
59.

ON Mr CAYLEY’S IMPROMPTU DEMONSTRATION OF THE 
RULE FOR DETERMINING AT SIGHT THE DEGREE OF 
ANY SYMMETRICAL FUNCTION OF THE ROOTS OF AN 
EQUATION EXPRESSED IN TERMS OF THE COEFFICIENTS.

[Philosophical Magazine, v. (18δ3), pp. 199—202.]

For a considerable time past, among the few cultivators of the higher 
algebra, a proposition relative to the theory of the symmetrical functions 
of the roots of an equation has been in private circulation, which, to say 
nothing of the important applications of which it has been found susceptible 
to the calculus of forms, merits (by reason of its extreme simplicity), although, 
strange to say, it has, I believe, not yet obtained, a place in elementary 
treatises on algebra. The proposition alluded to I have reason to think 
first came to be observed in connexion with my well-known formulae for 
Sturm’s auxiliary functions in terms of the roots given in this Magazine. 
The theorem is briefly as follows. If a, b, c, &c. be the roots of an equation

any symmetric function such as where α, β, 7 ... are positive
integers arranged according to the order of their magnitudes in a descending 
(or, to speak more strictly, non-ascending) order, when expressed as a function 
of the coefficients, will be made up of terms of the form ... 79*®*, such
that θy + + θs + ... + θic will be equal to α for some terms, but will for no
term exceed a; α being, as above described, that one of the indices a, β, 7... 
which is not less than any of the others.

I bad prepared, and indeed despatched, a somewhat elaborate proof 
of this theorem for the Cambridge and Dublin Mathematical Journal', but 
on proceeding to explain my method to Mr Cayley, elicited from that sagacious 
analyst the following excellent impromptu, which I think too valuable to be 
lost; and as it is now a twelvemonth or two since our conversation on the 
subject took place, and the author has not cared to put it on record, I feel
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myself under an obligation so to do, the more so as it entirely supersedes the 
comparatively inelegant demonstration of my own which I had previously 
intended to publish.

The method rests essentially on the following well-known theorem given 
by Euler relative to the partition of numbers; to wit, that the number of 
ways of breaking up a number n into parts is the same, whether we impose 
the condition that the number of parts in any partitionment shall not exceed 
m, or that the magnitude of any one of the parts shall not exceed m. 
Of this rule more hereafter—for the present to its application to the matter 
in hand.

Since α, b, c ... are the roots of x^ + + ..., we have

,Pι = α+ δ + c+ ...

P2 = ab + ac + be + ...

jt>3 = abc + abd + acd + ...

Let α + y8+γ + ...= n, none of the quantities α, β, γ... being greater 
than ∕n, but α, β, 7 ... being otherwise arbitrary and capable of becoming 
equal to any extent inter se. Also let λ + μ + v + ... = n, the number of 
quantities λ, μ,, v, &c. being never greater than m, but the quantities 
themselves being otherwise arbitrary, and being capable of becoming equal 
to any extent inter se. By Euler’s rule the number of systems α, /3, 7 ... is 
the same as of the systems λ, μ,, v..., say P for each. For any system 
λ, μ, V ..., we shall hase ρ^ρμ,ρ^... , by virtue of the equations above written, 
expressible as the sum of terms of the form c* ...; it may easily be
made ostensible, that all the combinations of a, β, y ... subject to the above 
prescribed conditions must come into evidence by giving λ, μ, v ... all the 
variations of which they admit; but this is also immediately obvious indirectly 
from the consideration, that were it otherwise, linear relations would subsist 
between the different values oi ρ^,ρ^ρ,..., which is obviously absurd. Hence, 
then, we shall be able to express the P quantities of the form pκPμ,-∙. by 
means of linear functions of the P quantities Σα“ b^ ...; and conversely, 
by solving the linear equations thus arising, the P quantities ∑α*6^c^... 
may be expressed in terms of the quantities p^p^...’, consequently ...,
where m is greater or not less than any of the quantities β, y ..., will be 
expressible by means of combinations p^pμ,..., where the number of co
efficients pκp∣^... (any number of which may become identical) is for some 
of the combinations as great as, but for none of the combinations greater 
than m, as was to be proved. It will of course be seen that, for the 
purposes of the demonstration above given, it would have been sufficient 
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to have been able to assume that the number of partitions, when the greatest 
part is not allowed to exceed -m, is not greater than the number of partitions 
when the number of parts in any one partitionment does not exceed w. 
The equality of these two numbers would then evince itself in the course of 
the demonstration as a consequence of this assumption.

A word now as to Euler’s beautiful law upon w⅛ich the above demon
stration is based.

A corollary from it, obtained by subtracting the equation which it gives 
when the limiting number is taken (m— 1) from the equation which it gives 
when the limiting number is m, will be the following proposition. The 
number of modes of partitioning n into m parts is equal to the number 
of modes of partitioning n into parts, one of which is always m, and the 
others m or less than m. This proposition was mentioned to me by 
Mr N. M. Ferrers*, whose demonstration of it (probably not different from 
that of Euler’s for the other proposition, of which it may be viewed as a 
corollary) is so simple and instructive, that I am sure every logician will be 
delighted to meet with it here or elsewhere. It affords a most admirable 
example of that rather uncommon kind of reasoning whereby two abstract 
integers are proved to be equal indirectly, by showing that neither can be 
greater than the other.

If there be a group of A’s and a group of £’s, and every Λ can be shown 
to produce a £, and every £ can be shown to produce an A, no matter 
whether the A producing a £ is the same as, or different from, the A 
produced by that £, it is obvious that the number of A’s cannot exceed that 
of the B’s, nor of the B’s that of the A’s, and the two numbers will therefore 
be equal.

Take any such grouping as 3, 3, 2, 1, say A. This may be written as

1, 1, 1
1, 1, 1
1, 1,

1,
and by reading off the columns as lines, may be transformed into the group

1, 1, 1. 1
1, 1, 1

1, 1
that is 4, 3, 2, say B.

* I learn from Mr Ferrers that this theorem was brought under his cognizance through a 
Cambridge examination paper set by Mr Adams of Neptune notability.
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In A the number of parts is 4. In B the greatest part is 4; the others 
might be (although they happen not in this particular instance to be) 4, but 
cannot be greater than 4. And so every A in which the number of parts 
is 4 will give rise to a B in which 4 is one of the parts, and every other part 
is 4 or less, and evidently (although, as above remarked, this is immaterial 
to the demonstration) every such B gives reciprocally the same A from which 
it is itself derived; hence the number of A’s and B’s is equal. This is the 
theorem which, for the sake of distinction, I have called the Corollary to 
Euler’s. Euler’s own is proved by the same diagram; for if we define A 
as a grouping where the number of parts does not exceed 4, we get a definition 
of j? as a grouping where the greatest part does not exceed 4, and so in 
general. We see that this theorem may be varied also by affirming that the 
number of ways in which n may be broken up, so that there shall never 
be less than m parts, is the same as the number of ways in which it may 
be broken up into parts, the greatest of which in any one way is not less 
than m. So, again, a similar diagram makes it apparent, that if we break 
up each of i numbers into parts so that the sum of the greatest parts shall 
not exceed (or be less than) m, the number of ways in which this can be done 
will be the same as the number of ways in which these i numbers can be 
simultaneously partitioned so that the total number of parts in any simul
taneous partitionment shall never exceed (or never be less than) m; and 
doubtless an extensive range of analogous general theorems relative to the 
partitioning of numbers may be struck out by aid of the same diagram, 
by no means easily demonstrable unless this simple mode of conversion happen 
to be thought of, but in that event becoming intuitively apparent. This 
mode of conversion is precisely that (only applied to a more general state 
of things) whereby, in elementary arithmetic, it is established that m times 
n is the same as n times m. A consideration of the process by which 
the mind satisfies itself of the universality of this law, has been always 
sufficient to convince me of the absurdity of ascribing to an inductive process 
the capacity of the human mind for forming general ideas concerning 
necessary relations.
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