23.

NOTE ON THE EQUATION IN NUMBERS OF THE FIRST DEGREE BETWEEN ANY NUMBER OF VARIABLES WITH POSITIVE COEFFICIENTS.
[Philosophical Magazine, xvi. (1858), 369-371.]
I propose to show that all the systems of values $(x, y, z \ldots w)$ which satisfy a given equation in integers,

$$
a x+b y+c z+\ldots+l w=n
$$

($(a, b, c \ldots l)$ being all positive, and the number of systems therefore definite), may be made to depend on algebraical equations whose coefficients are known functions of $a, b, c \ldots l$ and n. The fact is somewhat surprising, the proof easy, being an immediate consequence of the theorem I have given* in the Quarterly Journal of Mathematics, and also in Tortolini's Annali for January 1857, of the problem of the partition of numbers.

For my present purpose, this theorem may be with advantage presented under a somewhat modified form as follows :-Let $\Theta(F t)$ be used to denote the coefficient of $\frac{1}{t}$ in the expansion of Ft in ascending powers of t. Let N stand for the number of solutions of the equation

$$
a x+b y+c z+\ldots+l w=n
$$

let m be the least common multiple of $a, b, c, \ldots l$,
ρ be any primitive root of $\rho^{m}=1$,
and $\rho e^{-p t}$ be called Λp; then

$$
N=\Sigma \Theta\left\{\frac{\Lambda(-n)}{(1-\Lambda a)(1-\Lambda b) \ldots(1-\Lambda l)}\right\} .
$$

If now we call N^{\prime} what N becomes when, in lieu of the equation
we write

$$
\begin{equation*}
a x+b y+c z+\ldots+l w=n, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a x^{\prime}+a x^{\prime \prime}+b y+c z+\ldots+l w=n \tag{2}
\end{equation*}
$$

[* p. 90 above.]
it is clear that

$$
N^{\prime}=\Sigma \Theta\left\{\frac{\Lambda(-n)}{(1-\Lambda a)^{2}(1-\Lambda b) \ldots(1-\Lambda l)}\right\} .
$$

But it is also clear that all the solutions of equation (2) may be derived from those of equation (1), by writing for each value of x

$$
\begin{equation*}
x^{\prime}+x^{\prime \prime}=x \tag{3}
\end{equation*}
$$

and as the number of solutions of equation (3) is evidently $x+1$, we have $N^{\prime}=\Sigma x+N$, or

$$
\Sigma x=\Sigma \Theta\left\{\frac{\Lambda a \cdot \Lambda(-n)}{(1-\Lambda a)^{2}(1-\Lambda b) \ldots(1-\Lambda l)}\right\} .
$$

In like manner, if we write

$$
a x^{\prime}+a x^{\prime \prime}+a x^{\prime \prime \prime}+b y+c z+\ldots+l w=n
$$

the solutions of this equation spring from those of equation (1) by making $x^{\prime}+x^{\prime \prime}+x^{\prime \prime \prime}=x$, the number of solutions of which equality is $\frac{1}{2}(x+1)(x+2)$: wherefore

$$
\Sigma \frac{x^{2}+3 x+2}{2}=\Sigma \Theta\left\{\frac{\Lambda(-n)}{(1-\Lambda a)^{3}(1-\Lambda b) \ldots(1-\Lambda l)}\right\} ;
$$

from which we may readily deduce, by aid of what has been already shown,

$$
\Sigma x^{2}=\Sigma \Theta \frac{(\Lambda a)(1+\Lambda a) \Lambda(-n)}{(1-\Lambda a)^{3}(1-\Lambda b) \ldots(1-\Delta l)}
$$

and so in general,

$$
\Sigma x^{i}=\Sigma \Theta \frac{\Lambda(a)(1+\Lambda a) \ldots\{(i-1)+\Lambda a\}}{(1-\Lambda a)^{i+1}(1-\Lambda b) \ldots(1-\Lambda l)}
$$

Again, if we write

$$
\begin{equation*}
a x+b y_{1}+b y_{2}+\ldots+b y_{\mathrm{e}}+c z+\ldots+l w=n \tag{4}
\end{equation*}
$$

we shall find by parity of reasoning (seeing that in this last equation the solutions may be derived from those of equation (1) by keeping $x, z, \ldots w$ all unaltered, whilst we give to $y_{1}, y_{2} \ldots y_{e}$ all the values compatible with $y_{1}+y_{2}+\ldots+y_{\mathrm{e}}=y$), the value of Σx^{i} in equation (4) will be the same as that of

$$
\Sigma x^{i} \cdot \frac{(y+1)(y+2) \ldots(y+\epsilon)}{1.2 \ldots \epsilon}
$$

in equation (1). Wherefore we shall evidently obtain

$$
\Sigma x^{i} \cdot y^{e}=\Sigma \Theta \frac{\Lambda a(1+\Lambda a) \ldots\{(i-1)+\Lambda a\} \times \Lambda b(1+\Lambda b) \ldots\{(\epsilon-1)+\Lambda b\}}{(1-\Lambda a)^{i+1}(1-\Lambda b)^{e+1}(1-\Lambda c) \ldots(1-\Lambda l)}
$$

the extension of the theorem to $\Sigma x^{i} \cdot y^{e} \cdot z^{\omega} \ldots$ is too obvious to need further allusion.

Thus, then, to find $x_{1}, x_{2} \ldots x_{N}$, we may begin by forming an equation of the N th degree, whose coefficients are known, because the sums of the powers of the roots are given. Supposing these roots to consist of N_{1} values x_{1}, N_{2} values $x_{2}, \ldots N_{\mu}$ values x_{μ}, the solution of μ simple equations will enable us to find the sum of the N_{1} values of y corresponding to x_{1}, the sum of the N_{2} values of y corresponding to $x_{2} \ldots$, and the sum of the N_{μ} values of y corresponding to x_{μ}. To effect this, we have only to write down the values of $\Sigma x y, \Sigma x^{2} y, \ldots \Sigma x^{\mu} y$. In like manner we may find the sum of the N_{1} values of y^{2} corresponding to x_{1}, the N_{2} values of y^{2} corresponding to x_{2}, \&c., and so in general for y^{ω}. Thus, then, we may obtain the requisite number of sets of equations for determining independently by means of equations of the degrees $N_{1}, N_{2}, \ldots N_{\mu}$ respectively the values of y corresponding to each of the distinct values of x; and in like manner for all the other variables. The principal interest of this note consists, however, in the appreciation of the fact that we can represent algebraically, as has been shown above, the value of $\Sigma x^{\alpha} \cdot y^{\beta} \cdot z^{\gamma} \ldots$, where the sign of summation extends over all the simultaneous solutions of

$$
a x+b y+c z+\& c .=n
$$

This is a considerable advance upon the conception (itself before my discovery entirely unrecognized*) of the explicit representability of the mere number of the solving systems $x, y, z \ldots$ by general algebraical formulæ. By this new theorem we pass, as it were, from the shadow to the substance.

[^0]
[^0]: * As witness the comparatively unfructuous labours of Paoli, Herschel, Kirkman, and even of Cayley. But as honest labour is seldom entirely wasted, so in the present case it was my valued friend Mr Kirkman's Manchester memoir on partitions which first drew and fixed my attention on the subject.

