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RELATIVE ABUNDANCE DISTRIBUTIONS OF SPECIES: 
THE NEED TO HAVE A NEW LOOK AT THEM 

ABSTRACT: This paper shows that recent 
models of relative abundances (RADs) like the log
-normal model or sequential breakage or niche ap
portionment models are not able to describe and ex
plain RADs found in natural communities because 
they are derived from a classical niche concept and 
assume strong past or present interspecific competi
tion. None of them refers especially to temporal va
riability and functional niche dimensions. The pre
sent paper identifies three basic features of natural 
communities (unimodal species-weight distribu
tions, abundance-weight distributions with more or 
less marked upper boundaries, and species density 
fluctuations that can be modelled by four different 
random processes). Modelling communities with 
these basic features resulted in RADs that only in 
part could be described by classical models but that 
had shapes often found in samplings from larger na
tural communities. No single distribution like the 
canonical log-normal appeared that may serve as a 
general null-model but RAD and evolutionary stra
tegy (r- or K selection) seem to be related. The sha
pe of relative abundance distributions was found to 
depend on the number of species even if all parame
ter setting of the generating distributions were iden
tical. This indicates that classical evenness indices 
(that assume independence of species number) 
might not be appropriate to compare communities 
with different numbers of species. It appeared that 
RAD and body weight related community patterns 
have to be studied together. 

KEY WORDS Relative abundance distribu
tion, RAD, sequential breakage, abundance-weight 

distribution, species - weight distribution, temporal 
variability, niche, evenness 

1. INTRODUCTION 

The question what factors cause abun
dance differences between species in a com
munity has intrigued ecologists from the 
beginning of the century. Classical competi
tion theory pointed to different resource use 
and to niche differentiation during ecological 
and evolutionary time together with pro
nounced levels of interspecific competition 
(see reviews by Walter 1988, Griesemer 
1992, Colwell 1992). On this basis a pleth
ora of models has been developed aimed to 
describe or even to explain abundance differ
ences and relative abundance distributions 
(RADs) in real plant or animal communities. 
Most noticeable among the older models are 
Motomura 's geometric series (Motomura 
1932), the log-series ofFisher et al. (1943), 
MacArthur' s (1957) broken stick distribu
tion and especially Preston's (1962) ca
nonical log-normal distribution. In these 
models species relative abundances are as
sumed to be describable by certain statistical 
distributions. 

However, they have long been criticised 
of lacking deeper ecological foundation and 
that their parameter values are difficult to ex-
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plain in ecological terms (Tokeshi 1990, 
1993). But to a certain extent this critique 
fells short. Especially the log-normal was not 
designed to explain RADs but to describe 
them and to give a convenient summary sta
tistic of community structure. In this sense 
the log-normal was used by Kempton and 
Taylor (1976) to develop a dive,rsity statis
tic. However, the work of Sugihara (1980) 
Nee et al. (1991) and Gregory (1994) 
showed that the log-normal model is not the 
good descriptor of community structure as 
has been thought. The log~normal predicts 
equal numbers ofvery abundant and very rare 
species. From the study of relative abun
dances of British birds however it appeared 
that real large communities are unsymrnetri
cal in having more very rare species (Nee 
et al. 1991, Gregory 1994). 

Today, stochastic niche apportionment 
models (Sugihara 1980, 1989, Tokeshi 
1990, 1993, 1996, Mouillot eta/. 2000, Ul
r i c h 200 I a) that base on a sequential break
age process are more popular. They indeed 
predict unsymmeh·ical shapes in abundance-

species rank order plots and they allow- to a 
certain extent- to include natural variation in 
abundance. 

All of these models, even a recently pub
lished one based on fractal geometry (M o u I
I i o t et al. 2000, but see Be 11 2000), rely on a 
classical concept ofniche and niche division. 
A fixed amount of a limiting resource is as
su1ned of being divided among the species. 
A two step division process that is visualised 
in Fig. 1 may describe nearly all of the current 
models. A total niche space is first broken 
into two parts at a given probability distribu
tion. One of the parts is then chosen at a part
size dependent selection probability for fur
ther breaking. Table 1 contains the most im
portant models of relative abundance 
distributions and shows their breakage algo
rithms. Silently, these models also assume 
strong (present or past) interspecific competi
tion as factors to stabilise abundances inside 
certain ranges. This is necessary to overcome 
tl)e problem of large stochastic variability in 
time. 

Total niche space 

Divide at a given probability distribution 

Select one fraction at weighted random with a 
largeness dependent selection probability 

+ 
Divide at a given probability distribution 

Continue the process 

Fig. I . The sequential breakage process generating relative abundance distributions starts from an unbroken 
total niche space, divides this with a given probability distribution, and then selects with a we1ghted probability 
one of the fractions x. The process continues until the number of fractions reaches the envisaged species 
number. Figure modified from Tokeshi (1996). 
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Table I. Stochastic sequential breakage models of relative abundance distributions and the way to choose the 
niche fraction and to divide this fraction during the sequential breakage process. ran, ran 1 and ran2 are linear 
random numbers in the range 0 to I. S is the total number of species, x is the largeness of the niche fraction, i 
refers to the i-th species, X and k are the shape generating parameters of the models. Given are also equivalent 
deterministic models 

Stochastic Model 

Sugihara fraction 

Power fraction 

Random fraction 

MacArthur fraction 

Random assortment 

Dominance preemption 

Dominace decay 

Particulate niche 

Overlapping niche 

Fractal model 

Stochastic Zipf-Mandelbrot 

Equivalent deterministic model Division probablity 
distribution at 

Log-normal 
k : 

0.5 < 
1-k 
k < 

Log-normal Random 

Random 

Broken stick Random 

Geometric series, log-series 
0 < 

ran• 
k < +OO 

Geometric series, log-series Random 

Random 

Random 

ran, - ran, 

Select niche fraction at 

Random 

k ranx, 
-00 < k <+OO 

Random 

ranx, 

Always the smallest 

Always the smallest 

Always the largest 

None 

None 

Zi pf-M an del brot 

Zipf-Mandelbrot 

However, the classical niche concept of 
Hutchinson (1957, 1959) and MacAr
thur (1967) and MacArthur and Levins 
( 1967) underwent recently major refinements 
and a general redefinition (Leibold 1995, 
1998, Wiesheu 1998, Austin 1999). In 
modern niche theory species may coexist if 
there is a trade off in the requirements of the 
species and if there are species-specific ef
fects of the factor that most limits its growth 
(Leibold 1995). This means that species 
may coexist not only if they are sufficiently 
separated by classical niche dimensions 
(morphological, temporal, resources or habi
tats) but also in functional ones like dispersal 
ability, aggregation, growth-rate or temporal 
variation in abundance. Additionally, compe
tition was found to be of considerably less 
importance than has been assumed by earlier 
theory (Connell 1980, Shorrocks et al. 
1984). Any analysis of niche segregation has 
therefore to embrace classical and functional 
niche dimensions. Nearly all models of rela
tive abundance distribution (an exception is 
Hughes' (1984, 1986) seldom used dynam
ics model) only refer to classical resource ori
entated niche dimensions. 

Accumulation of whole branching trees at 
certain probability distributions 

I I (ran+X)' 
NoneO<k<oo 

The notion that spatial and temporal 
variability as well as resource distributions 
that lead to non-equilibrium conditions allow 
much more species to coexist than predicted 
by classical niche theory (Gurney and Nis
bet 1978, Shorrocks et al. 1979, 1984, 
Shorrocks and Rosewell 1987, Seven
s te r1996) contradicts the basic reasoning of 
most of the niche apportioning models. The 
recent finding ofHuisman and Weissing 
(1999) is in this respect of special interest. 
These authors found that in classical Lotka
Volterra competition models coexistence of a 
large number of species is permitted despite 
limited resources simply due to the dynamic 
properties of these models. They showed that 
more than two limiting resources result in 
chaotic variation of species density. These 
density fluctuations then itself allow much 
more species to coexist than predicted by the 
classical principal of competitive exclusion. 
The species of these models show relative 
abundance distributions (in this paper density 
and abundance of model species are treated 
as being synonymous) that may be described 
by one or another of the existing models, but 
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in neither case are the theoretical foundations 
ofthese models (niche divisions) applicable. 

Additionally, in non-equilibrium com
munities or in the ones that are driven by the 
dynamic properties of the system we will of
ten be confronted with a situation that at each 
time (each year or each generation) another 
model of relative abundance will best apply. 
This problem has long been known (Preston 
1948, Pielou 1977, Tokeshi 1993) and 
raises genuine questions about the way of 
model choice. But it has been merely treated 
as a statistical artefact (Preston1948, Pie
lou 1977, Bersier and Sugihara 1997) 
that has to be overcome by taking larger sam
ple sizes or longer time series. However, for 
real communities this will be impossible in 
most cases. In an earlier paper I showed (U 1-
rich 2001a) that even to achieve a minimal 
discrimination power sample sizes have to be 
200 to 500 times the number of species. For 
communities with more than 20 species sta
ble results are obtained only above 30 repli
cates (sampling years or generations). For 
smaller communities even more replicates 
have to be taken. Such high sample sizes are 
for natural communities nearly impossible to 
be obtained making the application of classi
cal stochastic models of relative abundance a 
dubious task. Additionally, community struc
ture and relative abundances of species may 
change continuously over time as has re
cently been shown by Bengtsson et al. 
(1997) and Ulrich (1999a). In this case 
mean densities obtained over longer time 
scales used to fit models of relative abun
dance will necessarily give a wrong impres
sion about the community structure and their 
dynamics . We have to treat community struc
ture at every point in time individually. 

The above discussion points to the need 
to rethink the theoretical foundation of mod-
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els of relative abundance distribution. The 
present study undertakes such an attempt. At 
first we have to look at basic features each 
animal or plant community has. We then have 
to establish whether these basic community 
features lead to distributions of relative abun
dance. At the end we may try to develop a 
model that is able to describe these distribu
tions. Such a model will be merely a descrip
tion of community structure, its parameters 
may be used as diversity or evenness statis
tics. We may also derive convenient null
models with which observed patterns may be 
compared. 

2. MATERIALS AND METHODS 

2.1 . BASIC FEATURES OF SPECIES 
COMMUNITIES 

If we look at real larger communities of 
animals we may detect three main features 
that are connected with species body weight: 

1. In nearly all communities there is a 
certain relation between the number of spe
cies and their body weight (the species -
weight distribution, SWD). Most species 
have intermediate body weights and the body 
weight distribution in the majority of taxa is 
modal (Van Valen 1973,May 1978, M a u
rer et al. 1992, Ulrich 1999b). There are 
fewer very large and very small species. 
Fig. 2 shows such a distribution for a hypo
thetical community of 200 species using a 
plot of species number against log2-body 
weight class . Recently, N ovotny and 
Kindlman (1996) studied this relation in ar
thropods. They found nearly always a modal 
distribution of a normal or log-normal shape 
that was in the majority ofcases (17 out of23) 

Fig. 2. Species - weight distribution 
2 3 4 56 7 8 910111213141516 (SWD) of a model community with 16 

binary weight classes (mean = 8, variance 
Body weight class = 3) and 200 species. 
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slightly to moderately positively skewed. The 
number of (binary) weight classes in natural 
communities may vary considerably. From 
published data (May 1978, Peters 1983, 
Rosenzweig 1995) it seems that in general 
this number will not exceed 3 0 equivalent to a 
maximum body size difference from the 
smallest to the largest species of 9 orders of 
magnitude. Larger natural insect communi
ties span typically over 10 to 16 binary 
weight classes (U l rich 1999b and unpubl. ). 

2. Mean abundance and body weight are 
connected (abundance- weight distribution 
A WD). There is a long discussion about the 
exact shape of this relation (Lawton 1989, 
1990, Currie 1993, Currie and Fritz 
1993, C y r et al. 1997) but in nearly all cases 
plots of abundance versus body weight look 
like in Fig. 3. There is a negative regression 
of log abundance on log body weight with a 
marked upper boundary in abundance. Often 
the shape is more or less triangular. The re
gression is far from being perfect but abun
dances generally fell inside the areas marked 
in Fig. 3. In a previous paper (Ulrich 
( 1999c) I argued that such distributions may 
stem from typical species - weight distribu
tions together with random density fluctua
tions. Cy r et al. ( 1997) showed that for a 
large number of taxa the regression between 
abundance and body weight could be de
scribed by a power function with slope values 
between 0.5 and 1. The upper boundary how
ever may have a slope from zero (no depend-
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ence) to more than 2 (Cotgreave et al. 
1993, Hendriks 1999, U1rich 1999b). 

3. All species fluctuate in density. These 
fluctuations may be chaotically or regular. In 
the latter case a density dependent process 
may describe them. However, ifwe deal with 
a many species community and the absence 
of strong environmental forces like physical 
or climatic stress, their densities will largely 
fluctuate independently. Every sample from 
this community refers then to a short time 
frame and independent density fluctuations 
then makes a random model where densities 
are assigned by random numbers suited to de
scribe species densities at this time. 

In general, we may identify four types of 
randomness. Over a longer time scale all den
sities inside a certain upper and lower bound
ary may achieve the same probability. In this 
case a linear random number is able to de
scribe density fluctuations. This is shown in 
Fig. 4 A. All densities have the same prob
ability. If intermediate densities are more 
probable than very high or very low ones we 
may apply a model with a normal distributed 
random number (Fig. 4 C). There may be a 
situation, that a species has large density fluc
tuations but only seldom reaches higher densi
ties. In this case the process may be described 
by a model that uses linear or normal random 
numbers on a log scale (Fig. 4 B, D). In this 
case lower densities are more probable than 
higher ones. An often-used measure of tem
poral variability is the coefficient ofvariation 

B 

random fluctuation 
0.1 

Q) 0.01 
u c 
ro 0.001 
'0 
c 
::J 0.0001 
..c 
<{ 0.00001 

• 
.. . .

• 
0.000001 

0.0000001 

10 100 1000 

Body weight 

Fig. 3. Abundance - weight distributions (AWO) of 2 model communities with 200 species each and a SWD 
as in Fig. 2. A: abundances were assigned with random numbers on a logarithmic scale; 8 : abundances 
resulted from random numbers on a linear scale. 
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Fig. 4. Four types of randomness. A: linear random numbers on a linear scale resulting in an even probability 
distribution of densities; B: linear random numbers on a log-scale resulting in a higher probability of having 
lower densities; C: normal distributed random numbers on a linear scale resulting in a higher probability of 
having an intermediate density; D: normal distributed random numbers on a log-scale resulting in a higher 
probability of having intermediate densities at the lower density range. s and m are variance and mean of the 
distributions, respectively, CV is the associated coefficient of variation. 

CV (the relation between standard deviation 
and mean density). Fig. 4 shows that commu
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Q) Studying temporal variation in natural a.. 

assemblages needs data of many generations 
2 3 4 5 6 7 8 9 10 and there are only very few such long term 

Abundance category studies. Nearly all of them stem from mam
malian and bird surveys (Mic he I i et al. 
1999). Fig. 5 gives three examples of them. 
Newton eta/. (1998) studied bird species in 
an oak wood in southeastern England (Fig. 5 
A). They found that intermediate densities 
occurred more often than low or high ones. 
The distribution is unimodal and left skewed 

'E 10% with the mode being above the mean cateQ) 
u 
Q; gory. The birds obviously have relative high 
a.. mean densities; their maximum density fluc

2 3 4 5 6 7 8 9 10 tuations reach a factor of30 indicating rather 
Abundance category stable densities. The white footed mtce 

(Peromyscus /eucopus), studied by Lewel-

~ 40% ~----------------------------~ 
u 
c 
{l 30% Fig. 5. Three examples of patterns of density 
c fluctuations in real communities. A: data of Newton 
~ 20% et al. ( 1998) on abundances of bird species in an oak 
...- wood m southeastern England; B: a study of

10~ % Lewellen and Vessey (1998) on the white footed 
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len and V essey ( 1998), fluctuated to a much 
larger extent and its modal density is below 
the mean density category (Fig. 5 B). The dis
tribution is right skewed but again the lowest 
density classes occur less often. Pollard 
( 1991) followed density fluctuations of two 
British butterfly populations and a recalcula
tion ofhis data (Fig. 5 C) showed that most of 
the time these species had rather low densi
ties but high densities or even outbreaks in 
certain years. Such a pattern is well described 
by model B in Fig. 4. 

From the available data it seems that the 
type ofdensity fluctuation may be connected 
with the r-K continuum of Southwood 
(1977) and Greenslade (1983). K-selected 
species (mostly vertebrates) exhibit often 
density fluctuation as in Fig. 4 A or C. Their 
range of densities is comparably small with 
intermediate densities frequently being more 
probable than very low or very high ones. r
selected species (mostly arthropods) with a 
high reproductive potential have larger den
sity fluctuations but more often times of rela
tive rarity (Ferriere and Cazelles 1999). 
Models Band D of Fig. 4 may well describe 
this pattern. 

2.2. COMPUTING PROCEDURES 

Ifwe take communities with the features 
described above, what types of relative abun
dance distribution do we expect? To answer 
this question I computed 43 model communi
ties with 20, SO, 100, and 200 species. Nor
mal species- weight distributions as in Fig. 2 
with 3, 16 and 30 binary weight classes (oc
taves) were used (according to features 1 and 
2 above). The abundance- weight distribu
tions had slopes of-0.5, -1.0 and -2.0. Table 
2 gives all parameter values used for compu
tation. 

In a next step each species was assigned 
a density either by a random process using 
linear or normal random numbers on a linear 
scale (as in Fig. 5 A and C)(Fluc = !in in 
Fig. 6) or by a random process on a log-scale 
(as in Fig. 5 Band D)(Fluc =log) or by a mix
ture of both (Flue = mix) where half of the 
species followed each of these types (Table 
2). This process refers to the feature 3 ofnatu
ral communities discussed above. The whole 
process resulted in typical abundance -
weight distributions as in Fig. 3. 

The resulting relative abundance distri
butions were then fitted by published models 
(Table 1): the power fraction and random as-

Table 2. Parameter settings used to generate the model communities of Figs. 2, 3, 6, and 7. n rnd: normal 
random (Type C in Fig. 4); n rnd log: linear random on a log scale (Type D in Fig. 4); I rnd: linear random 
(Type A in Fig. 4); I rnd log: linear random on a log scale (Type B in Fig. 4); Mixture: Mixture of the above 
types where half of the species each followed the above two types of density fluctuation 

Slope of upper 
boundary of the

Species weight distribution 
abundance -

(Fig. 2)Model Type of density Number ofweight distribution 
community fluctuation species (Fig. 3) 

Weight 
Mean Variance Mean Variance

classes 

3; 16; 30 2; 8;15 0.5; 3; 10 0.5 0.2 I rnd n rnd 200 

2 3· 16; 30 2; 8;15 0.5; 3; 10 0.5 0.2 I rnd log n rnd log 200 

3 3; 16; 30 2; 8;15 0.5; 3; 10 0.5 0.2 Mixture Mixture 200 

20; 50; 
4 3; 16; 30 2; 8;15 0.5; 3; 10 0.2 I rnd I rnd 1 00; 200 

20; 50; 
5 3· 16; 30 2; 8;15 0.5; 3; 10 0.2 I rnd log I rnd log I 00; 200 

20; 50; 
6 3; 16; 30 2; 8;15 0.5; 3; 10 0.2 Mixture Mixture I 00; 200 

7 3; 16; 30 2; 8;15 0.5; 3; 10 2 0.2 I rnd 200 

8 3; 16; 30 2; 8;15 0.5; 3; 10 2 0.2 I rnd log 200 

9 3; 16; 30 2; 8;15 0.5; 3; 10 2 0.2 Mixture 200 
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Fig. 6. Relative abundance distribution of model communities of 200 species each with the parameter setting as 
in Tab. 2 (communities I to 9). Given are the slopes of the Abundance - weight distributions (A WO) and the 
type of random number used to assign abundances (Flue = Iin : linear scale, Flue = log, logarithmic scale, Flue 

= mix = mixture of both). The numbers at the data points refer to the number of binary weight classes of the 
community. 

sortment models ofTokeshi (1990, 1996), the random assortment model of Tokeshi 
the sequential breakage model of S u g i h ar a ( 1993) was used. Here the single shaping pa
( 1980), and a classical log-normal. Fitting rameter k ranges between 0 (most even distri
was done with FORTRAN program Fre bution) and +oc (maximally uneven). 
quency distribution that uses a least-square 
algorithm for fitting and is already described 
in Ulrich (2001a, b) . For comparisons of 3. RESULTS 
RADs with linear type density assignment 
(Flue = !in) the power fraction model was Fig. 6 shows expected relative abun
used due to its flexibility and the fact that it dance distributions (RADs) for communities 
depends on only one shaping parameter k of 200 species under different regimes of 
ranging from -cc to +cc. The higher the value density assignment and SWD-weight classes. 
of this parameter the more even is the distri The shape of the resulting RADs depended 
bution. For RADs generated with densities mainly on the type ofdensity assignment and 
assigned at a logarithmic scale (Flue = log) the DWD slope. The steeper the slope, the 
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Fig. 7. The communities of Fig. 6 D fitted by the 
power fraction model of Tokeshi (1996). The 
k-values refer to the shaping parameter of the 
model. A power fraction model with k = 0.1 would 
be smiliar to a canonical log-normal, with k = 1.0 to 
a broken stick model. Abbreviations as in Fig. 6. 

more unequal were the resulting RADs. Ran
dom density assignment at a linear scale (Fig. 
6 A, D, G) resulted irrespective of the A WD 
slope in a pattern that may be described by 
one of the classical relative abundance distri
butions of the sequential breakage or log
normal type with a few very abundant and 
very rare species. For the communities ofFig. 
6 D this is shown in Fig. 7. The community 
with three weight classes is fitted by a power 
fraction RAD with a shaping parameter k of 
1.3 . That means that this community has a 
slightly more equal distribution than ex
pected from a classical broken stick distribu
tion (in this case k would be exactly 1 ). At 16 
binary weight classes a power fraction with k 
= 0.14 fits best. The distributions are unsym
metrical in respect to a higher number ofvery 
rare species. This is exactly the pattern that 
had been found in real large vertebrate com
munities (Nee et al. 1991, Gregory 1994). 
More weight classes result in distributions 

A 8 

AIJI./0=-1 ~ 1.0E-01~ 1.0E-01 
c c 
Cll Cll 

-g 1 OE-03 -g 1 OE-03 
:::J :::J 
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with log-series tales found in many samples 
from larger insect communities (Hughes 
1986, Novotny and Basset 2000, Ulrich 
unpubl.) . 

Currie (1993), Currie and Fritz 
(1993), and Cyr et al. (1997) showed that for 
vertebrates the upper slope of the abundance 
-body weight regression is about -0.9. The 
theoretical considerations of Griffiths 
(1992) pointed to a value of -1.0. From this 
we may predict the community structure ofa 
typical vertebrate community. It should fol
low relative - abundance distributions simi
lar to Fig. 6 D and depend mainly on the 
number of binary weight classes. But there is 
not a single distribution like the canonical 
log-normal or the sequential breakage 
(Sugihara 1980) that may serve as a gen
eral null model. 

Random density assignment at a loga
rithmic scale (Fig. 6 C, F, I) results in distri
butions that are neither described by 
sequential breakage nor by geometric or log
series type distributions. They are character
ised by a small number of abundant species 
and a log-series tale. Mixed types of density 
fluctuations gave untypical hump-shaped 
distributions that had up to now not been re
ported from natural communities. 

Figs 6 and 7 used linear random numbers 
to assign densities. If intermediate densities 
are more probable than very high or very low 
ones we have to use normal distributed ran
dom numbers. In Fig. 8 the same settings as in 
Figs 6 D, E, and F were used but with nor
mally distributed random numbers. The gen
eral effect of them is that the resulting RADs 
are more even. The lower curvature of very 
rare species is also less pronounced. Again a 
mixed logarithmic- linear regime of density 
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Fig. 8. Relative abundance distributions of model communities with parameter settings as in Fig. 6 D, E, F. 
Instead of linear random numbers normal distributed random numbers were used to assign densities. 
Abbreviations as in Fig. 6. 
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fluctuations gave highly untypical or even 
broken distributions. 

Fig. 9 shows that not only weight related 
distributions influence the shape ofRADs but 
that the species number itself might deter
mine their shapes. For Fig. 9 six combina
tions of species weight distributions and 
density assignments were computed, each 
time for 20, 50 and 100 species. In the case of 
linear random numbers (Flue = lin) shape of 
distribution and species number are largely 
independent. I fitted each distribution by a 
power fraction model and the resulting shap-
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ing parameters k were nearly identical for 
each parameter combination (Fig. 9 A, C, E). 
The small differences result from the stochas
tic nature of these distributions. This was, 
however, not the case for density assignments 
on a log scale (Figs 9 B, D, F). Now, higher 
species numbers always result in more even 
distributions indicated by the lower values of 
the shaping parameter k; k-values above 1.0 
indicate distributions being more uneven 
than a classical niche pre-emption distribu
tion (Tokeshi 1990). 
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Fig. 9. Relative abundance distributions of model communities of 20 (open circles), 50 (open triangles) and 
I 00 ( filled circles) species. Abbreviations as in Fig. 6. The k-values in A, C, E refer to the shaping parameters 
after fits of the power fraciion model, the k-values in B, D, F refer to the respective parameters of fits of the 
random assortment model of Tokeshi (1990) modified by Ulrich (200la) (see Tab. 1). In the latter case 
smaller k-values indicate more even relative abundance distributions with a k-value of 0 referring to the case 
where all species have the same abundance. 
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4. DISCUSSION 

The distribution of relative abundances 
in a community of plants or animals at any 
given time depends not only on complicated 
processes ofniche apportionment but on tem
poral variability of densities and on body 
weight related patterns. Classical (Preston 
1962, Sugihara 1980) and recent (Toke
shi 1996, Bell 2000, Moulliot et a/2000) 
models of relative abundance distributions 
ignore the latter dependencies or treat them 
only as stochastic noise that has to be levelled 
out by using longer and longer time series and 
larger sample sizes. Such a view gives a 
wrong impression about community struc
ture and their variability in time. Variability 
itself (that means the dynamic properties of 
communities) shapes community structure 
and lets species to coexist beyond the 
boundaries of classical niche dimensions 
(Leibold 1995, Austin 1999, Huisman 
and Weissing 1999). 

The present paper tries to incorporate 
temporal variability and to examine what 
types of relative abundance distribution re
sult if we start from a few basic features of 
each natural community. These features are 
body weight related indicating that future 
models that try to explain RADs have to in
corporate patterns of resource use but also 
patterns of body weight distributions. 

An important result of the present paper 
is that there will be no single relative abun
dance distribution that is expected for a large 
non-interactive community. Older (Preston 
1962, May 1975, Pielou 1977) and newer 
(Hubbell 1997, Nummelin 1998) theory 
often refers to a canonical log-normal as be
ing expected in such communities although 
this had long been a matter of dispute (U g
land and Gray 1982, Nummelin 1998). 
The log-normal then served as a null model 
and deviations were interpreted as induced by 
disturbance factors or competition (Gullik
sen et al. 1980, Preston 1980). This preva
lence stems from the fact that the derivation 
of the log-normal by May ( 1975) simply and 
uncommented relies on random numbers on a 
linear scale (the central limit theorem). Pub
lished compilations of fits of the log-normal 
nearly always used vertebrate communities 
(Preston 1962, Sugihara 1980, Tokeshi 
1996). Such communities should have com
parably smaller ranges of densities than for 
instance arthropod communities and density 
fluctuation patterns as in Figs 4 A and 5 A. 

For them May's derivation might apply and 
Fig. 6 shows indeed a log-normal type pat
tern. However, Fig. 6 also shows that a log
normal pattern will not be a universal feature 
of larger communities. For communities 
whose members exhibit other types oftempo
ral variability with more phases of relative 
rarity (Kunin and Gaston 1997, Ferriere 
and Cazelles 1999) other patterns of rela
tive abundance also are expected. These pat
terns should be similar to the ones ofFigs 6 C, 
F,I. 

The present results make it also improb
able that a single null-model distribution of 
the log-normal type exists. Even using pa
rameter values for abundance - weight and 
species - weight distributions that are ex
pected from recent surveys (N ovotny and 
Kindlman 1996,Cyreta/.1997)(Fig. 6D) 
let to different RADs depending on the pat
tern of density assignment and the species 
number (Figs 6, 8, 9). Especially the number 
of weight classes appeared to be decisive. 
The larger the body weight difference from 
the smallest to the largest species was, the 
more uneven was the resulting RAD. How
ever, it is interesting to see (Fig. 9) that a ca
nonical log-normal or Sugihara's sequential 
breakage model require at least 16 weight 
classes to fit. For lower numbers of weight 
classes more even distributions than pre
dicted by classical theory are expected. In his 
respects it seems worthwhile to reanalyse ex
isting studies on relative abundance distribu
tions and to compare them with respective 
body - weight distributions. 

The present results also indicate that 
there might be fundamental differences in 
relative abundance distributions between 
communities made up of species following a 
K-selection and a r-selection strategy. The 
first group contains species with small to 
moderate (often density dependent) density 
fluctuations. From Fig. 6 we expect for such 
communities RADs that can be described by 
log-normal or Sugihara type distributions 
with small numbers of very abundant and 
very rare species. Because of the flexibility of 
the model such communities may be best de
scribed (but not explained) by Tokeshi 's 
power fraction model (Tokeshi 1996). In 
two recent papers (Ulrich 200la, b) 
showed that the shaping parameter k of this 
model might be used as a general index of 
evenness. 

Communities made up ofr-selected spe
cies are not expected to follow such a model. 

I 
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They should lack the lower curvature of rare 
species and exhibit a log-series tale. This pat
tern is very often found in samples oflarge ar
thropod communities (Hughes 1986, 
Morse et al. 1988, N ovotny and Basset 
2000, Ulrich 2001c) and mostly explained 
by insufficient sampling resulting in the fa
mous veil-line first described by Preston 
(Preston 1962, Nee et al. 1991, Ulrich 
2001c). The picture of Fig. 6 however indi
cates that this might not be a sampling arte
fact but a real feature of animal communities 
that are characterised by large and chaotic 
density fluctuations. Up to now the few stud
ies and comparisons of relative abundance 
distributions did not differentiate between 
communities of different evolutionary strate
gies (Sugihara 1980, Tokeshi 1996) or 
even mixed up species of different types 
(Hughes 1986). It would be worthwhile to 
reanalyse existing compilations in this respect. 

Fig. 9 showed that all things being equal, 
a relative abundance distribution may depend 
solely on the number of species . This notion 
may have important consequences for indices 
of evenness and diversity (Ulrich 2001 b, d) . 
They all use relative abundances of species 
for computation. By definition, communities 
of the same structure, expressed by a certain 
set of relative abundance generating factors , 
have the same evenness (cf. the latest review 
by Smith and Wilson 1996 and Ulrich 
2001b) . All communities following a Sugi
h a r a sequential breakage or a broken stick or 
a dominance pre-emption model (Table 1) 
should have the same value in a given even
ness index. On this definition rely all recent 
comparisons of evenness indices (Smith and 
Wilson 1996, Hill 1997, Weiher and 
Keddy 1999, Ulrich 2001b, d). Fig. 9 
shows that this principle may be violated in 
the case ofcommunities with density fluctua
tions on a log scale. In this case higher spe
cies numbers resulted in communities with 
more even RADs. Such a pattern would it 
make necessary either to rethink the current 
concept of evenness or to reinterpret com
parisons of evenness values from communi
ties with different numbers of species . In this 
respect a recent paper of W i 1 son et al. 
(1999) deserves attention. They reported that 
evenness in plant communities is scale de
pendent with larger scales always resulting in 
a higher evenness . The authors claimed to 
have found one of the few universal generali
ties in plant community ecology. In their 
study larger scales were also connected (due 

to the universal species - area relationship) 
with higher species numbers (Wilson et al. 
1998). It may be that this study found the 
same effect as described in Fig. 9 but dis
cussed it in terms of evenness. 

At the end we may come back to the 
questions asked in the introduction whether it 
is possible to derive a single model ofrelative 
abundance, whether such a model may lead 
to a general null hypothesis and whether such 
a model may serve as the basis for a general 
diversity and evenness statistics? Recently, 
Be 11 (2000) studied an immigration extinc
tion model of species allocation. The author 
argued that such a model might serve as a 
general null model for the generation of rela
tive abundance distributions . Because the 
model relied on stochastic extinction and im
migration processes using linear random 
numbers it takes no wonder that he received 
in sequential breakage RAD patterns as in 
Fig. 6, with small numbers of abundant and 
rare species. The fact that a totally different 
starting point for generating species abun
dances but using similar patterns of random
ness generates identical RADs points 
strongly to the interpretation that the crucial 
point for all RAD models is the way to assign 
relative densities. Silently, all existing mod
els, not only RAD but also metapopulation or 
predator - prey models assume stochasticity 
to work at a linear scale. At such a scale the 
models assign especially "random densities". 
The above results indicate that other patterns 
of randomness (especially such at a logarith
mic scale) have also to be taken into account. 
Additionally, work on natural density fluc
tuations is needed for an appropriate choice 
of model type. 

Of course, from models of species com
munities we can not definitely derive what 
factors shape natural communities. The pres
ent results however clearly point to the need 
of a reanalysis of existing community struc
tures and a comparison of them with body 
weight related patterns. There is also a need 
to establish how species in real communities 
fluctuate in density. Then, we can establish 
whether all natural communities exhibit the 
basic features identified in this paper and 
what are the parameter ranges of these distri
butions. Only such an analysis will lead to a 
deeper understanding of community struc
ture and to general models of relative abun
dance. The present results however do not 
make it very probable that there will be a sin
gle model that is able to describe all commu-
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mtles as has long been thought. Instead, I 
expect that there will be a set of models and 
model choice will then depend on patterns of 
temporal variability and body weight. 
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improved my English. 

5. SUMMARY 

This paper shows that recent models of relative 
abundances like the log-normal model or sequential 
breakage or niche apportionment models are not able 
to describe and explain relative abundance distribu
tions found in natural communities because they are 
derived from a classical niche concept and assume 
strong past or present interspecific competition (Table 
I. Fig. I). None of them deals especially with temporal 
variability and functional niche dimensions. The pre
sent paper identifies three basic features of natural 
communities: unimodal species- weight distributions 
(Fig. 2), abundance weight distributions with more or 
less marked upper boundaries (Fig. 3), and species de
nsity fluctuations that can be modelled by four diffe
rent random processes (Figs 4, 5). Modelling commu
nities with these basic features (Table 2) resulted in re
lative abundance distributions that only in part could 
be described by classical models (Figs 6, 7, 8, 9) but 
that had shapes often found in samplings from larger 
natural communities. No single distribution like the 
canonical log-normal appeared that may serve as age
neral null-model. The shape of relative abundance di
stributions was found to depend on the number of spe
cies even if all parameter setting of the generating di
stributions were identical. This indicates that classical 
evenness indices (that assume independence of species 
number) may not be appropriate to compare commu
nities with different numbers of species. 
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