51.

NOTE ON A DIRECT METHOD OF OBTAINING THE EXPANSION OF THE SINE OR COSINE OF MULTIPLE ARCS IN TERMS OF POWERS OF THE SINES OR COSINES OF THE SIMPLE ARC BY MEANS OF DE MOIVRE'S THEOREM.
[Quarterly Journal of Mathematics, IV. (1861), pp. 159-163.]
The annexed appears to be the most direct and natural method for obtaining the known formulæ for the expansion of the sines and cosines of multiple arcs.

We know by De Moivre's theorem, that

$$
\cos 2 n x=(\cos x)^{2 n}-2 n \cdot \frac{2 n-1}{2}(\sin x)^{2}(\cos x)^{2 n-2}+\& c
$$

Let $(\sin x)^{2}=\gamma$, then

$$
\begin{gathered}
\cos 2 n x=(1-\gamma)^{n}-2 n \frac{2 n-1}{2} \gamma(1-\gamma)^{n-1} \\
+2 n \frac{2 n-1}{2} \cdot \frac{2 n-2}{3} \cdot \frac{2 n-3}{4} \gamma^{2}(1-\gamma)^{n-2}, \& c . \\
=A_{0}-A_{1} \gamma+A_{2} \gamma^{2}-A_{3} \gamma^{3}, \& c .
\end{gathered}
$$

I use $\omega_{r} \phi x$ to indicate the coefficient of x^{r} in ϕx expanded in a series of powers of x. We have then

$$
A_{r}=P_{0} Q_{0}+P_{1} Q_{1}+P_{2} Q_{2}+\& \mathrm{c} \cdot
$$

where

$$
\begin{aligned}
& P_{0}=\omega_{r}(1+t)^{n}=\omega_{r}(1-t)^{-(n-r+1)}=\omega_{2 r}\left(1-t^{2}\right)^{-(n-r+1)}, \\
& P_{1}=\omega_{r-1}(1+t)^{n-1}=\omega_{r-1}(1-t)^{-(n-r+1)}=\omega_{2 r-2}\left(1-t^{2}\right)^{-(n-r+1)}, \\
& P_{2}=\omega_{r-2}(1+t)^{n-2}=\omega_{r-2}(1-t)^{-(n-r+1)}=\omega_{2 r-4}\left(1-t^{2}\right)^{-(n-r+1)}, \\
& \& c \mathrm{c} . \\
& Q_{0}=1=\omega_{0}(1+t)^{2 n}, \\
& Q_{1}=2 n \frac{2 n-1}{2}=\omega_{2}(1+t)^{2 n}, \\
& Q_{2}=2 n \frac{2 n-1}{2} \cdot \frac{2 n-2}{3} \cdot \frac{2 n-3}{4}=\omega_{4}(1+t)^{2 n}, \\
& \& c .
\end{aligned} \& c . \quad .
$$

Hence evidently,

$$
A_{r}=\omega_{2 r}\left\{\left(1-t^{2}\right)^{-(n-r+1)} \times(1+t)^{2 n}\right\}=\omega_{2 r}\left\{(1-t)^{-(n-r+1)} \times(1+t)^{n+r-1}\right\}^{*} .
$$

To fix the ideas, suppose $r=2$, then

$$
\left.\begin{array}{rl}
A_{2}= & \omega_{4}\left\{\begin{array}{c}
\left\{1+(n-1) t+\frac{(n-1) n}{2} t^{2}\right. \\
\\
\quad \\
\left.\quad \frac{(n-1) n(n+1)}{2.3} t^{3}+\frac{(n-1) n(n+1)(n+2)}{2.3 .4} t^{4}\right\}
\end{array}\right\} \\
\quad \times\left\{1+(n+1) t+\frac{(n+1) n}{2} t^{2}\right. \\
\left.\quad+\frac{(n+1) n(n-1)}{2.3} t^{3}+\frac{(n+1) n(n-1)(n-2)}{2.3 .4} t^{4}\right\}
\end{array}\right\}
$$

and so in general, we shall have

$$
\begin{aligned}
A_{r} & =n(n-r+1)(n-r+2) \ldots(n+r-1) \\
& \times \omega_{2 r}\left(1+t+\frac{t^{2}}{1.2}+\ldots+\frac{t^{2 r}}{1.2 \ldots 2 r}\right)^{2} \\
& =\omega_{2 r} e^{2 t} \times n\{(n-r+1) \ldots(n+r-1)\} \\
& =\frac{2^{2 r}}{1.2 \cdot 3 \cdot 4 \ldots 2 r} n^{2}\left(n^{2}-1\right)\left(n^{2}-4\right) \ldots\left\{n^{2}-(r-1)^{2}\right\},
\end{aligned}
$$

and thus

$$
\cos 2 n x=1-\frac{n^{2}}{1.2}(2 \sin x)^{2}+\frac{n^{2}\left(n^{2}-1\right)}{1.2 \cdot 3 \cdot 4}(2 \sin x)^{4} \mp \& c .
$$

In like manner we have

$$
\begin{aligned}
\cos (2 n+1) x & =\cos x\left\{(1-\gamma)^{n}-\frac{1}{2}(2 n+1) 2 n \gamma(1-\gamma)^{n-1}+\& c .\right\} \\
& =\cos x\left\{B_{0}-B_{1} \gamma+B_{2} \gamma^{2}+\text { etc. }\right\}, \\
B_{r} & =\omega_{2 r}\left\{\left(1-t^{2}\right)^{-(n-r+1)}(1+t)^{2 n+1}\right\} \\
& =\omega_{2 r}\left\{(1-t)^{-(n-r+1)} \times(1+t)^{n+r}\right\} ;
\end{aligned}
$$

where

[^0]and making, as before, $r=2$, we see that
\[

$$
\begin{aligned}
B_{2}=\omega_{4}
\end{aligned}
$$\left\{$$
\begin{aligned}
\{1+ & (n-1) t+\frac{(n-1) n}{2} t^{2} \\
& \left.+\frac{(n-1) n(n+1)}{1.2 .3} t^{3}+\frac{(n-1) n(n+1)(n+2)}{1.2 .3 .4} t^{4}\right\}
\end{aligned}
$$\right\}
\]

and so in general,

$$
\begin{gathered}
B_{r}=\omega_{2 r} e^{2 t}\{(n-r+1)(n-r+2) \ldots n \ldots(n+r-1)(n+r)\} \\
=\frac{(n-r+1)(n-r+2) \ldots(n+r)}{1 \cdot 2 \cdot 3 \ldots 2 r} 2^{2 r}
\end{gathered}
$$

and thus

$$
\begin{aligned}
\cos (2 n+1) x=\cos x\{ & 1-\frac{n(n+1)}{2}(2 \sin x)^{2} \\
& \left.+\frac{(n-1) n(n+1)(n+2)}{1 \cdot 2 \cdot 3 \cdot 4}(2 \sin x)^{4} \cdots \& c \cdot\right\}
\end{aligned}
$$

We might in like manner, and by precisely the same process, obtain the expressions for $\cos 2 m x, \cos (2 m+1) x$ in terms of $\cos x$, and of $\sin 2 m x$, $\sin (2 m+1) x$ in terms of $\sin x$ or of $\cos x$, but these results may, of course, be most readily found by means of obvious processes of differentiation in respect to the arc and by substitution of the complement for the arc itself in the results already obtained.

It may be worth while to show here how the same elementary theorem as we have employed above, furnishes, uno ictu, another important formula connected with multiple arcs:

$$
\left(\frac{d}{d x}\right)^{n-1}\left(1-x^{2}\right)^{\frac{2 n-1}{2}}=\left(\frac{d}{d x}\right)^{n-1}\left\{(1+x)^{\frac{2 n-1}{2}}(1-x)^{\frac{2 n-1}{2}}\right\}
$$

by Leibnitz's Theorem,

$$
\begin{aligned}
& =\frac{2 n-1}{2} \cdot \frac{2 n-3}{2} \cdots \frac{3}{2} \sqrt{ }\left(1-x^{2}\right)(1-x)^{n-1} \\
& -(n-1) \times \frac{2 n-1}{2} \cdot \frac{2 n-3}{2} \cdots \frac{5}{2} \times \frac{2 n-1}{2} \sqrt{ }\left(1-x^{2}\right)(1-x)^{n-2}(1+x) \\
& +(n-1) \frac{n-2}{2} \times \frac{2 n-1}{2} \cdot \frac{2 n-3}{2} \cdots \frac{7}{2} \\
& \quad \times \frac{2 n-1}{2} \cdot \frac{2 n-3}{2} \sqrt{ }\left(1-x^{2}\right)(1-x)^{n-3}(1+x)^{2} \mp \& c c
\end{aligned}
$$

51] Expansion of the Sine or Cosine of Multiple Arcs

$$
\begin{aligned}
= & \frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2^{n-1}} \sqrt{ }\left(1-x^{2}\right) \\
& \times\left\{(1-x)^{n-1}-A_{1}(1-x)^{n-2}(1+x)+A_{2}(1-x)^{n-3}(1+x)^{2} \mp \& \mathrm{c} .\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{r}=\frac{2 n-1}{2} \cdot \frac{2 n-3}{2} \cdots \frac{2 n-(2 r-1)}{2} \\
& \times \frac{(n-1)(n-2) \ldots(n-r)}{1 \cdot 2 \ldots r} \\
& =\frac{(2 n-1)(2 n-2)(2 n-3)(2 n-4) \ldots\{2 n-(2 r-1)\}}{2 \cdot 3 \cdot 4 \cdot 5 \ldots(2 r+1)} \\
& =\frac{1}{2 n}\left[\frac{2 n(2 n-1) \ldots(2 n-2 r)}{1.2 \ldots(2 r+1)}\right] .
\end{aligned}
$$

Hence, making $x=\cos 2 \phi$,

$$
\begin{aligned}
&\left(\frac{d}{d x}\right)^{n-1}\left(1-x^{2}\right)^{\frac{2 n-1}{2}}=\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{n} \\
& \times\left\{2 n(\sin \phi)^{2 n-1} \cos \phi-\frac{2 n(2 n-1)(2 n-2)}{1.2 .3}(\sin \phi)^{2 n-3}(\cos \phi)^{3} \pm \& c \cdot\right\} \\
&= \frac{1.3 \cdot 5 \ldots(2 n-1)}{n} \cdot\{\sin \phi+\sqrt{ }(-1) \cos \phi)^{2 n}-\{\sin \phi-\sqrt{ }(-1) \cos \phi\}^{2 n} \\
& 2 \sqrt{ }(-1) \\
&=(-)^{n-1} \frac{1.3 \cdot 5 \ldots(2 n-1)}{n} \sin 2 n \phi \\
&=(-)^{n-1} \frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{n} \sin \left\{n \sin ^{-1} \sqrt{ }\left(1-x^{2}\right)\right\},
\end{aligned}
$$

or if we please to pass to the more general form by a linear transformation,

$$
\begin{gathered}
\left(\frac{d}{d x}\right)^{n-1}\left(A+2 B x-C x^{2}\right)^{\frac{2 n-1}{2}} \\
=(-)^{n-1} \frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{n} C^{\frac{2 n-3}{2}} \sqrt{ }\left(A C+B^{2}\right) \sin n \sin ^{-1} /\left(\frac{A+2 B x-C x^{2}}{A+\frac{B^{2}}{C}}\right)
\end{gathered}
$$

[^0]: * Note well this simple change in the form of the generating function; in it the point and pith of the method resides.

