ON THE EQUATION

$$P\left(m\right)+E\left(\frac{m}{m-1}\right)P\left(m-1\right)+E\left(\frac{m}{m-2}\right)P\left(m-2\right)+\ldots+E\left(m\right)=m\frac{m+1}{2}\,.$$

[Quarterly Journal of Mathematics, III. (1860), pp. 186—190.]

P(m) I use to denote the number of integers less than m and prime to it except when m=1, in which case P(m)=1. $E\left(\frac{m}{r}\right)$ I use to denote the integer part of $\frac{m}{r}$, or the whole of $\frac{m}{r}$ if $\frac{m}{r}$ is an integer.

Then evidently if we use $\frac{m}{r}$; to denote unity when m contains r and zero in all other cases

$$E\left(\frac{m}{r}\right) - E\left(\frac{m-1}{r}\right) = \frac{m}{r};$$

Again, it is well known that the factors of any binomial function, as for instance $x^{12}-1$, are made up of the prime factors of all the binomial factors of $x^{12}-1$ as x^2-1 , x^3-1 , x^4-1 , x^6-1 , $x^{12}-1$, and consequently that

$$m = \frac{m}{1}$$
; $P(1) + \frac{m}{2}$; $P(2) + \frac{m}{3}$; $P(3) + \dots + \frac{m}{m}$; $P(m)$,

which equation may also be easily proved independently (vide note at end).

Let now

$$E\left(\frac{m}{m}\right)P\left(m\right)+E\left(\frac{m}{m-1}\right)P\left(m-1\right)+E\left(\frac{m}{m-2}\right)P\left(m-2\right)\\ +\ldots+E\left(\frac{m}{1}\right)P\left(1\right)=u_{m}.$$
 Then
$$E\left(\frac{m-1}{m-1}\right)P\left(m-1\right)+E\left(\frac{m-1}{m-2}\right)P\left(m-2\right)\\ +\ldots+E\left(\frac{m-1}{1}\right)P\left(1\right)=u_{m-1}.$$
 s. II.

Hence
$$u_m - u_{m-1} = \frac{m}{m}$$
; $P(m) + \frac{m}{m-1}$; $P(m-1) + \dots + \frac{m}{1}$; $P(1) = m$.
Hence $u_m = m \frac{m+1}{2} + C$,

and since $u_1 = 1$ we must make C = 0, and

$$u_m = m \, \frac{m+1}{2} \, ,$$

as was to be shown.

Note.—Proof of the equation

$$P(m) + \frac{m}{(m-1)}$$
; $P(m-1) + \frac{m}{(m-2)}$; $P(m-2) + \dots + 1 = m$.

Let a, b, c... be the prime factors of m, so that

$$m = a^{\alpha} \cdot b^{\beta} \cdot c^{\gamma} \dots$$

and, for example, suppose

$$m = a^{\alpha} \cdot b^{\beta} \cdot c^{\gamma}$$
.

Then the numbers contained in m may be divided into groups as follows: one group in which a, b, c all appear, another in which only two of the letters a, b, c appear, a third in which only one of them appears, and finally unity in which none of them appears.

The sum of the numbers of integers prime to m and less than it for the factors in the first group

$$= (a^{a-1} + a^{a-2} + \dots + 1) (b^{\beta-1} + b^{\beta-2} + \dots + 1) (c^{\gamma-1} + c^{\gamma-2} + \dots + 1) \times (a-1) (b-1) (c-1)$$

$$= (a^a - 1) (b^{\beta} - 1) (c^{\gamma} - 1).$$

In like manner the sum of the numbers of such integers for the factors in the second group

$$= (a^{\alpha} - 1) (b^{\beta} - 1) + (a^{\alpha} - 1) (c^{\gamma} - 1) + (b^{\beta} - 1) (c^{\gamma} - 1),$$

for the third group

$$= (a^{\alpha} - 1) + (b^{\beta} - 1) + (c^{\gamma} - 1),$$

and for unity

= 1.

Hence the total sum of such factors

$$= a^{\alpha} \cdot b^{\beta} \cdot c^{\gamma}$$
$$= m,$$

as was to be shown, and so in the like manner whatever may be the number of prime constituents $a, b, c \dots$ in m.

Q. E. D.

P.S. 1. By successive integration the theorem first established may be generalized, and preserving the same notations as before, it emerges into the following proposition: [cf. the form below]

$$\begin{split} \Sigma_{_{\infty}}^{^{0}}P(i^{r})\times &\left[\frac{\left(E\,\frac{m}{i}\right)\left(E\,\frac{m}{i}+1\right)\ldots\left\{E\,\frac{m}{i}+(r-1)\right\}}{1\,.\,2\,\ldots\,r}\right]\\ &=\tilde{\Sigma}_{_{m}}^{^{1}}\left(m^{r}\right). \end{split}$$

Thus let

Thus let

Then

$$\begin{split} &\Sigma_{_{x}}^{^{0}}P\left(i^{2}\right)\!\left\{\!\!\frac{\left(E\frac{m}{i}\right)\!\left(E\frac{m}{i}+1\right)\!}{2}\!\right\}\\ &=\Sigma m^{2}\!=\!\frac{m\left(m+1\right)\left(2m+1\right)}{2\cdot3}, \end{split}$$

or observing that

$$\begin{split} P\left(i^{q}\right) &= i^{q-1} \cdot P\left(i\right), \\ \Sigma_{\infty}^{i} i P\left(i\right) \left\{ E\left(\frac{m}{i}\right) E\left(\frac{m}{i}+1\right) \right\} \\ &= \frac{m\left(m+1\right)\left(2m+1\right)}{3} \, . \end{split}$$

Example, let

$$m = 5$$
,
 $5P(5) = 20$,
 $4P(4) = 8$, $E(\frac{5}{4}) = 1$,
 $3P(3) = 6$, $E(\frac{5}{3}) = 1$,
 $2P(2) = 2$, $E(\frac{5}{2}) = 2$,
 $E(\frac{5}{1}) = 5$,

 $20 \times 2 + 8 \times 2 + 6 \times 2 + 2 \times 6 + 5 \times 6$ = 110,

$$\frac{5\times 6\times 11}{3} = 110.$$

Or we may use the theorem under the form following:

$$\Sigma_{n}^{1} \left[P\left(i^{r}\right) \times S\left\{ E\left(\frac{n}{i}\right) \right\}^{r-1} \right] = S(n^{r}),$$

where it is to be observed that

$$Sq^r$$
 means $1^r + 2^r + \dots + q^r$.

15 - 2

then
$$S\left(E\frac{n}{i}\right)^2 = \frac{\left(E\frac{n}{i}\right)\left(E\frac{n}{i}+1\right)\left(2E\frac{n}{i}+1\right)}{2\cdot 3},$$

$$Sn^3 = \left\{n\left(\frac{n+1}{2}\right)\right\}^2,$$
 accordingly
$$\sum_{n}^{1} \left\{P\left(i^3\right) \times \frac{\left(E\frac{n}{i}\right)\left(E\frac{n}{i}+1\right)\left(2E\frac{n}{i}+1\right)}{6}\right\}$$

$$= \left(n\frac{n+1}{2}\right)^2.$$
 Thus let
$$n = 4,$$
 then
$$E\left(\frac{4}{4}\right) = 1, \ \frac{1\cdot 2\cdot 3}{2\cdot 3} = 1, \quad P\left(4^3\right) = 16\times 2 = 32,$$

$$E\left(\frac{4}{3}\right) = 1, \ \frac{1\cdot 2\cdot 3}{2\cdot 3} = 1, \quad P\left(3^3\right) = 9\times 2 = 18,$$

$$E\left(\frac{4}{3}\right) = 2, \ \frac{2\cdot 3\cdot 5}{2\cdot 3} = 5, \quad P\left(2^3\right) = 4\times 1 = 4,$$

$$E\left(\frac{4}{1}\right) = 4, \ \frac{4\cdot 5\cdot 9}{2\cdot 3} = 30, \quad P\left(1^3\right) = 1,$$

$$32 + 18 + 20 + 30 = 100,$$

$$\left(\frac{4\cdot 5}{2}\right)^2 = 100.$$

P.S. 2. The fundamental theorem in its simplest terms is as follows: If $i_1, i_2 \dots i_r$ be any arbitrary positive integers

$$n^{r} = (\Sigma)^{r} \left[P\left\{ (i_{1})^{r-1} \right\} P\left\{ (i_{2})^{r-2} \right\} \dots P\left(i_{r-1} \right) \times \frac{n}{i_{1}i_{2}\dots i_{r}} \right];$$

the $(\Sigma)^r$ meaning merely the sign of summation r times repeated.

Example, let
$$r=2, n=4,$$

4 is divisible by $1 \times 1, 2 \times 1, 4 \times 1,$
 $1 \times 2, 2 \times 2,$
 $1 \times 4,$
 $P(1)=1, P(2)=1, P(4)=2,$
 $1 \times 1 \times 1 + 1 \times 1 \times 1 + 1 \times 1 \times 2$
 $+2 \times 1 \times 1 + 2 \times 1 \times 1$
 $+4 \times 2 \times 1$
 $=4 + 4 + 8 = 16 = 4^2.$

It is obvious that this theorem must be capable of being reduced to an algebraical identity by writing $n = a^a \cdot b^{\beta} \cdot c^{\gamma} \dots$ as I have shown in the note above for the case r = 1.

The proof is left to the ingenuity of the reader.