105.

NOTE ON A NEW CONTINUED FRACTION APPLICABLE TO THE QUADRATURE OF THE CIRCLE.
[Philosophical Magazine, xxxviI. (1869), pp. 373-375.]
In a recent note [p. 689, above] inserted by the author in the Philosophical Magazine it was virtually shown, and indeed becomes almost self-evident as soon as stated, that the equation $u_{x+1}=\frac{u_{x}}{x}+u_{x-1}$ possesses two particular integrals, α_{x}, β_{x}, which are the products of x terms of the respective progressions

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{lllllll}
1, & 1, & \frac{3}{2}, & 1, & \frac{5}{4}, & 1, & \frac{7}{6}, \ldots
\end{array}\right]} \\
{[1,} \\
\frac{2}{1}, \\
1
\end{array}, \frac{4}{3}, \quad 1, \frac{6}{5}, \quad 1, \ldots\right]\right] .
$$

Now any continued fraction whose partial quotients are

$$
\frac{1}{k}, \frac{1}{k+1}, \ldots, \frac{1}{x}
$$

will be equal to the ratio of some two particular values of u_{x} in the above equation, that is, of two linear functions of α_{x}, β_{x}; and in especial when $k=1$ it will be found very easily that this fraction is $\frac{\beta_{x}-\alpha_{x}}{\alpha_{x}}$.

But, on supposing x infinite, $\frac{\beta_{x}}{\alpha_{x}}$ becomes equal to the well-known factorial expression for $\frac{\pi}{2}$, viz. $\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{7} \ldots$. Hence we may deduce the following value for $\frac{\pi}{2}$ under the form of a continued fraction, namely,

$$
\frac{\pi}{2}=1+\frac{1}{1}+\frac{1}{2^{-1}}+\frac{1}{3^{-1}}+\frac{1}{4^{-1}} \text { ad infinitum }
$$

Reverting to pure integers, the above equality may be written as follows,

$$
\frac{\pi}{2}=1+\frac{1}{1}+\frac{2}{1}+\frac{6}{1}+\frac{12}{1}+\frac{20}{1} \text { ad infinitum, }
$$

the denominators of the partial fractions being all units, and the numerators (after the first) the doubles of the natural series of triangular numbers $1,3,6,10 \ldots$. This is obviously the simplest form of continued fraction for π that can be given, and yet, strange to say, has not, I believe, before been observed. Truly wonders never cease!

At first sight it might seem as if the above-stated continued fraction were incapable of teaching anything that cannot be got direct out of the Wallisian representation itself that has become transformed into it. Thus, for example, the convergent

$$
1+\frac{1}{1+} \frac{2}{1+} \frac{6}{1+} \frac{12}{1}, \text { that is } \frac{64}{45}
$$

is identical with the corresponding factorial product $\frac{2 \cdot 2 \cdot 4 \cdot 4}{1 \cdot 3.3 .5}$. But I think a substantial difference does arise in favour of the continued fraction form, inasmuch as it indicates a certain obvious correction to be applied in order that the convergence may become more exact. For if we call

$$
\frac{n(n+1)}{1+} \frac{(n+1)(n+2)}{1+} \ldots \text { ad infinitum }=u_{n}
$$

we have $u_{n}=\frac{n^{2}+n}{1+u_{n+1}}$. This shows that u_{n} cannot remain finite when n becomes infinite; for then u_{n+1} would also be finite, and consequently u_{n} would be a finite fraction of infinity, which is a contradiction in terms.

Hence ultimately

$$
u_{n} \cdot u_{n+1}=n^{2}+n, \text { that is } u_{n}=n,
$$

or, in other words,

$$
\frac{1}{n^{-1}+} \frac{1}{(n+1)^{-1}+} \frac{1}{(n+2)^{-1}+} \ldots \text { ad infinitum }
$$

converges (and, it may be shown, always in an ascending direction) towards unity as its limit when n converges towards infinity. Thus we may write when n is very great,

$$
\frac{\pi}{2}=1+\frac{1}{1+} \frac{2}{1+} \frac{6}{1+} \ldots+\frac{n^{2}-n}{1+n} *
$$

[^0]For example, when $n=4, \frac{\pi}{2}$ approximately equals

$$
1+\frac{1}{1+} \frac{2}{1+} \frac{6}{1+} \frac{12}{1+4}, \text { that is }=\frac{128}{81}, \text { or } 1.5802
$$

and, when $n=5$, will be found to be $\frac{352}{225}$ or $1 \cdot 5644$. The uncorrected convergent corresponding to the former of these is, as we have seen, $\frac{64}{45}$, or $1 \cdot 4222$; and the next is $\frac{384}{225}$, or $1 \cdot 7056$, the true value of $\frac{\pi}{2}$ being 1.5708 . The errors given by the uncorrected factorial values are $\cdot 1486$ and $\cdot 1348$ respectively (of course with opposite signs), whereas the errors corresponding to the corrected values are only $\cdot 0094$ and $\cdot 0064$; the approximation being thus more than fifteen and twenty-one times bettered for the fourth and fifth convergents respectively by aid of the correction.
$\frac{1}{k}$. For example, $1+\frac{1}{1+1}$, that is, $\frac{3}{2}$ is a good deal nearer to $\frac{\pi}{2}$ than $1+\frac{1}{1+2}$, that is, $\frac{4}{3}$, is; and so $1+\frac{1}{1}+\frac{1}{\frac{7}{2}+1}$, or $\frac{8}{5}$, is much nearer to it than $1+\frac{1}{1}+\frac{1}{\frac{1}{2}+3}$, that is, $\frac{16}{9}$, is.

By taking the mean between two such consecutive corrected convergents, or, still better, the mean between two such consecutive means, and so on, a few terms will serve to give a very close approximation indeed to the limit $\frac{\pi}{2}$.

[^0]: * This comes to the same thing as saying that for the purposes of calculation the continued fraction should be always considered as ending with a numerator, 1 , and not with a denominator,

