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Waves and vibrations in micropolar elastic medium
I. Steady-state response to moving loads

P. R. SENGUPTA and B. GHOSH (NADIA)

THE PRESENT paper is concerned with the steady-state response to moving loads on the free
plane boundary of a semi-infinite microrolar elastic medium. It is assumed that a line load
moves with a constant velocity over the plane boundary of the semi-space and moves
for an infinitely long time so that a steady state prevails in the neighbourhood of the loading.
The dynamic deformation is characterized by two asymmetric tensors — the deformation tensor
and curvature twist tensor. Similarly, the state of stress in the body is characterized by two
asymmetric tensors — the force-stress tensor and the couple-stress tensor.

Niniejsza praca jest zwiazana z otrzymaniem rozwiazania w formie stanu ustalonego (steady-
state response) przy danych na swobodnym plaskim brzegu pohieskoriczonego mikropolarnego
osrodka ruchomych obciazeniach. Przyjgto, Ze obciazenie liniowe porusza si¢ ze stala predkoscia
na plaskim brzegu polprzestrzeni falowej i trwa nieskoniczenie dlugo tak, Ze stan ustalony prze-
waza w otoczeniu obciaZzenia. Deformacja dynamiczna scharakteryzowana jest przez dwa
tensory osiowo-symetryczne — tensor odksztalcenia i skos$ny tensor krzywizny. Podobnie stan
naprezenia w ciele okreslony jest przez dwa antysymetryczne tensory — tensor naprezenia i tensor
naprezenia momentowego.

Hacrosmas paGota cBfAsana ¢ TIOJyYeHHEM pelueHHA B (opMe YCTAaHOBHWBIIErOCS COCTOAHHMA
(steady-state response) mpM 3afaHHbLIX, Ha cBODOMHON IUIOCKON rpaHMue MomyGecKOHeuHOH
MHKDOIIOIAPHOH Cpefbl, MOABIMKHBIX Harpyskax. [IpHHMMaeTcA, 4ro JHMHeHHAaA Harpyska
JBMMKETCHA C MOCTOAHHOM CKOPOCTBIO HA IUIOCKOH TIpaHMIlE BOJIHOBOTO MOMYNPOCTPAHCTBA
H NIPOJOJIKAETCA BECKOHEUHO JI0Nro, TAK YTO YCTAHOBHBILEECA COCTOAHME NpeobnafaeT B OK-
PECTHOCTH Harpyski. J[uHammdecxas AedopMaliusA XapaKTEPH3YeTCA ABYMS OCECHMMETPHY-
HBIMH TEH30PaMH — TEH30pOM He(OPMALMH M KOCHIM TEH30DOM KPHBH3HBI. AHANOTHYHO
HanNpsKEHHOE COCTOAHHE B TeJle OMpeNenseTcsa ABYMS aHTHCHMMETPHUHBIMH TEH3Opamu —
TEH30pPOM HAaNpHAXKEHHA H TEH30POM MOMEHTHBIX Iﬂnpﬂﬁ(ﬂll‘!ﬁ.

1. Introduction

IN THE CLASSICAL theory of elasticity the notion of stress is that of balancing internal action
and reaction between two parts of a body separated by mears of hypothetical plane. It
is assumed that the action across an infinitesim.al surface element within the solid is equi-
valent to a force only. It is expected that the elementary forces across a hypothetical plane
within the solid should be statically equivalent to a force and a couple. If, following Voigt,
we assume that across any infinitesimal element in a solid the action of one part of the
material upon the other part is equipollent to a force and a couple, then, in addition to
the force-stress vector acting on the surface we must also have a couple-stress vector.
These two vectors together are now equipollent to the action of the exterior upon the
interior into which the body is divided by hypothetical plare. In the like manner, one
might have body-couples similar to body forces as pointed out by Maxwell. If we accept
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274 P. R. SENGUPTA AND B. GHOSH

these possibilities, then we must define a couple-stress tensor, y;;, in addition to the force-
stress tensor oj;. Couple-stresses and body couples are useful concepts in the case of
materials with molecules of internal structure and in the dislocation theory of metals.

Recently, some problems of propagation of waves and vibrations in micropolar elastic
solid medium have been investigated by Nowack1 [1-5] and CHADWICK [9]. ERINGEN
[6, 7] has given a detailed exposition of the theory of micropolar elasticity consisting
largely of results obtained by himself and his co-workers. In the present paper the authors
consider the steady-state response to moving loads on the free boundary of a semi-infinite
micropolar elastic solid medium. In subsequent papers the authors undertake a programme
of investigating some basic problems of waves and vibrations in micropolar elastic solids.

2. General theory and boundary conditions

Introducing a set of orthogonal Cartesian coordinate axes 0x; x; xs, the origin being
a point on the plane boundary of the micropolar elastic semi-space, let x,, x;, x5 be the
Cartesian coordinates fixed in the medium which occupies the half space x, > 0 as shown
in the adjoining diagram. Let us assume that a line load moves with a constant speed U
over the half space and a plane strain state prevails. Let us assume further that the load
has been applied and is moving for such an infinitely long time that a steady state prevails
in the neighbourhood of the loading, as seen by an observer moving with the load. Under
the action of external loadings the body will be deformed; in general, the field of displace-

- P-I(x;+ut)

X
F1G. 1. A moving load over a micropolar

Xz elastic half-space.

ment u; and the rotation field w; depend on the space coordinates x;, x;, x; and time
t. The strain state is determined by two-non-symmetrical tensors — the deformation
tensor y; and curvature twist tensor »;;. These tensors are defined as follows [6, 7, 8]:

2.1 Vii = Ui j—Exjik,  Mjp = O j.

Similarly, the state of stress is defined by two non-symmetrical tensors — the force
stress tensor oj; and the couple-stress tensor p;;. The linear relations between the stress
and strain states are expressed as

oj = (u+o)pu+ @—o)yi+ Ayudy,
pii = (+&xu+(y—e) %+ By dy,

where A, u, B, &, ¥, « are the material constants, and &, is the alternate tensor.
Substituting the relations (2.2) into the equations of motion

.2)

(2.3 O+ X = oy, et py + Y = Jb;
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and expressing y;; and x in terms of the displacements u; and rotations w; as determined
from Eq. (2.1), Egs. (2.3) can be written in the vector form in the following way:

(u+a)V2u+ (A+p—a)graddivu+ 2arotw+ X = o,

2.4
& (y+e)Viw+ (f+y—e)graddivwo—4aw+2orotu+Y = J,

where X—vector of body forces, Y — vector of body couples, o —density, J—rotational
inertia.

Equations (2.4) are coupled equations and can be decoupled by assuming « = 0 and
thus, one obtains

puV3u+ (A+p)graddivu+x = pi,
(y+e)Viw+ (y+p—e)graddive+y = J.

The first equation of (2.5) is the equation of motion in the classical theory of elasticity
and the second represents the motion of a hypothetical medium in which rotations only
are possible.

In the present plane-strain problem the external loadings, the displacement vector u
and the rotation vector w depend only on the coordinates x,, x, and time ¢; the body
couples and body forces are neglected. In this case the system of Eqgs. (2.4) splits into
two independent systems of equations:

@.5)

e+ a)Viu +(A+pu—a)e  +2aw;,, = oy,
(2.6) (p+0)V2u, +(A+p—a)e ,—2aw;, = pil,
(7 +e) Vw3 —daw; +2a(uy, —ty,2) = Ji,,
and
Y +eV20, + W+ p—e)x, —daw, +20m; , = Ji,,
2.7 Y+ V20,4 (P +— &), —daw, — 2au;y,, = Ji,,

(L+a)V2u;+20(w,,; —w,,,) = pis,
where

a2 22
2
V= ox2 + ox2 ° e=utUz2, %=, W0,
1 2

and the stresses o;; and couple-stresses y;; corresponding to the fields (;,u,,0) and
0,0, w3); and (0, 0, ;) and (w,, w,, 0) related with the systems of Egs. (2.6) and (2.7)
respectively, are given in the following form:

oy = 2uuy +le, 0y =2uu, ,+Ae, 033 = Ae,
012 = p(uy iy o)+ o, —u; ;) —200;,
(2.8) Oay = Uy, +uy 2)— (s, —uy 5)+200;,
Bz = (P+e)ws,1, fag = (Y=&ws,, a3 = (y+Ew;z,

U3z = (y—e)w;,;
and

013 = (u+a)uy +20m;, 03 = (U—D)u;,—200;,
023 = (+Quy ,—200,, 032 = (U—Q)u; ,+200,,
Bar = 2ywy %, paa = 2ywy 4P, pss = Pz,
Bz = P(@2,1+012)+e(wy,1—0;2),  par = P(@2,1+01,2)—8(@;,1 —wy,2).

(2.9)

6*
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Now, we have already stated in our problem that the load moves in the negative direction
of the x;-axis with uniform speed U.

Therefore, an observer moving with a load at the same speed would see the load as
stationary. Thus, if a Galilean transformation
(2.10) xi=x+Ut, x3=x5, t'=1t
is introduced, then, the boundary conditions are independent of ¢’ since x; and ¢ enter
the boundary conditions only in the combination x, + Ut. We may assume that the load-
ings of the boundary can be divided into two groups. The first produces the displacement
u = (u,, u,,0) and the rotation w = (0, 0, w;) involved in the system of Egs. (2.6), and
the second causes the displacement u = (0,0, u,;) and the rotation w = (w,, w,,0)
involved in the system of Eq. (2.7). In the first case, there exists only a stress normal to
the semi-space. The boundary conditions for a concentrated load moving over the plane
boundary of the semi-space in moving coordinates are
(2.11) 032 = —PO(x{), 02, =0, p3=0
where d(x}) is the Dirac-delta function.

In the second case, only the moment stress on the semi-space surface exists and the
vector of this moment stress is directed along the positive x,-axis. The boundary conditions
for concentrated loading in moving coordinates are
(2.12) P2z = —10(x}), p21 =0, 033 =0.

We are to seek solutions of Egs. (2.6) and (2.7) subject to the boundary conditions
(2.11) and (2.12), respectively.

3. General solution of the equations (2.6)

In the present plane strain problem the elastic displacements u,, u,, (u; = 0) are
derivable from the displacement potentials ¢(x,, x,, t) and p(x,, x,, f), so that
(EXY) Uy =1 —v2, U =¢,+y,
and the only component of rotation w,(w; = w, = 0) is a function of x,, x, and . Substi-
tuting Egs. (3.1) into Egs. (2.6), we find that the functions ¢,y and w, satisfy the follow-
ing differential equations:

1 22
(V"a‘}ﬁ'ﬁ)‘ﬁ =0,

, 1 @
(3.2) v T E | VTPOs = 0,
1 ¢?
e
where
A+2u pta y+e 2a
2 2 == 2 = —
(41 0 ’ 2 9 » Cq "r ] 5 }’+8 L]
2 " 4o 5 OF o?

Pl il o
y+e’ ox? ¥ 0x3
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The second and third equations in (3.2) are coupled partial differential equations. On
eliminating one of the unknown functions y and w;, we obtain separately the same partial

differential equation
3.3) [(VZ-—E}%-— —lz-_ai)(vz - -Liz—) +9}V":| (p,w3) =0
ci or? ¢ or? ’
where
= ps = 402 /(y+¢) (u+a).
In view of Egs. (2.10), the differential equations satisfied by ¢ and y, w; are
U2 62¢: o*¢
(1 c ) Tt'z_ =0,

vy 2 2 ) PI
G4 [{(‘” )ax**ax;z "”“l:(l" ) wE T o }

i 22
+vl(a 12 + a )](?)sws) =

Let us now introduce the Mach numbers
(3.5) M;=—U—, i=12,4
G
and the parameters
2
(3.6) B _-1——"';—&1 M2, (=124 if M<l,

i
and

UZ
Bi? ———-l—Mzul i=12,49 if M >1.
In the case when M, > l (supersonic), we obtain the following partial differential equa-
tions:
% 2%
L Sl <SSR il R
P ox? ox7? 0,

a?. 2 az 62 a:
[(ﬁ‘ X 6x'2 e )(ﬁ; 73 ‘Ff)” (a zt ar*)]("”“"‘) -
Assuming ¢; > ¢; > ¢4 and ¢4 to be very small, we consider the cases in which M; <

<M, < 1,My > 1 (subsonic case) and M; < 1,M; > 1, M, > 1 (transonic case). The
partial differential equations corrésponding to these cases are, respectively,

*¢ 5%

3.7

(.8) B+ =0,
02 2 o o o
[(ﬁ‘ oz "53:?”‘2’)(52 xET 6x’2) (6x’2 t g )]("‘”“”) 0
2 &
(3'9) ﬁl ?; + ax?g = 03

L, o a2 32 22 82
[( 423_):12"‘ ”0) (ﬁz ox; W) axfz)‘l'ﬂ (5xtz ¥ )](V’»wa) =0.
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Solution of the problem in different cases

Case I Supersonic case: M; > 1 (i = 1,2, 4). In this case the first equation of
(3.7) admits the elementary solution

(3.10) B(x,, x5) = A~ PireE
and the solutions of the second equations of (3.7) will be sought for in the form
@.11) (w03, x2), 3(x1, x5)) = ((x5),@s(x3))e™.

These solutions are as follows:

w(xy) = B(De ™ 4 c(R)e 2,

(3.12)
03(¥5) = By(He™ "+ Cy (e,
where
1
Az = —=[{A*(BE+B7) —vi+032
1,2 '/—E [{ (64 ﬁz) 0 l}

+ V (PEZ+BD -3+ ol —4 (R FE (PP —v3)— FoT} 2.

The other possible solutions of the form exp[iA, x}] are rejected on the basis of the radiation
condition at infinity.

Since A is an arbitrary constant and the system is linear, we may let the constant A and B
depend on 4 and integrate over A. Hence, we may write the general solution in the form

¢(xfh x-'z) = 2]‘_“ f A(J_)e‘“""‘*""';}dl,

—o0

(.19 (xy, Xp) = % f {(B(e™ 554 C(R)e™ M2} Mid,

oo
ws(xy, x3) = _2% f {Bl(l)e_u”;+C;(?~)e_“’”}eu""d,1.
-0

The quantities By, B and C;, C are related by means of the second or third equation
of (3.2).

Equating the coefficient of ¢ uxa and e'a’x;, we obtain from the second equation
of (3.2) the relations '
(3.14) B(}) = %,B(), CyA) = %,C(A),

where

#y = %(ﬁ?iz—'ﬁ). g = ﬁ(ﬁ?z’-z%).



WAVES AND VIBRATIONS IN MICROPOLAR ELASTIC MEDIUM, I 279

In view of Egs. (2.8), (2.10), (3.1), (3.5) and (3.13), we obtain from the boundary conditions
2.1D

(M3=2)224(2)—2{A,B(A)+ 2, C(D} A = iAP(}),
(3.15) ZZZﬁ;A(A)+l:Zz( M 2+ M2 )—{@—2)%+p}xl]b’(ﬂ)
o, M3 2_ o) _den_n % _
+l:ﬁ. (uT+Mz 2) {(p 2) i +p}x2]C(ﬂ.) =
%, A B(A)+x,4,C(2) =0,

where iAP(1) is the Fourier transform of —-E— d(x}), the representation of d(x}) being

llm-l— [ sinde ™1 4. Hence,
€0 2 e o A
_ X, 11 I'P(;») _ _'ZEP(}-) 200
(.16 AQ) = (Al— o A:)—A—. By = =2 g,
ey = -2 gy
P "2 ‘12 ( 3
where

2
4, =22 (aﬁ+M§—2)-{(p-2)i+p}x, (i=1,2),
2 7
%y Ay
%, Ay

Hence, in view of Egs. (3.13), (3.14), (3.16) and (3.1), we obtain the displacements uj, u,
and rotation w;

¥ - A(A,—- Az)(M§—2)+4(I—%‘—)PZ,ﬁ’1.
2

o
ul(x’l,x;) = —_— _1_ f {(Al+ xl jhl A;)e_iw;x;-i-lelﬁ; (e—ﬂlx;.

251 2= a2 Az

_ e_a,,;)} APG) e 4

%2 4
G1)  w@w, %) = [ {( b ) ) -l | 228, (e—u‘”;
M 22
_ A o\l P(A) aad
%2 Ay ¢ )}Te di,

o
. r rl 13 or ’
onGi) = = L [ (et - T gruas) BEPD) iy
0 2

The displacements u,, u, and the rotation w, being known, stresses and couple-stresses
can be determined from the formulae (2.8).
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For « — 0 what corresponds to the classical theory of elasticity, we obtain [10, 13]

= o Q= MDIG~ Bix3) + 26 BT, = B,
(318) s = i (=i~ MI, ~ i) + 2610 B,
w3 = 0,
where

do = 2—M2D*+48'85, %f(x;) = % f P(R)e™ dA.

Case II Subsonic case, M; <1,M, <1, M, > 1. In this case the solutions of
the Egs. (3.8) may be taken in the form

¢(x'1; x3) = -2-1; (A(j_)e—ﬁnlilx;eﬂxfdi’
(u9) 'f’(xi y X3) = —2:? f (B(A)e""";_l_ C(Me” uxi) euxf da,

o 4 1 = lx, ~22x2 1
wy(xy, x3) = D f (Bi(Re W8 L ce ™ ’)em dai,
where
b = W[{(ﬂ, BN +v3—vi)

1 VA{(B3 -4 +oi—vi}? —4{B3A* (03— B A7) —vi A2}]'V2.

In view of the coupling of the second and third equations of (3.2), we have

(320) B,() = %, B(), Cy(}) = #%,C(%),
where

= 1 = 1

Xy = ‘; (A1-4%8)), %, = ?(Ag-ﬂﬁg).
In view of the boundary conditions (2.11), we obtain

xl j‘l AJ P(Z)

.- P(z)
(3.21) A(A)_(A1 v by B(4) = =2|AB; —i—

ot = - 275,
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) o - M3 " .
where 4; = (p-2)—+p % — A2 a—;‘—+M2—2 (i=1,2),
= (2- M%)(A’ "‘;‘ A’) 41, |2.|Bl(l—,—

In view of Egs. (3.19)-(3.21) and (3.1), we obtain the displacements u,, u, and the rotation
;3 as

ORI I WP P
uy(xy, xh) = o f {(Al 22: 4; ) i 2—211(6’ . ’—i—:e 4 ’)Mfﬁl}

X %(,Q e1 gy

rory l ; 7 xi l:l e_ﬂlmx;
(3.22)  uy(xixh) = _3'3;__!; HAI P 45 ) i

+2(e-;,,; L2 )M} BUAUPA) s, gy

Kz Ay

Y f ( s __1_e_;2,;) P(l‘)éll?]ﬁl ey

Making use of the formulae (2.8) we can determine the stresses and couple-stresses
in the semi-infinite micropolar medium.

In the particular case, « — 0, we obtain the displacement components in elastokinetics
[11] in which no rotation occurs

w = PR - Lianes i ——32K2(__"‘-—tan“ Bax;
: 2 = X = J?

(3.23)
P
u, = W{Kzl(’g(xﬁ*'ﬁzx )— Klﬁllog(x; +ﬁ1x1 )},
2—M? s 28,
Q-M3)*-4B,B. " 7 (2-M3D*-4B,B,
Case III Transonic case: M; < 1, M, > 1, M, > 1. In this case the solution of
Eqgs. (3.9) are

where K =

-]
P(xy, x5) = 'Zl_n_ f A(R)e'ig=Prdix2 g)
(3.29) p(xy, x3) = ,;.n_ f {B()_)e—ulxi +C(;_)e-u,x3}eiax;d3'
I o

Ws(¥1, X7) = f (B, (Me~41%2 4 C,(A)e~ %2} ¢¥*1 4],

2 .

where A; and 4, are given by Egs. (3.12). The relations between B;(1), B(A) and C,(2),
C(2) are given by Egs. (3.14).
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In view of the boundary conditions (2.11), we obtain

ay = i PD (4~ 50 4), sy = 238,14,
(3.25) ?
__ i A
C(h = 5L BO),
where
2 - Hy 2.1 1 ‘x_j
=Q2-M )(A1 o )+4:|21f31 (1 xz),
A, and 4, are given by Egs. (3.16). Hence, we obtain the displacements u;, u, and rotation
w3 as
(=]
u = 2; f [(ﬂl——xl—;‘}— )e‘ﬁ="1’i+2(e""*3
Hahy
L P A .
= -:fe_hx.’) 1131“4]% e*1dj,
1 ([. A ~BuMxy ,
(326) wu, = o _f [lﬂdll {(41 = —:; 1; Az) % +2ik (9““"‘2

s e Ay e“31‘3)}] _P‘E_IZ) eiA¥1 da,

%3 Ay

T 2 AMBP(R)
03 = — f (e‘“l"’ .3.1 e“*f‘?) % 2IMB PR }ﬁ;l ) e*1d},

2n 2

The stresses and couple-stresses can be determined from the formulae (2.8).
In the particular case, @ — 0, the displacement components and rotations are found

to be [12, 13]

_ P 1 1 -1 ﬂlx;) 2)61ﬁ; r_p r}
u = ;Kq.{(-i— - ;tan x] + 22— M) log|x; —f2x;]

+£K3=£1—108(x'12+ﬁ il : 10xi- ﬁ;x;)},

(327 u = -—%K‘{%—log(x +p3ix3)— 3 %’F log|x;— ﬁ’zx;|}
+ 2 (% - Liaa B2 2 i),
w; =0,
where
K = —48,8:2-M3) K, = -M3)°

" R-M2)*+16p382° (2—M3)*+16p3p7
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4. General solution of the equations (2.7)

Let us now consider the displacement and rotation fields described by the vectors
u = (0,0, u;) and w = (w,, w;,0). The displacement u; and the rotations w,, w, arise
in the semi-infinite space due to the loading which acts on the boundary x, = 0: the
moment #;5.

Introducing the elastic potentials ¢, y connected with the rotations, we obtain

(4.1) W =d—P2, W2=0¢ 2t
By substituting Egs. (4.1) into Egs. (2.7), we find the functions ¢, p and u; satisfying
the differential equations

1 &
[P-siym)o o
“2) " TSRS 2 I
’ 07 2 o2 3 ’

We have introduced the notations

4o . 2y+f g 2a _ 2 . 4o
y+B’ 2 T oy+e’ p-*,u+a’ °7 wie’
Eliminating y(or u3) from the second and third equations of (4.2), we arrive at the partial
differential equation

2 1 62 2 2 1 62 2yg2
(4.3) v -—?g— a2 v —¥5— }'g“—a't—z +'01V (',U, ug) =0

which is identical with Eq. (3.3).
Since an observer is always with the load, he would see the load as stationary. Introduc-

22 =

ing Galilean transformation, (2.10), Mach numbers M, = _c[{' i=2,3,4 and the pa-
i

rameters

i} G=2.3,4) ¥ My<li,

44 o

4.4 L z .

i =(?—- 1)=M¢—l, if M >1

and assuming ¢, > ¢3 > ¢, and c3, ¢4 to be very small, we obtain from the first equation
of (4.2) and (Eq. 4.3) the following partial differential equations:

(b2 22
ﬁS ax - W_!_QZ)QS = 0,

(4.5) 5 5
R R e 2w =0
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if M; > 1, M; > 1 (supersonic case) and M, < 1, M; > 1 (transonic case), and
o? a2
z T T z —J
(ﬁa 6):'2 axfzz +92)¢ 0!

a? ' 02 a?
“ﬁz ox? e ax'; {ﬁ‘ ox? ~ 0x7 HJ%}_—% (t’ix’2 t Xz 0x5? )](w’ bg=n
if M; <1, My > M3 > 1 (subsonic case).

Case I. M; > 1, M; > 1 (supersonic case) M; < 1, M; > 1 (transonic case).
In this case we assume the general solution of Eqs. (4.5) in the form

(4.6)

o

¢ = —;; f A(R)e~ %2 ™1 47
@7 y= f {B(He~ =3 4 C(R)e~r2) e~ 1 d,

f B, (Me~™1=2 4 C, (A)e~H¥2} €14,
-— 0
where
o2 = p? A2 —vi,
I i r
iis = 7[{(ﬁ42+ﬁ22)12+”§—93}

FV{BF+ B P +vi -3} -4 {(B7 P (B —vp) —viA*}].
Introducing v and u; into the third equation of (4.2), we obtain the relations

48) B = hB C=50
where
A A+ 23 % A2+A3
oY T A 2 T 7
Applying the boundary conditions (2.12), one obtains
A =il 0N[4, B=ilf;,0(N)/4, C=ilf330()/4,

where
Bi1 = (222033 — 23 32), P22 = ay303 — 0z, a3,

Baz = 0z1 03— 23031,
4 = “11(“220533—“23132)4‘“12(5‘23“31‘*3215‘-33)"'“13(“21 32 —0z2%31),
wyy = Qy+P)e?+PA%, gy = —2yAky, @33 = —2yAd,,
@9) oy =2y0k, @ = G+IM-G=N, @y = (+)B-(-I,
a3y = 20ik, @y = {(u+o)#;+20}idy, as3 = {(u+o)xa+2a}il;,

iAQ(2) is the Fourier Transform of the concentrated moment /(x;).
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Hence, in view of Egs. (4.9) and (4.7), making use of Egs. (4.1), we finally obtain

1 ([ ’ 5 nze Bl i .
0, = — ___i: [% e~lo%2 {&z'_Ie—uxxz_;, é%i e~ it =}A]Q(ﬂ.)e“"'dil,

(4.10) w,; = ._l_ f [1Gﬁll —mx; (ﬁzz —Ll,;x;'}_ ﬁd “"1133) lz}Q(Z)eﬁx‘d}.

27
l ~ a ’ A - ’ 'A A sl
= f (%4 Baz ™17 + 2, Byy e 42%2) i QA( ) il

Knowing the functions w,, w, and #;, we can determine the stresses and couple-stresses
from the formulae (2.9).

In the particular case, & — 0, we obtain the following independent partial differential
equations for ¢, v and u;:

(ﬁ3 xE 6x'2)¢ =4

v 02 )
@.11D) (ﬂ4 T oxp v =0,
iy 0% 0?
(szl ox2 Hr'ix’;’)us 0

The solutions of Egs. (4.11) are

6= f AO(Rye=Pooa i,

(4.12) ZL f By e 41,

=

1 : 0_r ‘
— 27:_.!0 CON) e d,
where 4°(2), B°(1) and C°(2) are found from the boundary condition (2.12) as

A°(2) = 5233(2), B°(3) = —ixy Q()/A°4, C°(2) =0, o=}piA,

;‘?zﬁ’;{’ zg =18:’2‘19 AO':' a?la22_a?3m21, 0"r?l = (2?+ﬁ)ﬁ;+ﬁ’
af; = =2yfa, a%, =2yf3, afy = (y+e)pd—(y—e).
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Hence, in view of Eqs. (4.12) and (4.1), we have

I r ’ ’ r r r ’ r
w, = 740 {“2154“"; —Bax3)—ad I(x; —B3x3)},

(4.13) w,; = A° {a21(xi—Baxz)+ 32 B3 I(x1 — f3x2)},
Uy = Oo

The formulae (4.13) indicate the rotation field w(w;, w,,0) in a hypothetical medium in
which no displacement occurs. This field is produced by the action of concentrated moment
1(x1) on the boundary x; = 0.

It is also observed from Eqs. (4.13) that the disturbances are marked by two Mach
waves

—pfix; and x;—pfix;.

CaseIl. M, <1, M,>M;>1.

In this case the solution to the partial differential Eqs. (4.6) may be taken in the
form

¢ == f A(Ne~o¥2e%1 g7,
(4.14) = Z—L- f {B(.l)e“"'"= +C(Z)e""=‘3}e”~‘1 dA,
Uy = —f{Bl(.i)e‘“l’*v{-C (‘«".).‘3““2"2}e”"id}~
where
(ﬁ 12‘”2%

3= %[{P(ﬁi"-ﬁz)ﬂﬂoW:}
FV (-3~ i+l +4{F P (PF — o) + P20
In view of Egs. (4.14) and the third equation of (4.2), we obtain the relations
(4.15) B, =#B, C,=3%C,

where
%= —p(B+2AD/(B332+12}), %, = —p(A*+A)/(B34*+ 1))

A(4), B(4) and C(4) are obtained from the boundary conditions (2.12) and are given by
the expression (4.9), only replacing the values of 4,, 4, and %,, #, by those given in Egs.
(4.14) and (4.15), respectively. Hence, the rotation components ; , w, and the displacement
component u; are given by the same expression (4.10) where the values of 4, 4,, #,, %,,
are given by Egs. (4.14) and (4.15).

In the particular case, « — 0, we obtain the same rotational field w(w,, w,, 0) given
by Egs. (4.13) in the hypothetical medium in which no displacement occurs.
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