58.

ON THE CONDITIONS NECESSARY AND SUFFICIENT TO BE
SATISFIED IN ORDER THAT A FUNCTION OF ANY NUM-
BER OF VARIABLES MAY BE LINEARLY EQUIVALENT
TO A FUNCTION OF ANY LESS NUMBER OF VARIABLES.

[Philosophical Magazine, v. (1853), pp. 119—126.]

IN the Cambridge and Dublin Mathematical Journal for November 1850 %*,
I defined an order as signifying any linear function of a given set of variables,
and spoke of a general function of n variables as losing » orders when the
relation between its coefficients is such that it is capable of being expressed
as a function of (n —r) orders only. It will be highly convenient to preserve
the same nomenclature for the purposes of the present investigation.

Dr Otto Hesse, in a long memoir in Crelle’s Journal, the contents of
which have been described to me¥, but which I have not yet been able to
procure, has given a rule for determining the analytical conditions for the
loss of one order. I propose to give a more simple and comprehensive scheme
of conditions than Professor Hesse appears to have discovered, applicable not
to this case only, but to that of the loss of any number whatever of orders,
and shall moreover show in what relation the substituted orders stand to the
given variables.

Dr Hesse’s rule had been previously stated by me in the 4th section
of my Calculus of Forms (Cambridge and Dublin Mathematical Journal,
May 1852 ) as applicable to the case of a general function of the 3rd degree

[* p. 171 above.]

t A distinguished mathematical friend in Paris communicated to me with great admiration
Professor Hesse’s result overnight. I ventured to affirm that, to one conversant with the
calculus of forms, the problem could offer no manner of difficulty. An hour’s quiet reflection in
bed the following morning, or morning after, sufficed to disclose to me the true principle of the
solution. [Cf. Noether, Math. Annal. L. (1898) p. 138. Ebn.]

I Vide Vol. vir. p. 187 [p. 335 above]. * When U represents a pencil of three rays meeting in

as_ dSs
] d'_‘a '—01 EE
variants of U, and a, b, ¢, &c. the coefficients of U); ‘“also in place of this system may be
substituted the system obtained by taking all the coeflicients of the Hessian zero.”

a point =0, &ec., and also therefore T=0" (S and T being the two Aronholdian in-
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of three variables becoming the representative of three right lines diverging
from the same point, which is the case of a cubic function of three variables
becoming a function of two linear functions of these variables, that is to say,
losing one order: this, perhaps, might have been noticed in the Professor’s
memoir. I gave also another rule for the same case; but the true fundamental
scheme of conditions about to be set forth will be seen to embrace as mere
corollaries all such and such-like rules, which in fact supply more or less
arbitrary combinations of the conditions, rather than the naked conditions
themselves in their simple form and absolute totality.

I shall call the function to be dealt with U, and shall consider U to be a
homogeneous* rational function of m dimensions in respect of @, @, ... z,, and
shall inquire what are the conditions which must obtain when U is capable
of being expressed as a function of only (n — r) orders, say 4, I, ... l,_,, each
of which is of course a homogeneous linear function of the given n variables.

Let the term derivative of U be understood to mean any result obtained
by differentiating U any number of times with respect to one or more of the
variables @, @, ... #,. The first derivatives will be of (m — 1) dimensions,
the second derivatives of (m — 2) dimensions, and so on; and finally, the
(m—1)th derivatives will be homogeneous linear functions of #;, @, ... z,.
Suppose U to be expressible as a function of I, ly... ln_,. It is immediately
obvious that the derivatives from the lst to the (m — 1)th inclusive will be
all expressible as homogeneous functions of I, l,... l—,, and vanish when
these vanish. But this statement is in substance pleonastic; for by means
of Euler’s well-known law, any derivative of U, say K, may be expressed
(to a numerical factor prés) under the form of

dK dK dK

L, — — ... —
o PARCF P L

and consequently, whenever the linear derivatives of U vanish, all the upper
derivatives of U, including U itself, must vanish at the same time. The
number of these linear derivatives, say », will be the number of terms in
a homogeneous function of = variables of (m —1) dimensions, that is
to say,

n(n—1)...(n—m+ 2)
1.2...(m—1) y

Again, if all the » linear derivatives vanish when the (n—r) equations
L,=0,l,=0...lsr=0 are satisfied, » being greater than zero, this can only
happen by virtue of these » derivatives being linear functions of (n—7)

* It is a common error to regard homogeneity of expression as merely a means for satisfying
the desire for symmetry ; the ground of its application and utility in analysis lies, in fact, much
deeper ; it is essentially a method and a power.
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58] admit of reduction in the number of Variables. 589

of them. Now, conversely, I shall prove, that if it be true that all the linear
derivatives of U are linear functions (n — r) of them, then U/ may be expressed
as a function of these (n —7); and this rule, as will be immediately made
apparent, will give the necessary and sufficient conditions for the loss of
r orders in the most simple and complete form by which they admit of being
expressed. For the proof of the rule, only one additional remark has to be
made in addition to that already made, of the vanishing of the linear deriva-
tives necessarily implying the simultaneous evanescence of all the other
derivatives ; this additional remark being, that if the derivatives of any class,
linear or otherwise, qud one set of variables, become all zero, the derivatives
of the same class, qud any other set of variables linear functions of the first
set and the same in number, will also become zero, for they are evidently
expressible as linear functions of the first set.

Now let d,, d, ... d,_, be any (n—r) linear derivatives of U, of which
all the other of the » derivatives of this class are linear functions, so that
they vanish when these (n — ) vanish, and let U be expressed as a function
of (d,,dy... dp—y; 2, @, ... 2,). Then we may write

U= ‘{bm,o + ¢m—1,1 o ¢m—2,2 hie ¢‘1,m—1 n ¢o.m;

where in general ¢,, . . denotes a function homogeneous and of m — e dimen-
sions in respect to d,, d,...d,_,, and homogeneous and of e¢ dimensions in
respect to &, #, ... #,. Now the linear derivatives of U all vanish when d, = 0,
d,=0...d,_,=0 for all values of z;, #,...2,. Hence U=0 on the same
supposition, and hence ¢,,,, is similarly zero. Also the first derivatives of U,
qud d,, d, ... d,_,, must vanish on the same supposition. Hence ¢, ,,,
is identically zero; and so by taking the 2nd, 3rd ... up to the (m — 1)th
or linear derivatives of U in respect to d,, d; ... do—r, we find successively
by m—2, Ps,m—s -+ Pm—,1 €ach identically zero, and consequently

U=tmo=¢(d, dy... dny),

as was to be proved. To express the fact of the » derivatives being linear
functions of (n—r) of them, form a rectangular matrix with the coefficients
of the » linear derivatives. This matrix will be n terms in breadth and »
terms in depth. Let r=1: it is a direct consequence of the rule which has
been established, that every full determinant consisting of a square n terms
by n terms that can be formed out of this rectangular matrix must be zero :
again, let r=2; all the first minors, that is to say, all the determinants
composed of squares (n— 1) terms by (n— 1) terms, must be zero, and so in
general a loss of » orders will require that the (r —1)th minors shall all
vanish ; if » =n, the (n — 1)th minors, that is the simple terms of the matrix
which are all coefficients of U, must vanish, or in other words, when the
function is of zero order all the coefficients vanish (an obvious truism).
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Thus, then, we see that the true rule for the loss of one order in a polynomial
of any degree is precisely the same as the well-known rule for the loss of one
order in a quadratic function; the speciality in the latter case consisting
merely in the fact that v being equal to », the rectangular matrix becomes
a square, and there is only one full determinant. Moreover, for any other
value of r the above rule coincides with that given by me some time back
in the Philosophical Magazine for the case of quadratic functions.

Professor Hesse’s rule for finding conditions applicable to the loss of one
order is, as I have already stated, a consequence of the more simple scheme
of conditions above given. It consists in forming the determinant

U U a2U

de?’ drdz,’ " dzdo,

azUu U 2U
dz,dz,’ dx,dz,” " dx,da,

U U a>U

-

and equating the coefficients of this determinant fully developed separately
to zero*. The attachment of the Professor to this particular form of covariant
(I use the language of the calculus of forms) is readily intelligible, seeing
the admirable application which he has made of it to the canonization of the
cubic function of three variables, but it is really foreign to the nature of the
present question ; the coefficients of this covariant may easily be shown to be
merely the full determinants of the n x v rectangular matrix above described,
or linear functions of these said determinants with numerical coefficients.
Hence the ground of its applicability.

Returning to the rule of the matrix, if we suppose the number of variables
to be two, and call the coefficients of U

ay, 1Ay, In(n—1)a,... an,
our rectangle becomes

Uy,
al > a’?
a2 ’ aB
Ap—y, Ap

* A form capable of being so derived I have elsewhere termed (in compliment to M. Hesse)
the Hessian of the function to which it appertains. This is the trivial name which is much
needed on account of the frequent occurrence of the form, and has been adopted by Mr Salmon
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and the conditions become
a0y — 0y =0, ay g — @y @y =0,

s — 0 =0 i 5 B P

UnoOn— =0, G s0n — Un0y, =0, &c,

all of which equations are obviously true (when the function loses an order,
that is to say, becomes a perfect power) and are satisfied (special cases
excepted) when any (n — 1) independent equations out of the entire number
obtain; so that the number of conditions implied in the property to be
represented is in exact conformity with the number of independent equations
derived from the matrix, that is equations which, when satisfied, will in
general cause all the rest to be satisfied. This conformity manifests itself
also in the case of a quadratic function of n variables. But except in these
two limiting (and, in an occult sense, reciprocal*) cases of a function of
two variables of the nth degree, or of the degree 2 and n variables, this con-
formity in measure as the degree or number of variables rises, although it
must substantially continue to exist, becomes, and in an accelerated degree,

less and less apparent.

Thus, take the simple case of a cubic function of three variables, and let
us confine ourselves to the consideration of the conditions which must be
satisfied when it loses a single order. Let U be written out at length,

az® + by® + ¢2* + 3hy2* + 3iza® + 3jwy® + 3W'y*z + 3 22 + 3j aty + 6maye.

in his admirable treatise on the higher plane curves. In systematic nomenclature it would be
termed the discriminant of the quadratic emanant, or more briefly, the quadremanative dis-
criminant, Ihave discovered quite recently that the long sought for symmetrical, and by far the
most easy practical process for discovering the number of the real roots of an equation, is
contained in, and may be deduced immediately from, a certain transformation of its Hessian !

* There are frequent cases occurring in the calculus of forms of interchange between the
degree of a function and the number of variables which it contains. Thus, to select a striking
example (although one where the interchange is not exact), the theory of the real and imaginary
roots or factors of a homogeneous function of two variables and of the nth degree may be shown to
be immediately dependent upon the determination of the specific nature of a concomitant
homogeneous function of the 2nd degree and of (n— 1) variables. For instance, if any ordinary
algebraical equation of the 5th degree be given, a homogeneous quadratie funetion of four variables
may be constructed, representing, consequently, a surface of the 2nd degree [the coefficients
of which (as indeed is true whatever be the degree of the equation) will be quadratic functions
of the coefficients of the given equation]; and such that, according as the surface so represented
belongs to the class of (1), impossible surfaces; (2), the ellipsoid or hyperboloid of two sheets;
(3), the hyperboloid of one sheet ; the given equation will have 5, 3, or only 1 real root! Moreover,
an equality between two of the roots of the equation will be denoted by the loss of one order
in the associated quadratic function ; and so many orders altogether will be lost as there are
independent equalities existing between the roots. An entirely new light is thus thrown on
M. Sturm’s theorem ; and the number of real and imaginary roots in an equation is for the first
time made to depend upon the signs of functions symmetrically constructed in respect to the two
ends of the equation, which has long been felt as a desideratum.
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The matrix formed out of the coefficients of the linear derivatives becomes

g,
i it R 5
g
m, W,

PR
i 3 m

Now by the homaloidal law, if the terms in this rectangle were all unlike,
the number of full determinants (3 terms by 3 terms) whose evanescence
(except for special values) determines the evanescence of all the rest, should
be (6 -3+1)(3—8+1), that is 4; but in the actual case, since the
evanescence of all the full determinants is a necessary consequence of the
function becoming a cubic function of two orders (that is, breaking up into the
product of three linear functions of «, y, z), and as this decomposability, as is
well known, implies only the existence of three affirmative conditions, the four
full determinants

&, 5,3 A . " [ ol g e o
9y by i1y 1 Fyiby i A | Pl W,
i, h, ¢ m, I/, h 1, m, i f "5 m

* That is to say, a syzygetic relation must connect these four determinants. I may as well
here repeat, that when the vanishing of a set of i rational integral functions necessarily,
and without cases of exception, implies the vanishing of another rational integral function,
then this function is termed a syzygetic function of the others; and some power of it must be
expressible under the form of a sum of i binary products of rational integral functions, one
factor of each of which products must be one of the i given functions. When the vanishing of
all but one of a set of functions in general necessarily implies the vanishing of that one, but
subject to cases of exception for specific values of the variables, then it can only be affirmed
that the functions of the set are in syzygy ; that is to say, that the sum of the products of each !
of them respectively by some rational integral function will be zero: the equation expressing
this relation is termed a syzygetic equation,

Thus, if we take the three full determinants that can be formed out of the matrix
-Vl
b, 5’

L
that is af—ba, by-cB, ca-ay,

these are in syzygy, for we can form the equation
¢ (af - ba)+a(by—-cB)+b (ca-ay)=0.
This, however, is not the only equation of the kind that can be formed, for
7 (@B - ba)+a (by - cB) + 8 (ca-ay)=0
is algo identically true. 'We see in this case that the evanescence of any two of the three functions
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which in the general case would be entirely independent, in this case cease
to be so; and the vanishing of three of them must draw along with it by
necessary implication (except for special values) the evanescence of the 4th,
for thus only can the necessary conformity between the number of affirmative
conditions and the number of unimplicated equations come to take effect.
The clear and direct putting in evidence of this peculiar species of implication
demands and deserves to be minutely considered; and as it must in part
borrow its explanation from the very little yet known of syzygetic relations,
so it must also throw new light on that great and important, but as yet
unformed and scarcely more than nascent theory.

In conclusion, it is apparent from the demonstration above given, that
when U, a function of n variables, becomes expressible as a function of
(n —r) orders, these orders may be taken respectively any independent linear
functions of the linear derivatives of U, which remark completes the theory
of functions subject to the loss of one or more orders. It is obvious (and I
am indebted to my esteemed friend Mr Cayley for the remark), that the
conditions furnished as above by the (m — 1)th, that is linear derivatives,
are identical with and may be more elegantly replaced by those involved
in the assertion of the existence of linear relations between the 1st or
(m—1)th degreed derivatives, and we have then this very simple rule;
if @, @ function of @, @,... 2y, 1s expressible as a function of n—r linear
JSunctions of @, @, ... @, 1t is necessary and sufficient that r independent linear
relations shall exvst between

dp dp do

a—;;, dxz...dxn.

aB-ba; by—cfB; ca—ay will in general imply the third, subject, however, to special cases of
exception. Thus, if the 1st and 2nd vanish, the 3rd must vanish unless b and B8 both vanish;
if the 2nd and 3rd vanish, the 1st must vanish unless ¢ and 5 both vanish; if the 3rd and
1st vanish, the second will vanish unless a and a both vanish. It will thus be seen that a
peculiar species of astricted syzygy obtains between the three proposed functions, which enables us
to affirm that in general, and except under extra special conditions, all three must vanish simul-
taneously. If two out of the three vanish, and the 3rd does not vanish, it is not merely (as might
at the first blush of the theory of syzygy be conjectured) because some one other function vanishes
in its place, but necessarily because a plurality of entirely independent functions (two simple letters
as it happens here) each separately vanish. Thus we see how all but one of a set of functions
X1s Xo --- Xn MY in general, and yet not universally, necessarily vanish when all the rest vanish :
to say that one syzygetic equation such as

XX FxeXe F o X X' =0

obtains, is not enough to explain the circumstances of the case; the fact is, that several distinct
systems of values of x,’, Xy’ ... X' Will be found capable of satisfying the equation, so that each
of the functions x;, Xo... X, Will have a system of syzygetic factors attached to it, and these
unrelated, in the wide sense that, if we take x,’, x,”, any two of the syzygetic factors attached
t0 X, they will not be in syzygy with x;, Xa ... Xn—y ; S0 that when these (n - 1) functions vanish,
the vanishing of x,’ and x,’ represents two distinct and completely independent conditions.
Thus, in fine, the mutual implication of functions will in general denote the possibility of forming
a series of syzygetic equations between them,—a remark, this, of no minor importance.
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This rule itself also, it is evident, is capable -of an independent and
immediate demonstration by means of integrating the partial differential
equation or equations by which it admits of being expressed. The above
theory may readily be extended to furctions of several systems of variables.
Thus, for instance, the determinant
B e B |

|

i
| af’ bl, G’

i ai!, bﬂ’ c”

vanishing will be indicative of the function
axu+b av+caw
+a'yu+byv+cywp»
+ a"zu + b"zv + ¢ 2w
being linearly equivalent to a function of the form
{ Aa'v' + Bw’v’}
+ Cy's’ + Dy'v
that is losing an order in respect of each of the two systems #, y, z; w, v, w;
and so in general.
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