35.

ON THE EQUATION

$P(m)+E\left(\frac{m}{m-1}\right) P(m-1)+E\left(\frac{m}{m-2}\right) P(m-2)+\ldots+E(m)=m \frac{m+1}{2}$.
[Quarterly Journal of Mathematics, III. (1860), pp. 186-190.]
$P(m)$ I use to denote the number of integers less than m and prime to it except when $m=1$, in which case $P(m)=1 . E\left(\frac{m}{r}\right)$ I use to denote the integer part of $\frac{m}{r}$, or the whole of $\frac{m}{r}$ if $\frac{m}{r}$ is an integer.

Then evidently if we use $\frac{m}{r}$; to denote unity when m contains r and zero in all other cases

$$
E\left(\frac{m}{r}\right)-E\left(\frac{m-1}{r}\right)=\frac{m}{r ;}
$$

Again, it is well known that the factors of any binomial function, as for instance $x^{12}-1$, are made up of the prime factors of all the binomial factors of $x^{12}-1$ as $x^{2}-1, x^{3}-1, x^{4}-1, x^{6}-1, x^{12}-1$, and consequently that

$$
m=\frac{m}{1 ;} P(1)+\frac{m}{2 ;} P(2)+\frac{m}{3 ;} P(3)+\ldots+\frac{m}{m ;} P(m)
$$

which equation may also be easily proved independently (vide note at end).
Let now

$$
\begin{aligned}
& E\left(\frac{m}{m}\right) P(m)+E\left(\frac{m}{m-1}\right) P(m-1)+E\left(\frac{m}{m-2}\right) P(m-2) \\
&+\ldots+E\left(\frac{m}{1}\right) P(1)=u_{m}
\end{aligned}
$$

Then

$$
\begin{aligned}
E\left(\frac{m-1}{m-1}\right) P(m-1)+E & \left(\frac{m-1}{m-2}\right) P(m-2) \\
& +\ldots+E\left(\frac{m-1}{1}\right) P(1)=u_{m-1}
\end{aligned}
$$

s. II.

Hence

$$
\begin{gathered}
u_{m}-u_{m-1}=\frac{m}{m ;} P(m)+\frac{m}{m-1 ;} P(m-1)+\ldots+\frac{m}{1 ;} P(1)=m . \\
u_{m}=m \frac{m+1}{2}+C
\end{gathered}
$$

and since $u_{1}=1$ we must make $C=0$, and

$$
u_{m}=m \frac{m+1}{2}
$$

as was to be shown.
Note.-Proof of the equation

$$
P(m)+\frac{m}{(m-1) ;} P(m-1)+\frac{m}{(m-2) ;} P(m-2)+\ldots+1=m
$$

Let $a, b, c \ldots$ be the prime factors of m, so that

$$
m=a^{\alpha} \cdot b^{\beta} \cdot c^{\gamma} \ldots,
$$

and, for example, suppose

$$
m=a^{\alpha} \cdot b^{\beta} \cdot c^{\gamma} .
$$

Then the numbers contained in m may be divided into groups as follows: one group in which a, b, c all appear, another in which only two of the letters a, b, c appear, a third in which only one of them appears, and finally unity in which none of them appears.

The sum of the numbers of integers prime to m and less than it for the factors in the first group

$$
\begin{aligned}
& =\left(a^{\alpha-1}+a^{\alpha-2}+\ldots+1\right)\left(b^{\beta-1}+b^{\beta-2}+\ldots+1\right)\left(c^{\gamma-1}+c^{\gamma-2}+\ldots+1\right) \\
& =\left(a^{\alpha}-1\right)\left(b^{\beta}-1\right)\left(c^{\gamma}-1\right) .
\end{aligned}
$$

In like manner the sum of the numbers of such integers for the factors in the second group

$$
=\left(a^{\alpha}-1\right)\left(b^{\beta}-1\right)+\left(a^{a}-1\right)\left(c^{y}-1\right)+\left(b^{\beta}-1\right)\left(c^{\gamma}-1\right),
$$

for the third group

$$
=\left(a^{a}-1\right)+\left(b^{\beta}-1\right)+\left(c^{y}-1\right),
$$

and for unity

$$
=1 \text {. }
$$

Hence the total sum of such factors

$$
\begin{aligned}
& =a^{\alpha} \cdot b^{s} \cdot c^{\gamma} \\
& =m,
\end{aligned}
$$

as was to be shown, and so in the like manner whatever may be the number of prime constituents $a, b, c \ldots$ in m.
Q. E. D.
P.S. 1. By successive integration the theorem first established may be generalized, and preserving the same notations as before, it emerges into the following proposition: [cf. the form below]

$$
\begin{gathered}
\sum_{\infty}^{0} P\left(i^{r}\right) \times\left[\frac{\left(E \frac{m}{i}\right)\left(E \frac{m}{i}+1\right) \ldots\left\{E \frac{m}{i}+(r-1)\right\}}{1.2 \ldots r}\right] \\
=\sum_{m}^{m}\left(m^{r}\right) \\
r=2 .
\end{gathered}
$$

Thus let

Then

$$
\begin{aligned}
& \sum_{\infty}^{0} P\left(i^{2}\right)\left\{\frac{\left(E \frac{m}{i}\right)\left(E \frac{m}{i}+1\right)}{2}\right\} \\
& =\Sigma m^{2}=\frac{m(m+1)(2 m+1)}{2.3}
\end{aligned}
$$

or observing that

$$
\begin{gathered}
P\left(i^{q}\right)=i^{q-1} \cdot P(i) \\
\sum_{\infty}^{0} i P(i)\left\{E\left(\frac{m}{i}\right) E\left(\frac{m}{i}+1\right)\right\} \\
=\frac{m(m+1)(2 m+1)}{3}
\end{gathered}
$$

Example, let

$$
m=5
$$

$$
\begin{array}{ll}
5 P(5)=20, & \\
4 P(4)=8, & E\left(\frac{5}{4}\right)=1, \\
3 P(3)=6, & E\left(\frac{5}{3}\right)=1, \\
2 P(2)=2, & E\left(\frac{5}{2}\right)=2, \\
& E\left(\frac{5}{1}\right)=5,
\end{array}
$$

$$
\begin{aligned}
& 20 \times 2+8 \times 2+6 \times 2+2 \times 6+5 \times 6 \\
& =110, \\
& \quad \frac{5 \times 6 \times 11}{3}=110
\end{aligned}
$$

Or we may use the theorem under the form following:

$$
\sum_{n}^{1}\left[P\left(i^{r}\right) \times S\left\{E\left(\frac{n}{i}\right)\right\}^{r-1}\right]=S\left(n^{r}\right)
$$

where it is to be observed that

$$
S q^{r} \text { means } 1^{r}+2^{r}+\ldots+q^{r}
$$

Example, let

$$
r=3,
$$

then

$$
\begin{gathered}
S\left(E \frac{n}{i}\right)^{2}=\frac{\left(E \frac{n}{i}\right)\left(E \frac{n}{i}+1\right)\left(2 E \frac{n}{i}+1\right)}{2 \cdot 3}, \\
S n^{3}=\left\{n\left(\frac{n+1}{2}\right)\right\}^{2}, \\
\sum_{n}^{1}\left\{P\left(i^{3}\right) \times \frac{\left.\left(E \frac{n}{i}\right)\left(E \frac{n}{i}+1\right)\left(2 E \frac{n}{i}+1\right)\right\}}{6}\right\} \\
=\left(n \frac{n+1}{2}\right)^{2} .
\end{gathered}
$$

Thus let

$$
n=4,
$$

then

$$
\begin{gathered}
E\left(\frac{4}{4}\right)=1, \frac{1 \cdot 2 \cdot 3}{2 \cdot 3}=1, \quad P\left(4^{3}\right)=16 \times 2=32, \\
E\left(\frac{4}{3}\right)=1, \frac{1 \cdot 2 \cdot 3}{2 \cdot 3}=1, \quad P\left(3^{3}\right)=9 \times 2=18, \\
E\left(\frac{4}{2}\right)=2, \frac{2 \cdot 3 \cdot 5}{2 \cdot 3}=5, \quad P\left(2^{3}\right)=4 \times 1=4, \\
E\left(\frac{4}{1}\right)=4, \frac{4 \cdot 5 \cdot 9}{2 \cdot 3}=30, P\left(1^{3}\right)= \\
32+18+20+30=100, \\
\left(\frac{4 \cdot 5}{2}\right)^{2}=100 .
\end{gathered}
$$

P.S. 2. The fundamental theorem in its simplest terms is as follows :

If $i_{1}, i_{2} \ldots i_{r}$ be any arbitrary positive integers

$$
n^{r}=(\Sigma)^{r}\left[P\left\{\left(i_{1}\right)^{r-1}\right\} P\left\{\left(i_{2}\right)^{r-2}\right\} \ldots P\left(i_{r-1}\right) \times \frac{n}{i_{1} i_{2} \ldots i_{r}}\right]
$$

the $(\Sigma)^{r}$ meaning merely the sign of summation r times repeated.
Example, let
4 is divisible by

$$
\begin{gathered}
r=2, \quad n=4 \\
1 \times 1,2 \times 1,4 \times 1 \\
1 \times 2,2 \times 2 \\
1 \times 4, \\
P(1)=1, P(2)=1, P(4)=2, \\
1 \times 1 \times 1+1 \times 1 \times 1+1 \times 1 \times 2 \\
+2 \times 1 \times 1+2 \times 1 \times 1 \\
+4 \times 2 \times 1 \\
=4+4+8=16=4^{2} .
\end{gathered}
$$

It is obvious that this theorem must be capable of being reduced to an algebraical identity by writing $n=a^{\alpha} \cdot b^{\beta} \cdot c^{\gamma} \ldots$ as I have shown in the note above for the case $r=1$.

The proof is left to the ingenuity of the reader.

