
POLISH JOURNAL OF ECOLOGY 49 2 145-157 2001 
(Pol. J. Ecol.) 

Wemer ULRICH 

Nicholas Copemicus University in Torml., Department of Animal Ecology 
Gagarina 9, 87-100 Torun, Poland, e-mail : ulrich@cc.uni.torun.pl 

MODELS OF RELATIVE ABUNDANCE DISTRIBUTIONS 1: 
MODEL FITTING BY STOCHASTIC MODELS 

ABSTRACT: The present paper studies possi
bilities to discriminate between 9 stochastic models 
of relative abundance distributions (RADs). It deve
lops a new test statistjr: for fitting based on least 
square distances and tests the applicability of met
hods described so far. The paper identifies three ba
sic shapes of RADs termed power fraction, random 
assortment and Zipf-Mandelbrot type shape. It is 
shown that even a correct identification of the shape 
of a given data set requires that this data set is repli
cated more than I 0 times. Estimates of necessary 
sample sizes for real animal or plant communities 
revealed that for communities with 20 to I00 spe
cies at least 200 to 500 times the species number is 
necessary for a correct model identification. The 
implications of these findings for the applicability 
of models of relative abundance distributions are di
scussed. 
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tion, power fraction, random fraction, Sugihara 
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1. INTRODUCTION 

Frequency or relative abundance distri
butions (RADs) have long been in the focus 
of ecologists either in the form of rank abun
dance plots or as measures of diversity and 
evenness . Early models focused on samples 
of species and tried to describe them by deter
ministic distribution orientated models like 
the geometric (Motomura 1932), the log
series (Fisher et al. 1943), the log-normal 

(Preston 1948, 1962a ,b) and others. This 
situation began to change when May (1975) 
showed that the canonical log-normal is ex
pected if an assemblage of species is influ
enced by many independent factors which act 
in a multiplicative way. Deviations from the 
canonical log-normal where therefore soon 
interpreted as resulting from disturbance fac
tors(Patrick 1967,Gulliksen eta/. 1980, 
Preston 1980, Ugland and Gray 1982, 
Frontier 1985) or pooled samples (Rout
ledge 1980, Shaw et al. 1983, Hughes 
1986). By allometric reasoning Harvey and 
God fray ( 1987) argued that biomass or pro
duction data instead of densities will also not 
result in a "canonicity". 

Critiques that all these models - being 
purely descriptions - lack ecological and 
evolutionary justification and their parame
ters being difficult to explain (Whi ttaker 
1972, Pielou 1977, Routledge 1980), led 
S u g i ha r a ( 1980, 1989) introducing his se
quential breakage model, for which he 
showed that a sequential niche breakage pro
cess (with a fixed division probability of 
0.75) leads to a log-normal type distribution 
which fits many natural (pooled) assem
blages. Further support for his model came 
from the studies of Nee et al. (1991) and 
Gregory (1994) who showed that in species 
number- octave plots RADs of large natural 
assemblages (British birds) are not symmetri
cal (as predicted by a log-normal distribu
tion) but - in accordance to the Sugihara 
model-left skewed. Recently, Tokeshi 
(1990, 1996) and Hub be 11 (1997) intro-
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duced a whole set of new niche orientated 
(Tokeshi 1990, 1996) or species-turnover 
orientated (Hub be 11 1997) models. Aim of 
all these renewed efforts was to interpret rela
tive abundance distributions in terms ofa few 
ecologically interpretable parameters and 
niche division processes. 

However, despite a lot of recent theoreti
cal (Tokeshi 1993, 1996, Bersier and 
Sugihara 1997) and empirical work (e. g.: 
Watkins and Wilson 1994, Wilson and 
Gitay 1995, Death and Winterbourn 
1995, Hub bell 1997, Wilson et al. 1998, 
Peters and Bork 1999, Weiher and 
Ked d y 1999) the study of relative abun
dance distributions has revealed less insight 
than had been hoped. On one side this is 
surely caused by a lack of understanding of 
density regulation and niche division. 

But more important seems the confusion 
about which of the various models to be used 
and a general lack of connecting RADs with 
other methods to describe communities, es
pecially measures of diversity and equitabil
ity (Lande 1996, Smith and Wilson 
1996, Weiher and Keddy 1999, Wilson 
et al. 1999). It has also to be make clear 
whether the models should serve as pure de
scriptions ofassemblages or samples (like di
versity or evenness measures) as it was 
intended by the earliest researchers or 
whether they have to explain observed pat
terns . The first goal seems to be achievable. 
But it is not clear whether a best fit model will 
also be a model that describes ecological or 
evolutionary processes best. For the second 
goal much more empirical work has to be 
done to get large amounts ofdata sets to com
pare empirical RADs with environmental and 
historical data (W i 1 son et al. 1998). 

A basic problem which has gained aston
ishingly few attention is how to fit various 
relative abundance distributions to empirical 
data and how to discriminate between mod
els. (May 1975, Pielou 1977, Tokeshi 
1990, Wilson 1991, Bersier and Sugi
h a r a 1997) and fitting was often done only 
by visual inspection (for example in the case 
of the large data set ofHughes 1986). Clear 
criteria for model fit are however necessary 
prerequisites for a correct model choice. 

In the case of deterministic models least 
square techniques or non-parametric ones 
like the Kolmogorov-Smimov tests have 
long been used (Eberhardt 1969, Pielou 
1977, Wilson 1991, Bersier and Sugi
h a r a 1997) although they do not give clear 

criteria for discrimination between models . 
In the case of stochastic models which do not 
produce fixed distributions Tokeshi favored 
the use of the 95% confidence limit of the 
model distribution as a test criterion: If more 
than 95% of the species of the empirical as
semblage have relative densities inside the 
95% confidence limit of the model distribu
tion the model may be accepted as a fit. Ber
sier and Sugihara (1997) noticed some 
problems of this test mainly stemming from 
non-symmetric confidence limits at lower 
ranks and proposed a slightly different (but 
very time consuming) test statistic. 

Despite the various proposed fitting pro
cedures, up to now no comparative test of 
performance and discrimination power has 
been undertaken and existing reviews not or 
only briefly mention this theme (e . g. May 
1975, Pielou 1977, Tokeshi 1993). For 
medium sized and larger communities it is 
not known whether it is in principle possible 
to discriminate between various models and 
how high sample sizes have to be to fit a 
model. However, for a model to be of scien
tific value, a least a theoretical possibility to 
discern it from others is necessary. 

The first part of this study on relative 
abundance distributions tries therefore to 
solve some problems concerning model fit 
and discrimination between models. It con
centrates on stochastic models because they 
have the realistic feature ofpossessing a vari
ance. The second part (U 1 rich 2001) will 
then relate the parameters ofstochastic RADs 
to other measures of community structure 
such as evenness and diversity. 

2. MATERIALS AND METHODS 

2.1 MODELS TESTED 

For the present paper 9 models of rela
tive abundance distributions are compared: 
the Sugihara fraction (sequential breakage 
model); Sugihara 1980, Tokeshi 1996), 
the Mac Arthur fraction (the stochastic coun
terpart of the broken stick model; Tokesbi 
1990), a stochastic version of the Zipf
Mandelbrot model (Frontier 1985) (see 
below), the random fraction and random as
sortment models (To k e s hi 1990), the over
lapping niche, dominance decay, and 
particulate niche models (To k e s hi 1990), 
the power fraction model (To k e s hi 1996), 
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and the log-normal (Preston 1962a, b) (Fig. 
1). The overlapping niche, dominance decay, 
and particulate niche models lead to even 
more equal distributions than the MacArthur 
fraction. The basic niche division processes 
gives Table 1. For detailed and lucid descrip
tions of the stochastic niche apportionment 
models and their basic properties see S u g i
hara (1980, 1989) and Tokeshi (1990, 
1993, 1996). 

Relative abundance distributions can be 
subsumed under three basic shapes (Fig. 2); 
firstly, a shape with a small number of very 
abundant and very rare species resulting in a 
S-shaped curve (in the following named 
power fraction type). This type ofdistribution 
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Six models of relative abundance 
distributions (I 00 species each) in a semi logarithmic 
plot. A: random assortment (k = 0.3), 8: random 
fraction, C: Sugihara fraction (k = 0.75), D: 
Sugihara fraction (k = 0.66), E: Zipf-Mandelbrot (X 
= 0, k = 2), F: MacArthur fraction. For the 
stochastic models means of I 00 replicates each 
were taken . Given are also the 95% confidence 
limits after I 00 replicates. X and k refer to the shape 
generating parameters of the models. 

contains the classical log-normal, the over
lapping niche, dominance decay and particu
late niche models, the random fraction 
model, the broken stick model, the Sugihara 
fraction model, and the newly described 
model of Hubbell (1997); The second 
shape lacks the lower range of least abundant 
species (Zipf-Mandelbrot type distributions). 
Beside the Zipf-Mandelbrot model the dy
namics model ofHughes (1984, 1986) and 
To k e s hi ' s ( 1990) composite model may 
also be subsumed under this type. A third 
shape also lacks the upper bound of very 
abundant species (random assortment type 
distributions). Here we find also the classical 
geometric series, the log-series, and the 
dominance preemption model. Fitting a theo
retical distribution to an empirical data set 
may therefore be seen as a two step process: 
first establishing which of these basic shapes 
best applies and in a second step adjusting the 
parameter values. In the following both steps 
will be studied. 
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Fig. 2. Three basic shapes of relatives abundance 
distributions. A: Zipf-Mandelbrot type, 8: Power 
fraction type, C : Random assortment type. 

Table I . Sequential breakage models of relative abundance distributions and the way to choose the niche 
fraction and to divide this fraction during the sequential breakage process.ran, ran1 and ran1 are linear random 
numbers in the range 0 to I. S is the total number of species, x is the largeness of the niche fraction, i refers to 
the i-th species, X and k are the shape generating parameters of the models. 

Model 

Sugihara fraction 

Power fraction 

Random fraction 

MacArthur fraction 

Random assortment 

Dominance preemption 

Dominance decay 

Particulate niche 

Overlapping niche 

Stochastic Zipf-Mandelbrot 

Division probability distribution at 

k : 1-k 0.5 ~ k < I 

Random 

Random 

Random 

ran' 0 < k ~ 

Random 

Random 

Random 

ran, - ran, 

I (ran+X)' 0 < k < oo 

Select niche fraction at 

Random 

ranx,' 
-ao <k<+co 

Random 

ranx, 

Always the smallest 

Always the smallest 

Always the largest 

None 

None 

None 
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2.2. MODIFICATIONS OF SOME 
MODELS 

The original sequential breakage model 
ofS ugihara (1980) assumed a fixed division 
ratio k of 0.25:0.75 (in this paper k and X al
ways refer to the division parameters of the 
models according to standard notation). How
ever, other breakage ratios may be envisaged 
and they lead to different shapes of the model. 
For instance, a breakage ratio of0.66leads to a 
relative abundance distribution which is most 
similar to a canonical log-normal (Siege I 
and Sugihara 1983). This paper uses the 
model with ratios of 0.75 and 0.66. A normal 
division probability distribution around the 
envisaged division ratio was used similar to 
the original approach of Sugihara (1980) 
(who, based on some empirical data, favored a 
triangular division distribution, which is in 
fact a convenient approximation of normal
ity). The variance of this normal distribution 
was adjusted to 0.085 and the distribution cut 
off at the lower and upper limits. 

In the case of the random assortment 
model (Tokeshi 1990) a modification was 
used by introducing an exponent of the frac
tion constant. This simple modification allows 
the model to take various slopes in a log rel. 
abundance- species rank order plot (as in Fig. 
1) similar to a geometric or a log-series model. 
This basic division process is therefore: 

(1) 

with N;+1, N; being the densities of species i 
and i+ 1, rnd being a uniform random variable 
between 0 and 1 and k the shape producing 
constant ranging between 0 and 1. The slope in 
a log rel. abundance - species rank order plot 
(Fig. 1) has then a value of-k log(2) at larger 
numbers of species and replicates. This makes 
it easy to fit this model from such plots. 

To introduce a variance into the determi
nistic Zipf-Mandelbrot model which allows 
then better comparisons of the fit with other 
models the rank variable i was replaced by a 
random variable rnd, leading to 

Ni = 1 I (X + rnd)k (2) 

with X and k the parameters of the model. 

2.3. MODEL FITTING 

The natural way to fit a theoretical distri
bution to a given data set is by least squares. 

In the case of deterministic distributions this 
is the most often taken approach (W i I son 
1991). In the case of stochastic models the 
method has not been applied due to the high 
variance in densities and their density de
pendence. Instead, Tokeshi's method using 
the 95% confidence limit ofthe model assem
blages was preferred. However, this method 
proofed to have only a low discrimination 
power (see below) which makes it desirable 
to look for an alternative. Additionally, it 
does not allow the estimation of parameter 
values. Therefore, in a first step a least square 
statistic was developed with a better discrimi
nation power. 

The main fitting variable r of the least 
square method was: 

(3) 
i = l 

with d; the difference between theoretical and 
empiricalln-transformed densities and S the 
number of species. In the case of the stochas
tic models r was computed using mean densi
ties of 100 replicates of the model. The fitting 
process run with different values of the shape 
generating parameters k and X (by stepwise 
enclosure) until r reached a minimum. 

This test value is sensitive to the maxi
mum density difference D ofthe species- de
fined as the quotient of most and least 
abundant species- of the data set (Fig. 3) (in 
this paper data set always refers to an assem
blages to be fitted). In the stochastic models 
low density species effect the value ofr over
proportional, mainly due to the higher vari
ance. This makes it difficult to compare fits 
by different models. 

Additionally, due to the summation pro
cess the test statistic r will depend on the total 
number of species S when comparing fits 
from assemblages of different species num
bers. At first sight, the quotient r I S should be 
constant. However, the higher the number of 
species the lower the total variance after a fi
nite number of iterations (100 in the present 
cases). Therefore r will be lower at high spe
cies numbers. To use r as a test statistic for 
comparing the fits of stochastic models at 
least a correction factor for density is neces
sary. If one wants to compare r at different 
species numbers a second correction factor 
has to be added. 

Figs 3 A to C show the dependence of r 
on the max. density difference in the data set 
and Figs 3 D to F give the dependence of the 
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Fig. 3. Dependence of the least square test statistics r (equation 3, termed r1 after correction for dependence of the 
maximum density difference) on the maximum density difference (A to C) in the data set and the number of 
species (D to F). Results of 20 power fraction (A: k = - 2 to 2, 50 species each; D: k = 0.1) , random assortment 
(8 : k = 0.05 to 0.8, 50 species each; D: k = 0.2), and stochastic Zipf-Mandelbrot data sets (C : k = l to 8, X = 0, 
50 species each; F: k = 2, X = 0). The assemblages were computed (means of l00 replicates) and then fitted by 
the same model. The data points are mean values of l00 fitting procedures each. R2

: variance explanation of the 
regression given. Symbols as in Fig. l. 

density corrected r (denoted as r 1) on species 
number for all three types of model shapes. 

Introducing the equations given in Fig. 3. 
(as correction factors) into equation (3) and 
rearranging conveniently results in the fol
lowing least square test statistic for stochastic 
relative abundance distributions: 

1. Random assortment type distribu
tions : 

r (4)r,.>~ = I000-------- 5< s ~ 70 
(S-5) x D 113 

1 r (5)s >70 
r ,e,, = 3000 s - 2. 5 x D "3 

2. Power fraction type distributions 

r _I r (6) 
leSI - 3 S X D 1/ 2 

3. Zipf-Mandelbrot type distributions 

r (7)
rleSI =25-

D l / 5 

Of course, the value and the variance of 
r1es1 depends highly on the number of repli
cates in the data sets but it appeared that the 
variance dependence of r 1est is the same for all 
three types of distributions and that above 50 
replicates r1est becomes constant (data not 
shown). Good fits are then in every case char
acterized by values of r1est near or below I 
(Fig. 4). Values above I 0 can hardly be called 
fits . 

Fig. 4 shows a performance test of r1est 

for all three types of distributions. The test 
was done by computing I00 replicates each 
of a Sugihara fraction, a random assortment 
and a Zipf-Mandelbrot distribution and after
wards fitting these data sets by the same mod
els. For species numbers between 20 and 250 
and accompanying density differences be
tween I 0 and I 08 r 1est was roughly constant 
ranging between 0.03 and 3.3 (power frac
tion), O.I4 and 4.3 (random assortment), and 
0.73 and 4.4 (stochastic Zipf-Mandelbrot) . 
All data points lie inside the range of 2 stan
dard deviations of each model (data not 
shown). 
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Fig. 4. Performance of the test statistic r,es• after 
corrections for density and species number 
differences in dependence (Equations 4 to 7) on the 
number of species in the data set to be fitted. 20 
data sets were each fitted by the same model and the 
data points are mean r 1w values (of I 00 replicates 
each) for each fit. Circles: random assortment, 
squares: Sugihara fraction, stars: stochastic 
Zipf-Mandelbrot model. 

The above results make it possible to de
velop a test statistic to discriminate between 
stochastic models. After fitting the data set 
several times (conveniently more than 100 
times) by the model distributions the 95% 
confidence limit of the resulting r1est values 
has to be computed according to: 

CF = l.96cr I fn (8) 

with CF being the confidence limit, a the 
standard deviation of the r 1es1 values, and n the 
number of fitting processes. A model (mod
ell) is accepted to fit better than another 
(mode/2) if 95% of the r1es1 values are below 
the 95% confidence limit of the other model. 
A test statistic can therefore be defined as 

Number{n. , (model!)> CF[ r,... (mode/2)]} 
Q,, = n (9) 

with CF(r1eslmode/2)) being the lower 95% 
confidence limit of mode/2. Acceptance oc
curs at Q,s < 0.05. 

The most easiest way to discriminate be
tween the shapes given in Fig. 2 is to deter
mine whether more species of the upper or 
the lower IS-percentile have densities above 
(Zipf-Mandelbrot) or above and below 
(power fraction type) the straight line defined 
by the middle ranking species than expected 
by chance (Fig. 5). If this probability is less 
than 0.95 no clear deviation from the random 
assortment type is stated. The test is applica
ble ifa data set contains more than 15 species. 
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Fig. 5. Shapes of a Sugihara fraction (A) and a 
Zipf-Mandelbrot model (B). Given are in both cases 
regressions through the middle ranking species 
(excluding the upper and lower 30% of species). 
Given are also the points (indicated by the vertical 
lines) above and below which the relative 
abundances are above or below this regression. 

3. RESULTS 

3.1. DISCRIMINATION BETWEEN 
TYPES OF MODELS 

In a first step it was established how 
many replicates of the data sets are necessary 
to identify the type of distribution (power 
fraction, random assortment or Zipf
Mandelbrot type). For Fig. 6 2800 data sets 
(20 to 100 species) each of a Sugihara frac
tion (k = 0.75) and a stochastic Zipf
Mandelbrot distribution (k = 2, X= 0) were 
computed, 100 times each as a mean of 3, 5 
and 10 replicates and 100 times each without 
replication (a single data set). This can be 
compared by taking natural communities 
from a single observation or from 3, 5 and 10 
replicated observations. Preliminary tests 
showed that for data sets containing less than 
20 species extraordinary high numbers of 
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replicates (in most cases more than 50) are 
necessary to discriminate even between the 
types of models. It is therefore probably of 
little value to fit RADs to such small natural 
communities. 

Fig. 6 and Tables 2, 3 show that the pos
sibility to discriminate a power fraction or a 
Zipf-Mandelbrot type model from a random 
assortment model depends on the number of 
species and the number of replicates of the 
data sets. For non-replicated data sets it 
proofed to be impossible to distinguish be
tween these three models at a 5% error level 
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Fig. 6. Percentile test (Fig. 5) to discern between 
type A, B, or C assemblages in Fig. 2. A: 
Discrimination between random assortment and 
power fraction type models : fraction of assemblages 
(of a total of 100) of Sugihara fraction assemblages 
(k = 0.75) which failed to pass the test (i . e. which 
have less than 95% of their upper and lower 15% 
species above or below the regression through their 
inner 40 species). B: the same test to discriminate 
between Zipf-Mandelbrot and power fraction type: 
same assemblages (given is the fraction of 
assemblages which have less than 95% of their 
upper and lower 15% species above the regression 
through their inner 40 species). Given are also 
logarithmic regressions for each number of 
replicate. Bars and regression line in red: single data 
set, in blue: data set is a mean of 3 replicates, in 
green: data set a mean of 5 replicates, in black: data 
set is a mean of I 0 replicates. The horizontal line 
shows the 5% error leveL 

even if the data set contained 100 spec1es 
(Figs land 6, Tables 2, 3). 

To discriminate between a power frac
tion and a random assortment type (Fig. 6A) 
or a Zipf-Mandelbrot and a power fraction 
type model (Fig. 6B) 10 replicates were nec
essary and the data set had to contain at least 
30 species. If the data sets contained more 
than 50 species 5 replicates proofed to be 
enough. The least square Q15-statistic (equa
tion 9) gave in the first case nearly identical 
results but performed better when discrimi
nating between the random assortment and 
the Zipf-Mandelbrot type models (Table 2) . 
In this case 3 replicates proofed to be enough 
for species numbers above 50. 

The least discrimination power has the 
Tokeshi method using the 95% confidence 
limit ofspecies densities (Table 3). Even with 
10 replicates of the data set and 100 species it 
was not possible to discriminate between a 
random assortment and a power fraction type 
model at a 5% error level. 

3.2. DISCRIMINATING BETWEEN 
MODELS OF THE SAME TYPE 

The Zipf-Mandelbrot type distributions 
(this, their stochastic counterpart, and the dy
namics and the composite models) depend all 
on two or three shaping parameters which 
makes a correct model identification nearly 
impossible. All so far proposed random as
sortment type distributions (the geometric, 
the log-series, and dominance preemption, 
and the random assortment) have exactly the 
same shape which makes it also impossible to 
discriminate between them. These distribu
tions may be used alternatively as pure de
scriptions but not as explanations for the 
observed pattern. 

In the case of the power fraction type 
several models have been proposed with 
slightly different properties and shapes. The 
power fraction, Sugihara fraction, the Hubbel 
model, and the log-normal model all contain 
more than one shape generating parameter (at 
least Sand k) which allows a tuning of shape . 
This makes it very difficult to discriminate 
between them in real data sets. The determi
nistic log-normal is point symmetrical (in log 
abundance - species rank order plots) 
whereas most other models have more rare 
than abundant species. This results in species 
number - octave plots with a left skewed 
shape (Fig. 7) . By examining the skewness of 
the distribution and using very large data sets 
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Table 2. Least square test statistic Q1s comparing fits of the data set (a Sugihara fraction) by the same Sugihara 
fraction assemblages with fits by a random assortment and the stochastic Zipf-Mandelbrot model. S: number of 
species. Correct model identification needs values below 0.05. For each data point 100 replicates of each model 
were computed 

Data set replicates 

s 3 5 10 3 5 10 

Random assortment Stochastic Zipf-Mandelbrot 

20 0.92 0.90 0.88 0.78 0.92 0.38 0.38 0.02 

30 0.88 0.70 0.50 0.14 0.76 0.16 0.00 0.00 

40 0.76 0.50 0.18 0.04 0.34 0.22 0.00 0.00 

50 0.72 0.30 0.10 0.00 0.36 0.00 0.00 0.00 

60 0.58 0.10 0.06 0.00 0.28 0.00 0.00 0.00 

80 0.36 0.02 0.00 0.00 0.12 0.00 0.00 0.00 

100 0.34 0.02 0.00 0.00 0.06 0.00 0.00 0.00 

Table 3. Fraction of fits by the random assortment and the stochastic Zipf-Mandelbrot models ( l 00 fits each) of 
which more than 5% of species had relative abundances inside the 95% confidence limits of the corresponding 
species of the data set (Sugihara fraction) being fitted. Assemblages as in Tab. l . S: number of species per 
assemblage. For each data point lOO replicates were computed. A correct model identification needs a value below 
0.05. 

Data set replicates 

s 3 5 10 3 5 10 

Random assortment Stochastic Zipf-Mandelbrot 

20 0.90 1.00 1.00 1.00 0.68 0.70 0.78 0.88 

30 0.80 0.96 0.98 1.00 0.22 0.58 0.66 0.68 

40 0.80 0.96 1.00 1.00 0.38 0.44 0.48 0.60 

50 0.80 0.98 1.00 1.00 0.38 0.30 0.38 0.44 

60 0.80 0.98 0.98 1.00 0.38 0.36 0.28 0.38 

80 0.82 0.94 0.96 0.96 0.06 0.20 0.14 0.28 

lOO 0.82 0.90 0.84 0.76 0.06 0.18 0.12 0.06 

it is possible to identify these distributions . 
140 .----------------, This had been undertaken by Nee et al. 
120 (1991) and Gregory (1994) who showed 
100 that real large heterogeneous assemblages 
80 (British birds) are indeed skewed therefore 
60 rejecting the log-normal model. 
40 The other power fraction type distribu
20 tions depend only on species number although 
O~op.WWWJl.WlJJ,UJJw,u,LI,llll,lJ,ll. it is easy to introduce additional parameters 

1 4 7 10 13 16 19 22 25 28 31 34 37 40 that allow a tuning of shape (see for instance 
Octave Bussenschutt and Pahl Wostl (1999) in 

the case of the broken stick distribution) and 
Fig. 7. Frequency (number of species) - octave model discrimination is in principle possible 
(log2 abundance class) plot of an assemblage with by an ordinary fitting process. Table 4 gives
2000 species distributed according to a random the relations between the models and shows 
fraction model (Model B in Fig. 1). The distribution that all of them can be replaced by a power
is not symmetrical but left skewed. The arrow 

fraction (or by a log-normal). indicates the modal octave. 
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Tab. 4: Relations between models of the power 
fraction type. Fraction parameter k of the power and 
the Sugihara fraction that lead to the same shapes 
than other models. 

Power Sugihara
Fixed models 

fraction fraction 

0.07 0.66Canonical log-normal 

MacArthur fraction 

10Dominance decay 

Overlapping niche 1.9 

0 0.81Random fraction 

40Particulate niche 

A 

Ql 0.8 
5 
] 0 .6 
c 
~ 0.4 

~ 
0.2 

0 

20 30 40 50 60 80 100 

Number of species 
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0.8 
~ 
:J 

] 0.6 
c 
Ql 

~ 0.4 
a.. 

0.2 

0 
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Number of species 

Fig. 8. Possibility to discriminate between random 
fraction and Sugihara fraction (k = 0.75) models of 
relative abundance distributions. A: Tokeshi' s 95% 
confidence limit criterion. B: Q1s statistic (equation 
8). The shapes of the assemblages are given in Fig. 
1. Given are also logarithmic regressions for each 
number of replicate. Bars and regression line in red: 
single data set, in blue: both data sets are means of 
I 0 rep! icates, in green: both data sets are means of 20 
replicates, in black: both data sets are means of 30 
replicates. The fractions inside the 95% confidence 
limit refer to the number of comparisons (from a total 
of lOO replicates) which do not pass these tests. The 
horizontal line shows the 5% error level. 

How many replicates of the data set are 
necessary for a correct identification of one 
of these models? With the exception of the 
MacArthur fraction (which is identical with a 
power fraction with shaping parameter k = 
1.0) correct identification ofthe models given 
in Table 4 requires more then 100 replicates 
of the data set (data not shown). 

For other models Fig. 8 shows again that 
discrimination ability depends on the number 
of replicates and the species number of the data 
sets. For species numbers above 50 data sets 
have to be replicated at least 10 times to dis
criminate between a random fraction and a 
Sugihara fraction assemblage (with k = 0.75). 
Again the above defined Q1s statistic performed 
better than the 95% confidence limit criterion 
of Tokeshi. The latter method required at least 
30 replicates to discriminate between models in 
assemblages of only 20 species. Assemblages 
having fewer than 20 species will require ex
traordinary high numbers of replicates for a 
correct model identification. 

A similar test as in Fig. 8 was performed 
using Sugihara fractions with k = 0.75 and 
0.66 and a MacArthur fraction (for shapes see 
Fig 1). A discrimination between both Sugi
hara fraction models required with both 
above used methods 10 replicates. For a dis
crimination between the Sugihara and the 
MacArthur fraction single data sets are 
enough (data not shown). 

3.3. ESTIMATING NECESSARY 
SAMPLE SIZES 

Transferring the above results to real 
data sets requires that species of real commu
nities have the same variability than the 
model species and the necessary number of 
replicates depends not only on species num
bers but also on the number of individuals per 
sample. Natural density variability in com
parison to model variability has up to now not 
been studied and for simplicity we have to as
sume similar variability. Under this assump
tion the sample size can be estimated. 

Of course, the upper sample size is to 
sample the whole community like in the bird 
studies ofNee et al. (1991) and Gregory 
(1994). In this case the necessary sample size 
is the quotient of the relative densities of the 
least and the most abundant species. In real 
samples this can be approximated by the mul
tiplication ofthe density ofthe most abundant 
species with the total area studied. 
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Fig. 9. Estimating the necessary sample size for model discrimination (given as multiple of species number) by 
comparison of the confidence limits of r,..,, (CL) of samples ( 10 replicates) with that of the whole assemblage 
(Sugihara fraction with k = 0.75, 5 replicates) at different species numbers. The horizontal lines indicate the 
sample sizes below which the sample confidence limit is less than that of the assemblage (0.94 at 9 replicates, I 
at 5 replicates, and 1.31 at 3 replicates of the assemblage). Given are also standard deviations of the test statistic 
after I 00 replicates. First bar of each sample size: 20 species per assemblage, second bar: 30 species, third bar : 
50 species, fourth bars: I00 species. 

However, this method leads at higher 
species numbers to astronomically high sam
ple sizes. For instance a Sugihara fraction as
semblage of 200 species would require more 
than 1500000 individuals to be sampled. In 
reality, much lower sample sizes are neces
sary for a correct model identification. This 
sample size may be estimated by comparing 
the variances of r,esl of samples with different 
numbers of replicates. 

Figs 6 and 8 and Tables 2 and 3 showed that 
in many cases 10 replicates would be enough for 
model and especially model type discrimination 
but that lower numbers are to low. That means 
the variance of r,es, at 10 replicates (and using 
the whole community) is small enough. We 
can now compute how many individuals a 
sample of 10 replicates has to contain that the 
variance of r1e.w is less than that of the whole 
community at say 5 or 9 replicates. This was 
done by computing 4000 Sugihara fraction as
semblages (k=0.75) with 20, 30, 50, and 100 
species. From 100 assemblages of each spe
cies number and each sample size 10 random 
samples each were taken. The number of indi
viduals per sample (the sample size) was 1 to 
200 times the number of species leading to a 
total sample size of 10 to 2000 times the spe
cies number (Fig. 9). Next, the variance ofr,esl 
at each sample size and species number and 
the according variance of the whole commu
nity after 3, 5 and 9 replicates was determined. 
The sample size is large enough if the quotient 
of the accompanying confidence limit ( equa
tion 8) ofboth is less than 1. 

Fig. 9 gives this quotient in relation to 
the sample size and shows that for species 
numbers from 20 to 100 sample sizes of 200 
to 500 times these species numbers are neces
sary for a correct identification. Because 10 
replicates were necessary for a correct identi
fication ofthe basic shape in log abundance 
species rank order plots (Figs 2 and 6) if fol
lows that even for this task between 4000 (20 
species) and 50000 (100 species) individuals 
have to be sampled. For real communities 
these sample sizes are of course minimal 
sample sizes because the computation as
sumes no habitat heterogeneity and no aggre
gated spatial distribution of the species . 

4. DISCUSSION 

The problem ofhow to fit models ofrela
tive abundance distributions to ecological 
data has gained much less interest than devel
oping models. Pie Io u' s (1975) statement 
that little or no work has been done on the ap
plicability of certain models to data from sin
gle, natural communities still holds even after 
25 years. Most "fits" in older work appear to 
be simple comparisons of curves and data 
points by eye (W i 1 son 1991) and W i 1-
s on ' s et al. (1998) conclusion that many 
older statements on relative abundance distri
butions have only few or no foundations and 
had never been tested seriously is surely cor
rect. 
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The most straightforward attempt to 
solve the problem offitting stochastic models 
was the proposition of Tokeshi (1990, 
1993) to use the 95% confidence limit ofden
sities as a test criterion. Additionally, the dis
tribution of species ranging outside this limit 
has to be studied. If the 5% outliners are not 
randomly distributed the fit has also to be re
jected. However, the present test of the 
method shows that its discrimination power 
is low, a fact which greatly limits the applica
bility of the test. 

In general, the present results are not 
promising. Despite the large and confusing 
number of models proposed so far (including 
the deterministic models not dealt with in this 
paper more than 15) it seems that nearly all of 
them are of few scientific value because they 
do not contain the possibility for testing them 
under realistic conditions. This is especially 
true for models which depend on more than 
one shaping parameter (the species number). 
The identification of three basic shapes of 
models may therefore be a step forward. They 
can be described by three generating models, 
for example a random assortment, a power 
fraction, and a Zipf-Mandelbrot model and a 
next step in studying RADs may be to estab
lish whether, how often and where these three 
shapes occur in nature. 

The evidence for the existence of Zipf
Mandelbrot shapes is quite weak (Frontier 
1985, Hughes 1986, Ulrich 2000), and the 
notion that random assortment type distribu
tions are found in small communities or at 
early stages of succession has never been 
tested seriously (W i l son et al. 1998). It may 
be that in reality only various types of power 
fraction type distributions occur and that evi
dences for other types stem from to small 
samples or non-replicated data sets which do 
not allow a correct identification of shape 
(Weih e r and Keddy 1999). The standard 
textbook references for geometric type distri
butions at early stages of succession (Whit
tak e r 1972, Bazzaz 1975) for instance are 
well fitted by log-normal or Sugihara fraction 
distributions (Kempton and Taylor 1976, 
Ulrich unpubl.) . In this respect, the findings 
of ecosystem modelers deserve attention. 
Ebenhoh (1988) and Btissenschtitt and 
P a h 1- W os t l ( 1999) found in model ecosys
tems that large late succession communities 
always tend to be more equally distributed 
than predicted by conventional theory which 
assumes a Sugihara fraction (May 1975, 
Sugihara 1980, Nee et. al. 1991, Toke-

shi 1996). It may be that communities rather 
start from a Sugihara fraction distribution and 
end in a situation where all species have simi
lar density ranges, that is where they follow a 
Poisson (or particulate niche) distribution. 

The present paper also gives estimates 
for sample sizes to discriminate between 
types ofmodels. These sample sizes are quite 
high and throw further doubt on older empiri
cal work on RADs. Samples sizes of 200 to 
500 times the species numbers are only rarely 
reached and it should be noted that these sam
ples sizes are minimum values assuming ran
dom distributions of species without taking 
aggregation or habitat heterogeneity into ac
count. These factors (among others) would 
lead to even higher samples sizes. Much work 
has been done with single data sets (see for 
instance the large compilation of Hug he s 
1986) of unknown variance of species den
sity and of density fluctuations . These papers 
cannot be taken as unequivocal evidence for 
random assortment types ofRADs in small or 
early successional stage communities. 

Of course, all the estimates presented 
here assume a natural density-variability 
which is similar to the variability of the 
model distributions (which is also not con
stant throughout the models) . Unfortunately, 
I am not aware of any study comparing natu
ral variability with model predictions. Addi
tionally, the study of variability patterns is 
still at the beginning. Pi m m' s ( 1993) claim 
that he knows of only two such studies 
(Pimm 1991 , Schoener and Spiller 
1992) still holds and his list has to be added 
by only a few newer papers (V andermeer 
1993, Kunin and Gas ton 1997, Ferriere 
and Cazelles 1999). These few studies 
point to a left skewed density probability dis
tribution in real communities with a prepon
derance of low and intermittent density 
stages. The preliminary work of Be r si er 
and S u g iha r a ( 1997) on the MacArthur 
fraction model shows in this distribution 
rather the opposite skewness . Clearly, a lot of 
empirical work has to be done to fit theoreti
cal distributions not only using means but 
also by comparisons of variability patterns. 
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5. SUMMARY 

The present paper studies possibilities to discri
minate between 9 models of stochastic relative abun
dance distributions (RADs) (Figs I, 2, 5, 6, Tables I, 
4 ), develops a new test statistic for fitting based on le
ast square distances (Figs 3 and 4) and tests the app
licability of methods described so far. The paper 
identifies three basic shapes of RADs termed power 
fraction , random assortment and Zipf-Mandelbrot type 
shape (Fig. 2). It is shown that even a correct identifi
cation of the shape of a given data set requires that 
this data set is replicated more than I 0 times (Figs 7, 
8, Tables 2, 3). Estimations of necessary sample sizes 
for real animal or plant communities showed that for 
communities with 20 to I 00 species at least 200 to 
500 times the species number is necessary for a cor
rect model identification. The implications of these 
findings for the applicability of models of relative 
abundance distributions are discussed. 
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