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A rational approach to creep mechanics 

J. T. BOYLE (GLASGOW) 

SoME attractive ideas contained in the literature on time dependent inelasticity are identified 
and combined to form a more rational basis for the solution of boundary value problems in 
creep. Tnis is achieved by deriving two new fundamental equations which describe the inelastic 
response of a body. These equations provide a definitive means of studying the properties of 
solution of complex continuum creep problems, as well as a natural means of approximation. 
The solution of a simple structural problem is developed by means of illustration, and an alterna
tive, variational approach is derived. 

Przeprowadzono ide11tyfikacj~ i syntez~ pewnych interesuj~cych idei i pomysl6w, kt6re znaletc 
mo:Zna w literaturze naukowej dotycUlcej zalemego od czasu zachowania si~ cial niespr~zystych, 
twofZClC w ten spos6b bardziej racjonaln~ podstaw~ dla rozwi~ania problem6w brzegowych 
w teorii pelzania. Osi~gnic;to to drog~ wyprowadzenia dw6ch nowych, podstawowych r6wnan 
opisuj<lcych niespr~zyste zachowanie si~ ciala. R6wnania te pozwalaj~ w spos6b definitywny 
analizowac wlasno5ci rozwi~n zloronych problem6w pelzania osrodk6w ci~glych, a r6wnie2; 
stanowi<l naturaln~ podstaw~ do opracowania metod aproksymacyjnych. Dla ilustracji podano 
rozwi~ie prostego problemu konstrukcyjnego, przy czym podano r6wniez alternatywne 
podej8cie wariacyjne. 

flpoBe,lleHbi H,lleHTHcl>m<aznm H CHHTe3 HCKOTOpLIX HHTepeCHLIX H,lleH H KOHile~, KOTOPLie 
MO>KHO HaHTH B H8~0H JIHTeparype K8caiOI.UeHCH, 38BHCHI.Uero OT BpeMeHH, UOBC,llCHH.R 
Heynpyrmc TCJI, o6paay.R TaKHM o6pa30M 6oJiee PlmHOHa.m>H}'IO OCHOBY .llJI.R peweHH.R KpaeBLIX 
~aq B TeopHH UOJI3ytteCTH. 3TO ,llOCTHI'JIYTO nyTeM BLIBO,lla ,llByx HOBLIX, OCHOBHLIX ypaBHC• 
HHii, OnHCLIBaiOI.UHX Heynpyroe nose.ueHHe TeJia. 3m ypaBHeHH.R noasomnoT peWaiOIIUIM 
o6pa30M a.HaJIH3HPQB8Th CBOHCTB8 pewemtif CJIO>KHLIX ~aq UOJI3ytteCTH CIIJIOWHLIX cpe.zl 
H TO>Ke COCTaBJUUOT eCTeCTBeHHYIO OCHOBY .llJI.R paapa60TKH annpoKCHM~OHHLIX MeTO.llOB . 
.[(.mi HJIJIIOCTp31.UIH npHBe,lleHO peweHHe npOCTOH KOHCTpYJ<THBHOH ~tJH, npHtteM ,ll8eTC.R 
TO>Ke a.m>TepHaTHBHLIH BapH~mHOHHLIH UO,Z:OCO.zl. 

1. Introduction 

T1rn PHENOMENON of creep in structural materials, particularly in metals, is of continually 
increasing importance. The prediction of its long term effect on the behaviour of structures 
operating at elevated temperatures has become the theme of numerous studies over the past 
half century. Diverse techniques have been employed in the resolution of these inherently 
time dependent problems and have proven successful in many applications by comparison 
with those elementary analytical solutions which are available on the one hand, and with 
experiment on the other. However, there appears to be no mathematical basis for an 
investigation into the validity and relevance. of these methods, which arose out of the 
engineering demands of the time. Nevertheless, the fundamental components of such 
a "rational" approach which would systematically review and incorporate achievements 
as well as clarify ultimate goals have already been postulated in the literature. In this 
paper a preliminary attempt is made to resolve these components into a rigorous founda
tion for a rational creep mechanics by formulating compact equations for the time depend-
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ent response of a continuum to creep - these equations can be identified as orthodox 
forms in functional, rather than classical, analysis. The premise is that the important 
aspects of the creep behaviour are isolated in a manner useful for analysis and discussion. 

The needs of high temperature engineering forced the genesis of practical methods 
for the numerical resolution of complex structural problems. Here, the most popular is the 
"method of elastic solutions" (or "initial strains" or "successive approximations") formed 
from concepts out of thermoelasticity applied to elasto-plasticity by A. A. ILYUSHIN [I] 
and extended to creep by H. PORITSKY and_ F. A. FEND [2], A. MENDELSON, M. H. HIRSCHBERG 
and S. S. MANSON [3) and P. S. KURATOV and V. I. ROZENBLIUM [4). These methods are 
essentially numerical "algorithms" based on simple approximate integration of the temporal 
response. Attempts to construct more accurate temporal integrations convinced several 
authors that some sort of mathematical formulation of the process of stress redistribution 
should be possible. The publications of W. C. CARPENTER [5] Z. P. BARANT [6] and 
0. C. ZIENKIEWicz and I. C. CoRMEAU [7], confirmed this speculation for complex problems 
modelled by finite elements - the step to a general "equation of stress redistribution" 
was then taken by the writer [8] and the results were applied to some problems of engineer
ing importance [9, 10]. It was also pointed out in [8] that it was possible to derive an 
equation for the evolution of inelastic growth in a continuum, and that this could be 
identified as the principle of an existence proof for viscoelasticity derived some years 
earlier by I. BABUSKA and I. HLAVACEK [11]. It is the main purpose of this paper to bring 
these theories together as a unified whole and thus develop a more rational approach to 
creep mechanics, the publication of Babuska and Hlavacek providing a major influence 
in the presentation of this work. 

2.Motivation 

Consider rationally the process of time dependent creep. A body in equilibrium with 
itself and its environment is suddenly subjected to a series of external influences such that 
an initial stress and strain pattern is generated. As time progresses the body creeps and the 
stress and strain patterns evolve from this initial state. Thus, quantitatively, what has to be 
resolved is a problem of evolution - is it not then reasonable to expect that this process 
should be represented by an equation of evolution, or initial vaJue problem? Indeed by 
discretizing in space (via finite elements), W. C. CARPENTER [5], Z. P. BAZANT [6] and 
0. C. ZIENKIEWICZ and I. C. CoRMEAU [7] confirmed this. Moreover, it is fairly easy to 
establish an equation of evolution for simple problems. 

Consider the simplest problem of a beam in bending, after W. J. GoooEY [12]. Suppose 
that the cross section of area A, has symmetry about one principal axis of bending and that 
the longitudinal stress depends solely on the height above the centroidal plane, x, and time, 
t. Let e = e(x, t) be the longitudinal strain, and " = "(t) the curvature change. The 
fundamental field equations are: 

a) Equilibrium with external bending moment M 

J u(x, t)xdA =M. 
A 
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b) Strain-displacement 

c) Constitutive relations 

e(x, t) = "(t)x. 

e(x, t) = ee(x, t)+e.,(x, t), 

ee(x, t) = a(x, t)/E, 

~ e.,(x, t) = B(t)a(x,t)•, 

e.,(x,-0) = 0, 

231 

where E is Young's modulus, and assuming for simplicity that the material creep response 
can be described by a time hardening law of the Norton type [13] where B(t) and n are 
material parameters. 

For convenience it is assumed that the applied bending moment M is constant in time. 
FirstJy differentiate all equations with respect to time 

J itxdA = 0, 
A 

e =,ex, . a . 
e = E +e.,, 

thus 

a= E(i- e.,) 
and on substituting into equilibrium and using strain displacement there results 

(2.1) 

where I = f x 2dA. 
A 

Hence, on using the creep law 

~; = E{; f B(t)o"xdA-B(t)o"}, 
A 

(2.2) 

which is an equation of evolution for the stress field taken with the initial condition 

(2.3) 

where a0 is the initial elastic stress 

a(x, 0) == a0 (x), 

Mx 
O'o(x) = ]• 

Further, if Eq. (2.1) is integrated with respect to time, then 

a= E{; J s.,xdA-s,}+a0 

A 

using the initial conditions. 
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But from the constitutive relations 

~ e, = B(t) u" 

hence, on substitution, 

(2.4) 

which is an equation of evolution for the growth of inelastic strain taken with the initial 
condition 

(2.5) E11(X, 0) = 0. 

Hence, for this simple problem the existence of equations of evolution for the creep response, 
(2.2) and (2.4), have been established. Such an equation similarly prevails for other creep 
laws (for example, consult the work of B. EINARSSON [14] on thick spheres and cylinders 
using the "strain hardening" theory [13]). 

The question is: does the procedure described above always operate? At first sight it 
seems impossibJe, relying on an ability to express i:J in terms of e., (2.1). However, consider 
the procedure in a more abstract fashion. What in fact has been shown is that 

(2.6) a-= R(E.,), 

where 

R(e*) = e{; J e*xdA-•*} 

for some function, or "operator" R (which maps a function of x into another function 
of x) and which is obviously linear. Then, using the creep constitutive law 

(2.7) d 
diu= B(t)R[u"], 

which is equation (2.2). 
Similarly, the equation for inelastic growth (2.4) can be written 

{2.8) 

Thus for any problem, even though an explicit expression for R may not be avaiJable, 
this operator can still be formal1y defined. By examining the course by which Eqs. (2.7) 
and (2.8) were derived it is obvious that R may be defined in the following manner: 

Let e* be some strain, then R(e*) is the stress resulting from the solution of an elastic 
problem for an identical beam:, but with an initial strain pattern e* imposed upon it, 
giving zero resultant moment. These results may be readily extended to the variable loading 
situation. Then the equation of stress redistribution becomes 

(2.9) :r u = B(t)R[u"]+ao 
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whilst that of inelastic growth remains unaltered, except that now a0 (x, t) is the stress 
resulting from the solution of an equivalent elastic problem to the creep problem with 
inelasticity ignored, i.e. 

with the initial condition 

(2.10) 

M(t)x 
a0 (x, t) = -

1
-

a(x, 0) = a0 (x, 0) = M(O)xfl. 

The above simple observations provide the motivation for the following discussion. 

3. The continuum. problem 

At this point, before proceeding any further, there should be an appraisal of the me
chanical laws which characterise creep deformation. Of the representations which are 
available few are concerned with the atomic structure of the material, involving a stochastic 
and kinetic description; thus most constitutive approximations are of a purely deterministic, 
phenomenological nature. 

3.1. A constitutive model 

The majority of the more sophisticated constitutive models are based on the so-called 
Axioms of Constitutive theory [15] being a set of fundamental rules to which the models 
should adhere. One of these axioms, otherwise known as the Principle of Determinism, 
is open to criticism of a practical, rather than a physical, nature. The principle asserts that 
the stress in a body at some instant shall be determined by the history of deformation 
of the body up to that instant. Although intended to eliminate the (unrealistic) influence 
of future events, it is often used to imply a constitutive model with stress expressed in terms 
of strain history. Simple observation of the methods and possibilities oflarge scale material 
testing and documentation for creep highlights the excessi'\"'e practical limitations of such 
an approach - essentially restricting any experimental program to short term tensile 
tests at variable Joad producing data on strain change in terms of stress level. Unless a sound 
physical theory of material creep behaviour on the atomistic level is forthcoming, and 
this does not appear to be remotely accessible, any mathematical constitutive model shall 
be largely speculative, and the problems involved thus seem insurmountable. Nevertheless, 
an alternative view of creep constitutive theory has recently been expressed by F. A. LECKIE 

[16]. The underlying philosophy is the treatment of the material as a "black box" with 
an input of stress and an output of strain rate - thus the effect of the black box may be 
assessed by performing suitable tests, even though the actual mechanism of the box is 
unknown. <1) A suitable mathematical model of the black box is a form of the so-called 

<t) Indeed the concept leads to more fruitful ideas with the direct application of information theory 
to creep mechanics in which the writer is now involved to an extent eliminating accurate deterministic 
material models. 
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internal, or "hidden", state variable theory [17, 18, 19] which is of the uniaxial form 

i, = F(G, a.J), 
(3.1) 

ci, = Gi(G, a.1), i = 1, 2, ... , N, 
where lJ is the stress, · e, the viscous (creep) strain and a.1, i = 1 , 2, ... , N a set of internal 
state variables; the functions F and G1 are determined by experiment- indeed LE:KIE 

has shown [16, 19, 20] how the pertinent parameters which result may be obtained by 
~'operating" the black box. 

Thus in this paper a rational mechanics for creep is developed on this theme of black 
boxes using the internal state variable theory as model. 

3.2. The creep problem 

Consider a body PJ occupying a volume "f" in a three-dimensional space, bounded by 

a surface fJ'; points of 17 = "f" uf/' are described by the triplet (X1 , X2 , X3) = X. It is 
supposed that at time t = o- the body is in an unstressed and unstrained state in equilibrium 
with itself and its environment. At time t = 0 the state of the body is suddenly changed 
by the application of external influences in the form of internal body forces within ~' 
of prescribed surface tractions on a part of its boundary !1'11 c fJ' and prescribed displace
ments on the remainder fJ' u = !I'""'-!I'•. The environment is such that the body creeps 
inelastically in time. 

It shall be assumed that isothermal conditions are maintained so that thermal strains 
can be discounted; furthermore, the deformation is infinitesimal and quasi-static so that 
inertial and accelerative effects can also be ignored. The initial deformation is supposed to 
be purely elastic so that instantaneous plasticity, for example, is not taken into account. 
Finally it is assumed that the portions fJ' 11 and fJ' u of the bounding surface do not alter in 
time. None of these suppositions are restrictive to the theory which can be readily extended 
to cope with their inclusion- they serve only to add notational complications. Firstly, 
some definitions are required to identify properly the field variables of stress, strain and 
displacement in the body [21]: 

A continuum field process [u, e, a] for the body f1l is a function defined on the real line 
R whose values at timet E R are ordered triplets ( u(t), e(t), a(t)) such that u(t) is a vector, 

displacement field with components ui(X, t), i = 1, 2, 3, X E ..Y and e(t) and a(t) are 
second order strain and stress fields tensors with components eli(X, t), G11(X, t), i,j = 
= 1, 2, 3, X E ..P, respectively. This definition is intended to clarify the difference between 
the whole history of displacement, strain and stress [u, e, a] and the state of displacement, 
strain and stress at a particular instant, t, say (u(t), e(t), a(t)). However, frequently 
explicit dependence on t shall be dropped where there is no confusion. Nevertheless not 
all of the possible states of deformation and stress for the body are satisfactory on more 
general physical or geometrical grounds. 

The triplet (uA, eA, aA) is an admissible state for f1l if uA(X) is smooth on "f" with 

uA, V uA continuous on ..Y, where V is the tensor 

"A 1(A A) Vu =- u· 1+u1 · 2 '· ·', i,j= 1,2,3, 

http://rcin.org.pl



A RATIONAL APPROACH TO CREEP MECHANICS 23S 

eA (X) is a symmetric tensor continuous on 1"", and aA(X) is a symmetric tensor, smooth

on "Y and such that aA and div aA are continuous on 17' where div is the vector 

div aA = u~.b i = 1 , 2, 3 

with ( ),1 = 0~1 ( ), i = 1, 2, 3 and using the Einstein summation convention. 

Then [u, £, a] is an admissible process for 11 if its values (u(t), e(t), a(t)) are admissi
ble states for 11. 

The inelastic constitutive equation (3.1) for the internal state variable theory generalises 
to 

E11 = F{ a(t), mj(t) ), 

ci1 = Gi( a(t), mj(t) ), i, j = 1, 2, ... , N 
(3.2) 

with F and G1 non-linear tensor valued operators, mi being a process of internal change 
whose value at timet is the tensor field m;(t) with components a11t(X, t) i = 1, 2, 3, ... , N, 

j, k = 1, 2, 3, X e ..Y representing theN hidden state variables. 
The inelastic strain is related to the actual (total) strain through the decoupling identity 

(3.3) E(t) = Eit)+E1,(t), 

where ee(t) is an elastic strain related to stress through the generalised Hooke's law 

(3.4) Ee(t) = C{ a(t) ), 

where C is a linear operator whose components C111, i,j, k, I= 1, 2, 3 form the fourth 
order "compliance" tensor (it is possible to require C to depend on t but for convenience 
this shall not be done). Since the initial response is supposed to be purely elastic the consti
tutive relations are completed by the identity 

(3.5) E"(O) = 0. 

Now suppose that the body is subjected to an internal force process f with values f(t) 

and components [;(X, t), i = 1 , 2, 3, X e "Y. Then by a qua.Si-static creep process for the 
body 11 is meant an admissible process [u, e, a] for 11 whose values are such that the stress 

field a(t) is in equilibrium with the body force f(t) 

(3.6) div a(t) + f(t) = 0 in "Y 

while being related to the strain field e(t) through the constitutive relations (3.2)-(3.5) 
which is compatible with the displacement field through the strain-displacement identity 

(3.7) E{t) = Vu(t) in ..P. 
Let a surface displacement vector field process u be given on f/ u, and a surface traction 
vector field process s be given on f/ u then by a solution of the mixed quasi-static creep 
problem corresponding to the boundary data [li, S] is meant a quasi-static creep process 
for 11 such that 

(3.8) 

)3.9) 

u(t) = ii(t) on 9' u 

a(t) n = s(t) on 9'5 

where n is the unit normal vector to the surface f/s. 
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3.3. The equivalent elastic problem 

For each creep problem it is possible to define an "equivalent" elastic problem by 
ignoring inelasticity in the formulation. This equivalent elastic problem [11] is useful 
in the presentation of the rational approach. 

The process [ u0 , Eo, a0 ] satisfies the equivalent elastic problem corresponding to the 

boundary data [ii, S] and the body process f if its values satisfy 

div a 0 (t) + f(t) = 0 in 1'; 

«o(t) = Vu0 (t), 

E0 (t) = C [ a 0 (t)] in "'/; 

u0 (t) = -(t) on f/ u; 

a(t) n = s(t) on g s· 

It is important to notice that the solution of the initial elastic problem is the value of the 
process [u0 , E0 , a 0] at timet= 0, i.e. (u0 (0), e0 (0), a 0 (0)). 

4. The equations of inelastic growth and stress redistribution 

In the examination of the simple beam in bending equations of evolution for the growth 
of inelasticity and redistribution of stress were derived. These shall be generalised to the 
continuum problem. 

4.1. Statement of tbe basic equations 

It is fairly obvious from Eqs. (2.8) and (2.9), bearing in mind modifications to allow 
for an internal state variable constitutive model, that the generalised "equation of inelastic 
growth" should take the form 

d 
dtEo(t) = F[ao(t)+R[E0 (t)], Clj(t)], 

(4.1) 

subject to the initial conditions 

(4.2) 
E0(0) = 0, 

cxi(O) = cxiO, 

where cx10 is the initial state of the internal variables. Similarly the generalised "equation 
of stress redistribution" should be 

(4.3) 

:r a(t) = R[F(a(t),cxi(t))]+a0 (t), 

d 
dtcx1(t) = G1( a(t), exit)) i,j = 1, 2, ... , N 
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subject to 

a(O) = a0 (0), 

Clt(O) = Clto 
(4.4) 

noting that a0 is the stress associated with the equivalent elastic problem. The operator R, 
called here the "residual operator", maps second order tensor fields into second order 
tensor fields and can be defined through the solution of a further elastic problem, which 
shall be called the "residual elastic problem": 

4.2. The residual elastic problem and the residual operator 

Let e* be a strain process whose values are admissible strains (i.e. symmetric and 
continuous on 1"") then [oR, ER, aR] is a solution of the residual elastic problem for e* 
if its values satisfy 

div aR(t) = 0 in jl"· , 

ER(t) = VuR(t), 

eR(t) = C[ aR(t)] + E*(t) in ~· , 

uR(t) = 0 on f/v; 

aR(t) n = 0 on f/ 11 • 

Therefore the residual elastic problem is an elastic initial strain problem such that !/ 11 is 
free and !/ v is fixed with no body forces. Thus the residual operator is defined as 

aR(t) = R[ E*(t)]. 

It turns out that this operator has several important properties<2> [8] (some are discussed 
in Appendix 1). 

4.3. Representation theorem for inelastic growth 

Although it is tolerably straightforward to define these equations it is not at all clear 
that they, together with the auxiliary elastic problems, yield the solution of the quasi
static creep problem. This needs to be proven. 

Firstly it should be established that the process of inelastic strain indeed complies 
with the equations of inelastic growth. 

THEOREM 1 (a). Let [u, e, a] be a solution of the quasi-static creep problem with [u0 , E0 , 

a 0 ] a solution of the equivalent elastic problem, then Ev must satisfy the equations of inelastic 
growth. 

P r o o f. It is fairly obvious that [ u- u0 , E- e0 , a- a 0 ] satisfies a residual elastic prob
lem for E11 • By definition 

hence, since Eo = C( a0 ) 

(i) £-eo = C(a- a0 ) +F( a, Cl1), ci, = G;( a, Cl1). 

c~> In particular it should be noted that it is linear. 
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But a- a0 satisfies the residual elastic problem for e., so 

(ii) 

(iii) 

Comparing (i) and (iii) 

and from (ii) 

a-iso = R(€.,), 

E-Eo =CC -Go)+£.,. 

£., = F[a0 +R(e,),(lJ], ci, = G;[a0 +R(e.,),(l1]. 

Since it is readily verified that 

the result is proven, QED. 

J. T. BoYLE 

Secondly it needs to be established that if a solution, e* say, of the equations of inela 
stic growth is attainable then a solution of the creep problem can be constructed. 

THEOREM 1 (b). Let [ u0 , e0 , a0 ] satisfy the equivalent elastic problem and [ uR, eR, a R1 
satisfy the residual elastic problem for e* where E* is a solution of the equations of inelastic 
growth. Then [ut+ uR, e0 +eR, a0 + aR] is a solution of the creep problem. 

P r o f. By definition 

e0 = C( a0), ER = C( a~+ E*, aR = R( e*) 

and 

Combining these 

Eo+E:R = C(a0 +aR)+F(a0 +aR,(lJ), (l' = G1(a0+aR,(lJ) 

and similarly 

Hence since 

div( a0 + aR)+f = 0 

Eo+ eR = V(u0 + uR) 

uo+ uR = ii on 

in 

in 

"Y, 

"Y, 

!?u, 

[/ll' 

[u0 + uR, e0 +ER, a0 + aR] is a solution of the creep problem, QED. 
Thus, Theorems 1 (a) and 1 (b) establish the representation of the quasi-static creep 

process by the equations of inelastic growth. It is interesting to note that these "represen
tation theorem" qualify the classical decoupling ·of a creep process into an equivalent 
elastic component and a residual component [22] - and that, furthermore, this residual 
part is obtainable through the solution of another elastic problem together with an appro
priate equation of evolution [11]. 
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4.4. Representation theorem for stress redistribution 

It has been shown that viscous strain obeys the equation of inelastic growth and that 
once a solution of this is available it is possible to construct a solution of the creep problem. 
It can also be demonstrated that the stress associated with the creep problem satisfies the 
redistribution Eqs. (4.3) whether the exact solution or the constructed solution is available. 
Unless this stress is unique it is not possible to construct a solution of the creep problem 
by resolving the redistribution equations alone unless additional conditions on the constitu
tive equations are specified. However, 

THEOREM 2 (a). Let [u, E, a] be a solution of the creep problem such that [u0 , E0 , a0J 
is a solution of the equivalent elastic problem, then a satisfies the redistribution equations. 

Proof. By definition a- a0 = R( E11) and from Theorem 1 (a), E11 is a solution of 
the equation of inelastic growth 

E.,= F[a0 +R(E.,), a1], 

cXi = Gi[ ao + R( E11), Uj] 

consequently, E11 = F( a, a1) and 

is= R(F(a, a1))+o0 , cii = Gi(a, a1), 

a(O) = a0 (0), Ut(O) = U10 

and the result is proven, QED. 
THEOREM 2 (b). Let [ u0 , Eo, a0 ] be a solution of the equivalent elastic problem and 

[uR, ER, aRJ satisfy the residual elastic problem for E* where E* satisfies the equations of 
inelastic growth. Then, the constructed solution a0 + aR satisfies the redistribution equations. 

Proof. By definition aR = R( E*) and 

£* = F( a0 + R( E*), Uj), eX! = Gi( a0 + R( E*), uJ) 

hence 

Consequently 

o0 +o.ft = R[F( a0 + aR, uJ)J +iso, tXi = Gi( ao + aR, uJ) 

but from Theorem 1 (b) a0 + a R satisfies the creep problem, so 

and the result is proven, QED. 

4.5. The equations of evolution for deformation 

The preceding analysis has successfulJy established the existence of initial value problems 
for inelastic strain and stress. Similar formulations can be inferred for th~ deformation 
process, coupled with either of these "pr;mitive" equations. 

From Theorem I (b) 

U(t) = · UR(t)+ U0(t), E(t) = ER(t)+ E0 (t) 
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and on deilning 

UR = r1
( E*), 

ER= R11(e*) = C{R(E*))+E* 

there results on rearranging and employing Theorem 1 

:r u(t) = r1{F(a(t), cxj{t)))+ti0 (t), 

(4.5) :r E(t) = R11{F(a(t), CXJ(t)))+£0 (1), 

(4.6) u(O) = u0 (0), E(O) = E0 (0), 

J. T. BoYLE 

which should be integrated along with Eqs. (4.3) and (4.4) to obtain a solution. Theorems 
with similar implications to Theorem 2 may be deduced. 

S. Implicatioa 

There are two main implications of this treatment of creep mechanics. Firstly the 
inelasticity has been isolated and shown to obey a certain equation of evolution; the creep 
process may be constructed from this growth law. Secondly, if it can be established that 
a unique solution exists, the creep process may be alternatively described by the redistribu
tion equations and the equations of evolution of deformation without resorting to the 
growth law. 

This "rational" approach is, in a sense, an exact statement of the well-known "initial 
strain" algorithm [2-4]. Discrete forms-of the redistribution equations have been identified 
by W. C. CARPENTER [5] and Z. P. BAZANT [6] and of the evolution of deformation by 
0. C. ZIENKIEWICZ and I. C. CORMEAU [7] on approximating the field space variable 
by finite elements. The inelastic growth law can in fact be recognised as the basis of the 
existence proof for viscoelasticity, described by a hereditary integral constitutive equation, 
as given by I. BABUSKA and I. HLAVACEK [11]. 

It is the writer's contention that the equations of inelastic growth are fundamental 
to the creep process - and that familiar results concerning the mathematical formulation 
of creep and its numerical resolution should be directly related to the properties of these 
equations, or the associated redistribution equations. For example, Ref. [8] considers 
the existence and uniqueness of solution to the creep problem using the equations of inelas
tic growth, whilst Ref. [23] employs the redistribution equations in a discussion of the be
haviour of creeping bodies at large times. Moreover this rational approach can be used not 
only in a systematisation of the study of properties of solution of creep problems, but also 
in the clarification of approximate solution methods, and practical examples. For example, 
the stress redistribution equations can be used to derive stress bounds for creep [24], or to 
resolve complex problems in structural dtsign for high temperature [9, 10]. In order to 
demonstrate the possible applications of the approach two examples shall be presented 
the first of which illustrates the scheme of the method in problem solving while the second 
illustrates some mathematical manipulations of the equations. 
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6. Examples 

6.1. Forward creep of a straight pipe 

Consider a long, thin, constant thickness circular cross section cylindrical shell of 
mean raditJ.s r, thickness 2h and length L, as shown in Fig. l.lt is supposed that h/r < < 1 
so that the radial stress components are negligibly small, with the remaining longitudinal 
stress <T( cf>, t) being constant through the thickness. 

' '\ \ 
\ 
I 

I 

,.../ 

L 

FIG. 1. Geometry of a straight pipe. 

Let the pipe be loaded by a bending moment M which is kept fixed as the pipe creeps; 
the problem is to determine the resultant curvature change x(t). 

The field equations are those of a simple beam 

e = xrsincf>, 

2n 

M= J (2hr 2)usincf>dcf>, 
0 

where e is the longitudinal strain composed of an elastic and a viscous part 

related to stress through the constitutive equations 

Ee = <T/E, e, = B(t)<T", 

E being Young's modulus, and B(t), n material parameters associated with Norton's 
power law of creep [13]. 

With refuence to Eq. (4.3) the redistribution equations can be written down (remember
ing that R is linear) 

(6.1) ~ <T = B(t)R[<T"]+D-0 , u(O) = <T0 (0) 

as well as the equation of evolution for curvature 

(6.2) 

4 Arch. Mech. Stos. or 2177 
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where u0 and ~0 are the stress and curvature from the equivalent elastic problem 

with the solution 

Eo = ~0 rsincj>, 

2n 

M= J (2hr 2)a0 sincf>dcf>, 
0 

Eo = C1o/E, 

M sincf> 
C1o = 2hr2 -n-' 

M 1 
~0 = 2hr 2 Ern· 

J. T. BoYLE 

For an arbitrary initial strain E*, R(E*) and r1(e*) are the stress and curvature from the 
residual elastic problem for e* 

with solution 

ER = ~ R r sin 4>, 
2n 

0 = J (2hr 2)aRsincf>dcf>, 
0 

2n 

R(e*) = Ga = £{ si:f_J e*sin</>d</>-•*}, 
0 

2n 

1 J" r 1(e*) = i'R =- e*sincf>dcf>. 
nr 

0 

On adopting the normalised time scale 

-r = £~- 1 f B(t)dt, 

where a11 = M/2hnr 2, Eqs. (6.1) and (6.2) become 

2n 

dS sincf> . , .. S" . ,. ..~,. S" - = -- Sln'f'Uiy-
d-r n . ' 

t 0 · 

2n 

(6.3) dd1( = _!_ J S" sin 4> dcf>, 
't' n 

0 

S(cf>, 0) = sincj>, K(O) = 1, 

where 

S(cf>, -r) = a(<P, t)fa,, K(-r) = ~(t)/~0 
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and noting that M, and therefore a0 and u0 are constant in time. By replacing the integrals 
in Eqs. (6.3) by a finite sum using, for example, Simpson's quadrature rule, the continuous 
initial value problem (6.3) may be replaced by a finite system of first order ordinary differ
ential equations in time which may be resolved numerically by means of, say, a Runge
Kutta method. For interest, results for K with creep index n = 3.0, 5.0 and 7.0 are given 
in Fig. 2; K is a measure of the increasing "flexibility" of the pipe with creep compared 
to its initial, elastic flexibility in bending. 

K 

2.0 
n::3.0 n-5.0 n-7.0 

Q1 0.2 0.3 0.4 0.5 ' 
(Note time .scale depends on n) 

FIG. 2. Flexibility of a straight pipe in creep. 

6.2. Nguyen's variational inequality of evolution 

Variational formulations of problems in structural mechanics, encompassing in par
ticular the Theorems of minimum total potential energy and complementary energy, have 
played an important role in describing global properties of the whole system rather than 
its component parts leading often to information on bounds to solution and providing 
a natural means of approximation [25]. However, there has been growing recognition 
that only a very restricted number of problems possess a variational formulation in the 
dassical sense [26, 27] leading to a reexamination of the principles of the calculus of 
variations [28, 29]. In particular the quasi-static creep problem has no such formulation 
[8]. Nevertheless it has been argued that the essence of the variational technique lies in 
the theory of convex analysis and "variational inequalities" (30, 31]. A rough sketch of 
this theory is given in Appendix 2, but more information, together with many examples 
from mechanics, can be found in the book by G. DUVAUT and J. L. LIONS [31]. This 
theory has been applied to the so-cal!oo "steady" phase of material creep behaviour by 
B. NAYROLLES [32]. However, Q. S. NG~YEN [33, 34J has derived a variational inequality 
of evolution for a class of materials known as "standard, generalised" with a time dependent 
viscoplastic response described by an inter~al variable theory [34]. In this sense the quasi
static creep problem has a variational form, and it shall be demonstrated how it may 
be deduced from the rational approach. 

The inner product between second order tensors is defined by 

,. 
http://rcin.org.pl



244 J. T. BoYLH 

The set of all possible tensor fields for which this can be defined forms an inner product 
space, denoted by J: it is possible to refine this space to the Hilbert space L 2 ("Y) being 
that subset of J such that 

114-11 < oo, V4- E L2("Y) 

if the integral is in terms of the Lebesque integration. 
It shall be assumed that the linear elastic operator C is symmetric and positive in 

L2 ( "Y) that is, 

(C(4-), 'I') = (4-, C('l')), 

(C(4-), 4-) ~ 0, = 0 iff 4- = 0, 4-, 'I' e L 2 ("Y) 

and furthermore that c-1 exists~ With these assumptions it is possible to define another 
inner product on J given by 

[4-, 'I'] = (C(4-), 'I') 

which can be called the "elastic energy inner product" since the associated norm 

114-11 = Jl [4-, 4-] 

is twice the elastic energy of the body with stress pattern 4-. 
Define the convex set S(t) of statically admissible stresses 

S(t) = { a'(t) E L2("Y)/divcr"(t) +f(t) = 0 m r, a'(t) n = s(t) on 9',} 

and let 'Pstt> be the indicatrix of S(t); on S(t) define the elastic energy inner product as 
structure. Then, the subdifferential of 'Ps<t> is the set 

O'Ps<t>(a) = {4- E L 2 ("Y)/[4-, a'- a]~ 0, V er" E S(t)}. 

Suppose that o is self equilibrating, i.e. 

diva= o in r, 
on= 0 on 9', 

and that E* e L 2("Y). Then, if [oR, ER, aR] is the solution of the residual elastic problem 
correponding to E* 

(R(E*),o) = (C(R(E*)],o) = (ER-E*,o) = (ER,o)-(E*,o). 

But using Green's identity 

(ER, o) = J ER· adX = J ('VuR). odX = - J divo· uRd~+ J (an). uRdX = 0 
.,. .,. .,. 9' 

from the properties of the solution of the residual elastic problem. 
Hence, 

(R( E*), 0] = -( E*, G) 

and thus 

and if a, a• E S(t), a= a"- a 

(R(E*)+C-1 (E*), er"- a)= 0 
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so that, by definition, 

Indeed if a is identified with the stress from the creep problem and E* with E11 , then, from 
the redistribution Eq. (4.3) 

R(ev)+C- 1 (Ev) = c:i-c:i0 +C-1 [F(a, cx1)] 

and there results the multi valued equation of evolution for creep 

~ a-ir0 +C- 1 [F(a, cxj)] E D'f's<r>(a), 

d 
(Jicxi = Gi(a, CXJ), 

which is equivalent to the variational inequality of evolution for creep 

rc-l F(a, cxj)+cio- ~a, a*- a]+tp(a*)-tp(a) ~ 0, V a* E S(t), 

d 
(jjcxi = Gi( a, cxi). 

Thus the approach of Q. S. NGUYEN (33, 34] in viscoplasticity is regained for creep. 

7. Conclusions ·and comments 

In this essay a rational approach to creep mechanics has been adopted, through the 
derivation of the equations of inelastic growth and stress redistribution, with the temporal 
behaviour admitted to a primary role rather than emphasising the inherent nonlinearity 
of the response. There has been a tendency in the past to believe that this aspect of creep 
is routine by applying any of the initial strain algorithms shunned to an extent due to 
excessive computational costs and the feeling that expensive sledge hammers were being 
employed in the destruction of rather ill-defined nuts. While the phase is certainly only 
transient, this view is possessed of an amount of truth in the solution of basic problems 
of engineering importance. But looking ahead, the future of creep research should lie, 
not in a progression from its current state, but rather in a search for a new basis. Perhaps 
the hypothesis of the black box, and the systematisation of this rational approach, shall 
indicate a means by which this basis could be achie'Ved? Meanwhile, the main result of 
this rational approach has been to identify and combine several attractive ideas which 
have remained virtually unnoticed in the literature and illustrate the diversity of applica
ation of the end product. 

The body of this essay has been concerned with the small deformation problem - al
though it should be a fairly straightforward matter to extend the results to large deformat
ions. However, considerations of gross material deterioration such as rupture, fatigue 
and ratchetting unfortunately cannot be included because of lack of space. It is hoped 
that this position shall be rectified in the near future. 
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Appendix 1 

Some properties of the residual operator 

It is of interest to record here some attractive properties of the residual operator. As 
in Sect. 6.2, the inner product space J (and L 2 (1'")) are defined, and it is supposed that 
C is symmetric and positive definite. 

It can be shown that R is symmetric and negative on J i.e. 

(R(~), 'I')=(~, Rt'l')), 

(R(~), 4-) ~ 0 

for all~' 'I' e J however, it should be noted that it is not necessarily true that 

(R(fla), 4t) = 0 if 4t = 0, 

that is, R is not .negative definite. 
Let 4t, 'I' e J and (u•, E•, a•) (o", E,, a") be solutions of corresponding residual 

elastic problems for~ and 'I', respectively. 
Then, 

(R(4t), 'I')= (a•, 'I')= (a•, E,-C(a")) = (a4, E,)-(a•, C(a")). 

But ( a•, E,) = 0 on application of Green's identity (virtual work). Hence, 

(R(~), 'I')= -(alP, C(a.,)). 

Similarly, 

(R('I'), 4t) = -(a.,, C( a•)). 

Hence, since C is symmetric it follows that R is symmetric; and since C is positive, R is 
negative. 

Appendix 2 

Variational inequalities 

Consider the operator equation 

(i) A(U) = F, 

where U is a set of unknowns such that the set of all possible U forms an inner product 
space J i.e. there exists a real valued, bilinear function(.,.) with the properties 

(Ut, U2) = (U2, Ut), 

(U, U,);?.: 0, = 0 iff U = 0, 

(Ut,f.lU2+J.U3) = p(Ut, U2)+J.(Ut, U3), 

where ul' u2' u3 E J. The operator A, which can be differential, integral, algebraic 
and so on, transforms members of J into another member of J; it is therefore supposed 
that F e J. The classical aim of the calculus of variations [27] is to determine if (i) has 
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a variational formulation; this is possible if there exists a real valued function W(U), 
(mapping J onto the real line - usually called a functional) whose gradient, grad W( U), 

given by the Gateaux derivative 

lim W(U+sH)- W(U} = (gradW(U), H), VH e J 
,-o s 

exists and is such that 

(ii) grad W(U) = A(U)-F. 

It can be shown that if W is also convex, i.e. 

W(U)- W(V)- (grad W( U), U- V) ~ 0, VU, V e J 

then it is minimised by the solution of (i) and may in consequence be bounded, i.e. 

(iii) W(U}~ W(U*), 

where U minimizes W (and thus solves (i)) and U* is any other member of J. 
Often this bounding can only be realised if U, U* e K is a convex subset of J i.e. 

VU, VeK s; J, A e [0, 1], AU+(1-A)VeK 

so (iii) is equivalent to the condition 

(grad W(U), U*- U) ~ 0, VU* e K 

or, using (ii) 

(iv) (A(U)-F, U*- U) ~ 0, VU* e K 

which is called a variational inequality [31]. 
Thus it has been suggested [28, 29] that instead of searching for a variational formu

lation, which may not even exist, it would be better to study the inequality (iv) which 
can be postulated for a much wider range of problems. 

If the indicatrix of a convex set K 

{
+oo 

'PK(U) = O 

is introduced [30], then (iv) is identical to 

U~K, 

UeK 

(v) (A(U)-F, U*- U)+1JlK(U*)-1JlK(U} ~0, VU* e K 

which may be further generalised on letting 1p be a proper convex function [30] (i.e. convex, 
semi-continuous from below and not identically equal to + oo) so that (v) becomes 

(vi) (A(U)-F, U*- U)+1Jl(U*)-1Jl(U) ~ 0, VU* e K. 

The problem is to find a U such that (vi) is satisfied for all U* e K. It is possible to define 
the subdifferential 01p of 1p as the set [30] 

81p(U) = {'P/'rp(U*)-1p(U)-('Jf, U*- U) ~ 0} 

and then (vi) is equivalent to 

(vii) - (A(U)-F) e 8tp(U), 

which is an equation involving many-valued functions. 
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