3.

NOTE ON SIR JOHN WILSON'S THEOREM.

[Cambridge and Dublin Mathemutical Journal, Ix. (1854), pp. 84, 85.]
The following is probably the best and the briefest mode of deducing Sir John Wilson's Theorem and its cognate Theorems from Fermat's. I can say nothing as to its originality.
p being any prime number, let $(x-1)(x-2)(x-3) \ldots\{x-(p-1)\}=x^{p-1}+A_{1} x^{p-2}+A_{2} x^{p-3}+\& c .+A_{p-1}$.

Let x successively take the values $1,2,3, \ldots(p-1)$; then to modulus p, by Fermat's Theorem, we have

$$
x^{p-1}+A_{p-1} \equiv 1+A_{p-1}, \text { say } A_{0}
$$

and we derive the $(p-1)$ congruences to modulus p :

$$
\begin{aligned}
& A_{0}+A_{1}+A_{2}+A_{3} \ldots \ldots \ldots \ldots \ldots+A_{p-2} \equiv 0 \\
& A_{0}+2^{p-2} A_{1}+2^{p-3} A_{2}+2^{p-4} A_{3} \ldots+2 A_{p-2} \equiv 0 \\
& A_{0}+3^{p-2} A_{1}+3^{p-3} A_{2}+3^{p-4} A_{3} \ldots+3 A_{p-2} \equiv 0
\end{aligned}
$$

$$
A_{0}+(p-1)^{p-2} A_{1}+(p-1)^{p-3} A_{2}+(p-1)^{p-4} A_{3} \ldots+(p-1) A_{p-2} \equiv 0
$$

Now the determinant formed by the coefficients of

$$
A_{0}, A_{1}, A_{2}, \ldots A_{p-2}
$$

is $1.2 .3 \ldots(p-1)$ multiplied into the product of the differences of $1,2,3, \ldots(p-1)$, and is therefore incongruent to zero for the modulus p. Hence, there being ($p-1$) independent homogeneous congruences between ($p-1$) quantities, each of these quantities must be congruent to zero, that is

$$
A_{0} \equiv 0, A_{1} \equiv 0, \ldots A_{p-2} \equiv 0[\bmod . p]
$$

The congruence $A_{0} \equiv 0$, that is $1+1 \cdot 2.3 \ldots(p-1) \equiv 0[\bmod p]$, is evidently Sir John Wilson's Theorem. We see also (by virtue of the remaining equations) at the same time, that the sums of the binary, ternary, \&c., up to the $(p-2)^{\text {ary }}$ combinations of the numbers $1,2,3, \ldots(p-1)$, are all severally congruent to zero to the modulus p; that is, are all divisible by that number.

