (.Ql' 0, Q3), e = w-!Jly, 
g = k X fJ = (0, g, 0), g := .Q 1 , 

the system of equations (4.1) for the motions (4.2) may be reduced to 

(4.4) a a a 
D=-+u-+v-ot ax ay' 

where p = p*-fJ3 1p+!Jfy2 /2; 1p is the stream function for which u = -1p,, v = "Px· 
If the motion ( 4.2) takes place in the fixed region, its boundary must have the form of 
a cylindrical surface with a generatrix parallel to the z-axis, i.e. it is prescribed by 

(4.5) f(x, y) = 0. 

On the plane x, y the curve (4.5) restricts the flow region r. The nonpenetration conditions 
on the boundary (4.5) give 

(4.6) 

It is remarkable that the expressions (4.4)-(4.6) coincide with the equations and the corres­
ponding boundary conditions in the case of the plane motions of an inhomogeneous 
(stratified) fluid in the Boussinesq approximation. The integral of kinetic energy E 
for Eqs. ( 4.1) and ( 4.6) in terms of ( 4.3), ( 4.4) is written in the form of a sum of the fictitious 
"kinetic" and "potential" energies T and ll: 

E = T+ll = const, 

(4.7) 
dr = dxdy, 

where U is the potential introduced according to g = - V U. The other integral of Eqs. 
( 4.4}-( 4.6) is 

(4.8) I = J f/J(e)dr 
l' 

with the arbitrary function ([>(e). 
The analogies of states of the hydrostatic equilibrium in the class (4.2) are the exact 

solutions of Eqs. (4.4) having the form 

(4.9) u = v = 0, e = eo(y). 

In the initial terms of Eqs. ( 4.1) the parallel flow is prescribed by the relations ( 4.9): 

(4.10) u = v = 0, w = w0 (y). 
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The functions eo(Y) and w0 (y) in Eqs. (4.9) and (4.10) are arbitrary. Now let 

u = u(x,y, t), v = v(x,y, t), (! = eo(Y)+a(x,y, t) 

be an exact nonstationary solution of Eqs. (4.4)-(4.6) considered as a disturbance of 
"the state of rest" (4.9). The next Theorem is valid: 

THEOREM 5. Let throughout the region T the inequality with constants c- and c+ be sat­
isfied: 

0 < c- ~ g/(!oy ~ c+ < oo. 

Then the disturbances u, v, a of the flow (4.9), (4.10) are estimated by their initial values 
as follows 

J (u 2 +v2 +c-a2)dr ~ J (u!+v!+c+a!)dr. 
T T 

The proof is based on the availability of the integrals E (4.1) and I (4.8). Theorem 5 is the 
analogy of the Rayleigh criterion of centrifugal stability for the translational invariant 
motions. In conclusion it should be noted that all the above-mentioned statements con­
cerning stability are conditional in the sense that the stability is guaranteed only for the 
special classes of disturbances which possess the same symmetry as main flows. The stability 
proofs in such classes have evidently a limited physical significance. However, the diffi­
culties of investigating the nonlinear hydrodynamic problems are so significant that the 
information about the properties of particular classes of motions is, to the author's opinion, 
of indubitable interest. 

REMARK. The proofs of Theorems (1, 2, 5) are performed by the method presented 
in [2]. 
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