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Two-dimensional drop in the presence of an electric field 

M. EMIN ERDOGAN (ISTANBUL) 

THIS PAPER is concerned with the behaviour of a two-dimensional drop immersed in a dielectric 
fluid in the presence of a uniform electric field. Assuming that the influence of the electric stresses 
on the fluid is included with no reciprocal effect of the motion on the fields, the equations of 
electrohydrodynamics are solved under the Stokes approximation. The circulation of fluid 
in and round a two-dimensional drop is compared with that of a spherical drop and the differences 
between them are examined. The surface-force density required to retain the shape of a two
dimensional drop is calculated and it is shown that the equilibrium geometry does not depend 
on the ratio of the viscosities of fluids in and out of the drop. 

Praca poswi~ona jest zagadnieniu zachowania si~ dwuwymiarowej kropli zanurzonej w plynnym 
dielektryku i poddanej dzialaniu jednorodnego pola elektrycznego. Uwzgl~dniaj~c wplyw napi~ 
elektrycznych na plyn, lecz pomijaj'lc oddzialywania odwrotne ruchu na pole, rozwi'lzuje si~ 
r6wnania elektrohydrodynamiki w przyblii:eniu Stokesa. Cyrkulacje plynu wewnCltrz i wok6l 
dwuwymiarowej kropli por6wnuje si~ z odpowiednimi wynikami dotycZC!cyrni kropli sferycznej, 
zwracajClC uwag~ na pojawiaj~ce si~ tu r6:lnice. Obliczono g~stosc sil powierzchniowych po
trzebnych do utrzymania ksztaltu kropli dwuwymiarowej; wykazano, i;e geornetria stanu r6wno
wagi nie zalezy od stosunku lepkosci plyn6w wewn~trz kropli i w osrodku otaczaj'lcym. 

Pa6oTa nocami(eHa 3a,ll;atrn noae~eHHH ~ByxMepHOH Karum, norpy>~<emmif B ~OM ,zn~
aneKTpm<e, H no~epmyroil ~eifCTBmo o~opo~oro 3JieKTpJNeCKoro nomi. Y'liHTLIBaK 
llJIHKHHe 3JICKTpiNCCKHX HaTK>KCHHH Ha ~OCTL, HO npeHe6peraK o6paTHbiM B03~eHCTBHeM 
J~BH>KeHHK Ha none, pewaroTCK ypaBHeHHK 3JieKTpor~po~aMHKH B npH6JIH>KeHHH CToKca. 
l..(HpKyJIKUHH >KH~OCTH BHYTpH H BOKpyr ~ByxMepHOH KanJIH cpaBHHBaiOTCK C COOTBeT
CTByiDillHMH peayJibTaTaMH, KacaiOillHMHCK cq,epJNeCKOH KanJIH, o6palllaK BHHMaHHe Ha no
.fiBJIKIOillHCCK a~ecL pa3HHQbi. BLit{HCmieTCK nnomoCTb noaepXHOCTHbiX CHJI Heo6xo~LIX 
)~JIK y~ep>Kamm q,opMbl ~ByxMepHOH KanJIH; noKa3aHO, tiTO reoMCTpHK COCTOKHWI paBHOBCCHK 
lie 3aBHCHT OT OTHOWCHHK BK3KOCTH >K~OCTCH BHYTpH KanJIH H B OKpy>f<aiOillCH cpe~e. 

1. Introduction 

THE STUDY of a flow system in which the electric field and the velocity field affect each 
other has been termed electrohydrodynamics. The applications of electrohydrodynamics 
are numerous: cryogenic fluid management in the zero-gravity environment of space, 
formation and coelesence of solid and liquid particles, electrogasdynamic high voltage 
and power generation, insulation research, physicochemical hydrodynamics, heat, mass 
and momentum transfer fluid mechanics, electrofluid dynamics of biological systems, 
and atmospheric and cloud physics [1]. In some applications explicit knowledge of the 
flow due to a single drop is required. Experimentally and theoretically it has been shown 
[2] that a circulation can occur in the drop and its surroundings in the presence of a uniform 
electric field. The equilibrium geometry of the drop was examined and the force required 
to retain the spherical shape was calculated. The equilibrium geometry varies between 
oblate .and prolate ellipsoids, depending on the ratios of viscosities, dielectrics and con
ductivities of fluids in and out of the drop. In the limiting case in which the drop is highly 
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conducting compared to the surrounding fluid, the electric field acts as normal with regard 
to the interface and hence the viscosity ratio does not play any particular role [3]. 

The behaviour of a two-dimensional drop immersed in fluid has been examined ( [ 4, 5]) 
and it has been found that the two-dimensional solutions obtained have many features in 
common with the observed behaviour of three-dimensional drops. In this paper, the 
behaviour of a two-dimensional dielectric fluid drop immersed in another dielectric fluid 
in the presence of a uniform electric field is considered. The general view of the circulation 
of fluid in and round the drop is similar to that of a three-dimensional drop. A remarkable 
difference between the two-dimensional case and the three-dimensional one is that the 
equilibrium geometry of a two-dimensional drop does not depend on the viscosities of fluids 
in and out of the drop. However, when a drop is highly conducting as compared to the 
surrounding fluid, the viscosity ratio does not play any role because th~ electric field acts as 
normal with regard to the interface. The two-dimensional case and three-dimensional 
one may show a similar situation. Thus, considering the two-dimensional case it is 
possible to obtain some results about the three-dimensional case. 

2. Governing equations 

The magnetic induction in the fluid in and out of the drop is negligible because of 
dynamic currents is small enough. It is assumed that the influence of the electrical stresses 
on the fluid is included in the model, but there is no reciprocal effect of the motion on the 
fields. Therefore, the appropriate laws of electrodynamics are essentially those of electro
statics. Under the conditions considered here the governing equations of electrohydro- · 
dynamics are [3] 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

V xE = 0, 

V· E = 0, 

I= uE, 

V· u = 0, 

where E is the electric field intensity, I the electric current density, 0' the electric conductiv
ity, u the velocity, p the pressure, p, the viscosity; throughout the paper MKS units are 
used. 

The boundary conditions to be applied at the interface of a drop in an electric field 
are [3] 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

nx {E} = 0, 

n ·{uE} = 0, 
. n·{u} = 0, 

nx{u}=O, 

n x {:E+t} = 0, 

n·{E+t}+rU. + ;,) = o, 
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where E is th~ viscous stress which is given by 

(2.12) E = -pn+p[Vu+(Vu)l'] • n, 

and t is the electric stress which is given by 

(2.13) 
1 

t = - -eE · En+eE(E • n) 2 . 

199 

and {A} denotes the jump of A across the interface. T is the surface tension, and R 1 and R2 

are the radii of curvature of the surface; these radii are reckoned as positive when the 
corresponding centre of curvature lies on the side of the interface to which n points. 

Under the conditions considered here, the electric field E and the velocity field u can 
be determined independently by Eqs. (2.1)-(2.5) and then, they can be related by the 
boundary conditions (2.6)-(2.11 ). 

3. Electric field 

We consider a drop or bubble, assuming that its shape is cylindrical with radius a. 
Electrodes lie at a distance of many radii from the drop and then the electric field is uniform 
far from the drop. Appropriate cylindrical polar coordinates are defined as originating 

y 

Fro. 1. The two-dimensional drop of radius a is immersed in a liquid in the presence of a uniform electric 
field of magnitude Eo far from the drop. 

at the centre of the drop; the x-axis is in the opposite direction of the applied electric 
field and they-axis is normal to it (see Fig. 1). There are four boundary conditions for the 
electric field intensity: (i) E is finite inside the drop; (ii) the tangential component of the 
electric field is continuous across the surface of the drop; (iii) there is no surface current; 
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and (iv) E tends to E0 as lxl tends to infinity. Subject to these boundary conditions, Eqs. 
(2.1)-(2.3), (2.6) and t2.7) give that outside the drop 

2 
(3.1) E = -1-[E0 -(1-~X)(E0 • n)n], +(X . 

and inside the drop 

(3.2) 
- 2 
E =-

1
-Eo. 
+~X 

The expression in Eq. (3.2) shows that the electric field inside the drop is uniform. 
The circulation in and round the drop is responsible for electric force density which 

is related to the Maxwell stress tensor. We need the expressions oft over the surface of the 
drop. The tangential and normal component differences of t across the surface of the drop 
are 

(3.3) nx {t} = 
48 

(1 + 1X)2 ( ll,B -1)(n • E0){n x E0), 

(3.4) ·n ·{t} = (1 !~)2 [(1- ,B) Eo • E0 + {,8~X2 + ,8-2) (E0 • n)2
], 

where ,8 = e{i is the ratio of the permittivities. 

4. Velocity field 

The flow considered in this paper is governed by Eqs. (2.4) and (2.5). The boundary 
conditions for the velocity are: (i) u is finite inside the drop and tends to zero as lxl tends 
to infinity; (ii) u • n = 0 and ii · n = 0 at the interface; (iii) the tangential component 
of the velocity across the drop is continuous; (iv) tangential electric stress and tangential 
viscous stress are in balance at the interface. 

Following the general arguments given in [6] and [7] we write the pressure and the 
velocity in the fluid outside the drop 

(4.1) 

·(4.2) 

where 

p-p00 = A(b11 _ 2bk]XkXJ), 
# r2 r4 

u1 = b11 x1f(r)+bux1g(r)+bk1xkx1x,h(r), 

biJ = E01 E0" h,, = h,, b, = E5, 

and A is a constant. Using the same reasoning as for outside the drop, we write the pressure 
and the velocity in the fluid inside the drop 

(4.3) 

(4.4) 

where C is a constant. 

P-_Po = C(bJJx1xt-2blcJxkxJ), 

"' u, = h,1x1f(r)+bi1x/g(r)+bk1x"x1x,ii(r), 
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Inserting Eqs. (4.1)-(4.4) into Eqs. (2.4) and (2.5) and then using the boundary condi
tions, we obtain, after some lengthy calculation, 

2a 
A= E~ U, 

6 
C= 3£2 U, 

a o 

U _ eE~a(a.{J-1) 
- - 2p(1 + a.) 2 {1 + y) ' 

f = a~~ ( :: - ~ ). g = - ;~ ~ ' h = a~~~ ( ~· - ;: ) ' 

f = a~~ ( :: -1}, K = ;~ ( 1-
2
;2
2 
). h = :. ~~ , 

where U is a velocity (its meaning will be given in the next section) and y = pJfi. 
For a later use it is convenient to give the expression of the normal component of E 

across the interface. It can be written as 

(4.5) {~} - e(a.fJ-.l)[E E 2(E )2] 
n • ~ = Po-Poo- (1 + a.)2 o • o- o • R · 

It is a remarkable fact that the normal stress difference does not depend on the viscosities 
in and out of the drop. This situation may occur when the electric field acts as normal 
with regard to the interface [3]. 

We use the appropriate cylindrical polar coordinates defined in Fig. I. Outside the 
drop, using x = rn in Eq. (4.2), we have 

u = [Eo· E0 rf + (E0 • n)2r 3h] n+ (E0 • n)rgE0 • 

Considering that 
E0 • n = -E0 cos0, E0 • e8 = E0 sin0, 

where n = er and e8 are the unit vectors in cylindrical polar coordinates, we obtain the 
Ur and u0 components of the velocity in the form 

and similarly inside the drop we have 

_ ( r3 r) u = - U --- cos20 
r a3 a ' 

u8 = - u(!.. -2~)sin20. 
a a3 

It is possible to define a stream function which is related to the Ur and u8 components of the 
velocity by the relation 

1 a~ a~ 
Ur = rOO' Ue = - ar· 

An integration gives out the drop 

~ 1 ( a
2

) - = -- 1-- sin20, 
Ua 2 r 2 
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and in the drop 
;;p 1 ( r4 ,2 ) . 
Ua = -2 a4 -(il sm20. 

It is very interesting to note that the stream lines are exactly of the same form in the present 
case and in the case of a bubble in a pure straining motion in the absence of an electric 
field. 

There are nine stagnation points, four of them at the surface of the drop which are 

located at (a, 0), (a, ; ), (a, n), (a, 3; ), one at the centre of the drop, four inside the 

drop and located at ( v; a, : ) ' ( ~2 a, 
3
:)' ( Jl~2 a, s; ) ' ( •1; a, 

1
: ) . The location 

of the stagnation points in the drop is symmetrical. For a spherical drop the stagnation 

points in the drop are located at {V ~a, 54'), {V ; a, 126°), {V ; a, -126°) , 

(V ; a, -54°). The stagnation points in the cylindrical drop are closer to the centre of 
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F10. 2. Streamlines, drawn in a one fourth plane alone, in the present case and Ref. [2] by G. I. Taylor; 
---, the present case; (!):0.02, @:0.05, @:-0.05, <1):-0.2; the numbers are values of tp/Uo. 
-- - -, Taylor's case: @:0.02, @:0.05, @:-0.05, @:-0.2; the numbers are values of 'f/J/Ua2

• 

e and 0 show the stagnation points in the present case and Taylor's case, respectively. 
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the drop than to that of the spherical drop. As illustrated in Fig. 2, the ratio of the 
location of the stagnation points in the cylindrical drop to that of a spherical drop 
having the same radius as the cylindrical drop is 0.71/0.77 = 0.92. Figure 2 gives 
a comparison between the two-dimensional case and three-dimensional one. It shows 
that there is a fairly good agreement between streamlines in both cases. 

Although the two-dimensional drops considered might be thought to be of little rele
vance to the three-dimensional drops encountered in practice, the solutions derived show 
remarkable similarities with the observed behaviour of the latter. As the discussion points 
out it is possible to have some ideas about the three-dimensional case when the two
dimensional one is examined. 

Wow we consider the velocity at the surface of the drop, and then we write 

This shows that 

u0 = Usin20 at r = a. 

I (uo)maxl = U for 0=+~ -4 and 

thus, U is the maximum velocity. If the drop is insulating as compared to the surrounding 

fluid, {Jr.x is less than unity and then Ubecomes greater than zero. When U> 0, ifO < 0 < ~ , 

u0 becomes positive, and if 0 < 0 < n, u0 becomes negative. 

5. The equilibrium geometry of the drop 

The balance of the normal stresses on the interface of the drop is given by Eq. (2.11). 
Since we assume that the interface of the drop is to be cylindrical and of circular cross
section we replace the last term in Eq. (2.11) by -T/a. Equations (2.11), (3.4) and (4.5) 
give 

(5.1) 

(5.2) 2eE~ 2 _ 
(I+r.x)2 [{J(r.x +r.x+2)-3]- 0, 

where Poo- p0 gives the relative hydrostatic pressure. 
When Eq. (5.2) is satisfied the drop has a circular shape. In order to find out whether 

the drop will become oblate or prolate under conditions where Eq. (2.11) is not quite 

satisfied, we employTaylor's technique [2] and assume that a stress F0 cos28 ( = F0 (E~t>
2

) 
applied normally to the surface of the drop is necessary to keep it circular. If we replace T 
in the modified form of Eq. (2.11) by T + F0 cos20 and equate the coefficients of cos20 
we find 

(5.3) 
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where 

<P = p(a2 +a+I)-3. 

The equilibrium geometry depends on <P, namely the functional relation which is given 
by a and p. It is very remarkable that the equilibrium geometry does nof depend on Yt 
namely the ratio of the viscosities. This may be so due to the electric field which acts as 
normal with regard to the interface. If <P = 0, the drop is in steady-state equilibrium and 
if <P < 0, in the absence of F0 , the shape of the drop will decrease its extent in the direction 
of the applied electric field. If <P > 0, similar reasoning indicates that the drop would 
elongate in the direction of the applied electric field. 
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