107.

NOTE ON THE THEORY OF A POINT IN PARTITIONS.

[Edinburgh British Association Report (1871), pp. 23-25.]
In writing down all the solutions in positive integers of the indefinite Equation of Weight, $x+2 y+3 z+\ldots=n$, or, in other words, in exhibiting all the partitions of n any integer greater than zero, it may sometimes be useful to be provided with an easy test to secure ourselves against the omission of any of them. Such a test is furnished by the following theorem :-

$$
\Sigma(1-x+x y-x y z \ldots)=0 ;
$$

thus, for example, if $x+2 y+3 z+4 t+\ldots=4$, the solutions are five in number, namely
(1) $y=2$,
(2) $t=1$,
(3) $x=1, z=1$,
(4) $x=2, y=1$,
(5) $x=4$,
the values of the omitted variables in each solution being zero. The five corresponding values of $1-x+x y \ldots$ are

$$
1, \quad 1, \quad 0, \quad 1,-3
$$

whose sum is zero.
The theorem may be proved immediately by expressing the denumerant (which is zero) of the simultaneous equations

$$
\left\{\begin{array}{l}
x+2 y+3 z+\ldots=n, \\
x+y+z+\ldots=0,
\end{array}\right\}
$$

in terms of simple denumerants according to the author's general method, or by virtue of the known theorem,

$$
\begin{aligned}
& (1-t)\left(1-t^{2}\right)\left(1-t^{3}\right) \ldots \\
& =1-\frac{t}{(1-t)}+\frac{t^{3}}{(1-t)\left(1-t^{2}\right)}-\frac{t^{6}}{(1-t)\left(1-t^{2}\right)\left(1-t^{3}\right)} \\
& \quad+\frac{t^{10}}{(1-t)\left(1-t^{2}\right)\left(1-t^{3}\right)\left(1-t^{4}\right)}+\cdots
\end{aligned}
$$

This gives at once the equation

$$
\frac{1}{(1-t)\left(1-t^{2}\right)\left(1-t^{3}\right) \ldots}-\frac{t}{(1-t)^{2}\left(1-t^{2}\right)\left(1-t^{3}\right) \ldots} \quad+\frac{t^{3}}{(1-t)^{2}\left(1-t^{2}\right)^{2}\left(1-t^{3}\right) \ldots}+\ldots=1 .
$$

Hence the coefficient of t^{n} in the above written series for all values of n other than zero is zero. But it will easily be seen that the coefficient of t^{n} in the first term is $\Sigma 1$, in the second term Σx, in the third $\Sigma x y$, \&c.; so that

$$
\Sigma(1-x+x y \ldots)=0
$$

as was to be shown. Thus we have obtained for the problem of indefinite partition a new algebraical unsymmetrical test supplementing the well-known pair of transcendental symmetrical tests expressible by the equations

$$
\begin{array}{r}
\Sigma \frac{\Pi(x+y+z \ldots)}{\Pi x \Pi y \Pi z \ldots}=2^{n-1} \\
\Sigma(-)^{x+y+z \ldots} \frac{\Pi(x+y+z \ldots)}{\Pi x \Pi y \Pi z \ldots}=0^{*}
\end{array}
$$

The identity employed in the text is only a particular case of Euler's identity,

$$
(1+t z)\left(1+t^{2} z\right)\left(1+t^{3} z\right) \ldots=1+\frac{t z}{(1-t)}+\frac{t^{3} z^{2}}{(1-t)\left(1-t^{3}\right)}+\ldots
$$

which is tantamount to affirming that the number of partitions of n into r distinct integers is the same as the number of partitions of n into any

* Subject of course to the condition that n is greater than 1. If x, y, z, \ldots, ω represents any solution in positive integers of the equation
it is easy to see that

$$
x+2 y+3 z+\ldots+r \omega=r
$$

$$
\Sigma(-)^{x+y+\cdots}+\frac{\Pi(x+y+\ldots+\omega)}{\Pi x \Pi y \ldots \Pi \omega}=1,-1, \text { or } 0
$$

according as n, in regard to the modulus $r+1$, is congruent to 0 , 1 , or neither to 0 nor 1 , for the left-hand side of the equation is obviously the coefficient of x^{n} in the development of

$$
\frac{1}{1+x+x^{2} \ldots+x^{r}}, \text { that is } \frac{1-x}{1-x^{r+1}}
$$

On making $r=\infty$, this theorem becomes the one in the text. It obviously affords a remarkable pair of independent arithmetical quantitative criteria for determining whether or not one number is divisible by another.
integers none greater than r, in which all the integers from 1 to r appear once at least. It has not, I believe, been noticed that these two systems of partitions are conjugate to each other, each partition of the one system having a correspondent to it in the other. The mode of passing from any partition to its correspondent is by converting each of its integers into a horizontal line of units, laying these horizontal lines vertically under each other, and then summing the columns. Thus, for example, 3, 4, 5 will be first expanded horizontally into

$$
1 \quad 1 \quad 1 \text {, }
$$

1111 ,
11111 ,
and then summed vertically into

$\begin{array}{lllll}3 & 3 & 3 & 2 & 1 .\end{array}$

This is the method employed by Mr Ferrers to show that the number of partitions of n into r, or a less number of parts, is the same as the number of partitions of n into parts none greater than r, and is, in fact, only a generalization of the method of intuitive proof of the fact that

$$
m \times n=n \times m,
$$

the difference merely being that we here deal with a parallelogram separated into two conterminous parts by an irregularly stepped boundary-one filled with units, the other left blank, instead of dealing with one entirely filled up with units.

