Waves and vibrations in micropolar elastic medium I. Steady-state response to moving loads

P. R. SENGUPTA and B. GHOSH (NADIA)

Abstract

The present paper is concerned with the steady-state response to moving loads on the free plane boundary of a semi-infinite microfolar clastic medium. It is assumed that a line load moves with a constant velocity over the plane boundary of the semi-space and moves for an infinitely long time so that a steady state prevails in the neighbourhood of the loading. The dynamic deformation is characterized by two asymmetric tensors - the deformation tensor and curvature twist tensor. Similarly, the state of stress in the body is characterized by two asymmetric tensors - the force-stress tensor and the couple-stress tensor.

Niniejsza praca jest związana z otrzymaniem rozwiązania w formie stanu ustalonego (steadystate response) przy danych na swobodnym płaskim brzegu półnieskończonego mikropolarnego ośrodka ruchomych obciążeniach. Przyjęto, że obciążenie liniowe porusza się ze stałą prędkością na plaskim brzegu półprzestrzeni falowej i trwa nieskończenie długo tak, że stan ustalony przeważa w otoczeniu obciążenia. Deformacja dynamiczna scharakteryzowana jest przez dwa tensory osiowo-symetryczne - tensor odkształcenia i skośny tensor krzywizny. Podobnie stan naprężenia w ciele określony jest przez dwa antysymetryczne tensory - tensor naprężenia i tensor naprężenia momentowego.

Настоящая работа связана с получением решения в форме установившегося состояния (steady-state response) при заданных, на свободной плоской границе полубесконечной микрополярной среды, подвижных нагрузках. Принимается, что линейная нагрузка движется с постоянной скоростью на плоской границе волнового полупространства и продолжается бесконечно долго, так что установившееся состояние преобладает в окрестности нагрузки. Динамическая деформация характеризуется двумя осесимметричными тензорами - тензором деформации и косым тензором кривизны. Аналогично напряженное состояние в теле определяется двумя антисимметричными тензорами тензором напряжения и тензором моментных напряжений.

1. Introduction

In the classical theory of elasticity the notion of stress is that of balancing internal action and reaction between two parts of a body separated by mears of hypothetical plane. It is assumed that the action across an infinitesimal surface element within the solid is equivalent to a force only. It is expected that the elementary forces across a hypothetical plane within the solid should be statically equivalent to a force and a couple. If, following Voigt, we assume that across any infinitesimal element in a solid the action of one part of the material upon the other part is equipollent to a force and a couple, then, in addition to the force-stress vector acting on the surface we must also have a couple-stress vector. These two vectors together are now equipollent to the action of the exterior upon the interior into which the body is divided by hypothetical plare. In the like ranrer, one might have body-couples similar to body forces as pointed out by Maxwell. If we accept
these possibilities, then we must define a couple-stress tensor, $\mu_{j i}$, in addition to the forcestress tensor $\sigma_{j i}$. Couple-stresses and body couples are useful concepts in the case of materials with molecules of internal structure and in the dislocation theory of metals.

Recently, some problems of propagation of waves and vibrations in micropolar elastic solid medium have been investigated by Nowacki [1-5] and Chadwick [9]. Eringen [6,7$]$ has given a detailed exposition of the theory of micropolar elasticity consisting largely of results obtained by himself and his co-workers. In the present paper the authors consider the steady-state response to moving loads on the free boundary of a semi-infinite micropolar elastic solid medium. In subsequent papers the authors undertake a programme of investigating some basic problems of waves and vibrations in micropolar elastic solids.

2. General theory and boundary conditions

Introducing a set of orthogonal Cartesian coordinate axes $0 x_{1} x_{2} x_{3}$, the origin being a point on the plane boundary of the micropolar elastic semi-space, let x_{1}, x_{2}, x_{3} be the Cartesian coordinates fixed in the medium which occupies the half space $x_{2} \geqslant 0$ as shown in the adjoining diagram. Let us assume that a line load moves with a constant speed U over the half space and a plane strain state prevails. Let us assume further that the load has been applied and is moving for such an infinitely long time that a steady state prevails in the neighbourhood of the loading, as seen by an observer moving with the load. Under the action of external loadings the body will be deformed; in general, the field of displace-

Fig. 1. A moving load over a micropolar elastic half-space.
ment u_{i} and the rotation field ω_{i} depend on the space coordinates x_{1}, x_{2}, x_{3} and time t. The strain state is determined by two-non-symmetrical tensors - the deformation tensor $\gamma_{j i}$ and curvature twist tensor $\varkappa_{j i}$. These tensors are defined as follows [6, 7, 8]:

$$
\begin{equation*}
\gamma_{j i}=u_{i, j}-\varepsilon_{k j i} \omega_{k}, \quad x_{j i}=\omega_{i, j} \tag{2.1}
\end{equation*}
$$

Similarly, the state of stress is defined by two non-symmetrical tensors - the force stress tensor $\sigma_{j i}$ and the couple-stress tensor $\mu_{j i}$. The linear relations between the stress and strain states are expressed as

$$
\begin{align*}
\sigma_{j i} & =(\mu+\alpha) \gamma_{j i}+(\mu-\alpha) \gamma_{i j}+\lambda \gamma_{k k} \delta_{i j}, \\
\mu_{j i} & =(\gamma+\varepsilon) x_{j i}+(\gamma-\varepsilon) x_{i j}+\beta \gamma_{k k} \delta_{i j}, \tag{2.2}
\end{align*}
$$

where $\lambda, \mu, \beta, \varepsilon, \gamma, \alpha$ are the material constants, and $\varepsilon_{k j i}$ is the alternate tensor.
Substituting the relations (2.2) into the equations of motion

$$
\begin{equation*}
\sigma_{j i, j}+X_{i}=\varrho \ddot{u}_{i}, \quad \varepsilon_{i j k} \delta_{j k}+\mu_{j i, j}+Y_{i}=J \ddot{\omega}_{i} \tag{2.3}
\end{equation*}
$$

and expressing $\gamma_{j i}$ and $\chi_{j i}$ in terms of the displacements u_{i} and rotations ω_{i} as determined from Eq. (2.1), Eqs. (2.3) can be written in the vector form in the following way:

$$
\begin{gather*}
(\mu+\alpha) \nabla^{2} \mathbf{u}+(\lambda+\mu-\alpha) \operatorname{grad} \operatorname{div} \mathbf{u}+2 \alpha \operatorname{rot} \omega+\mathbf{X}=\varrho \ddot{\mathbf{u}}, \tag{2.4}\\
(\gamma+\varepsilon) \nabla^{2} \omega+(\beta+\gamma-\varepsilon) \operatorname{graddiv} \omega-4 \alpha \omega+2 \alpha \operatorname{rot} \mathbf{u}+\mathbf{Y}=J \ddot{\omega},
\end{gather*}
$$

where \mathbf{X}-vector of body forces, \mathbf{Y} - vector of body couples, ϱ - density, J-rotational inertia.

Equations (2.4) are coupled equations and can be decoupled by assuming $\alpha=0$ and thus, one obtains

$$
\begin{gather*}
\mu \nabla^{2} u+(\lambda+\mu) \text { graddiv } \mathbf{u}+\mathbf{x}=\varrho \ddot{\mathbf{u}}, \tag{2.5}\\
(\gamma+\varepsilon) \nabla^{2} \omega+(\gamma+\beta-\varepsilon) \text { graddiv } \omega+\mathbf{y}=J \ddot{\omega} .
\end{gather*}
$$

The first equation of (2.5) is the equation of motion in the classical theory of elasticity and the second represents the motion of a hypothetical medium in which rotations only are possible.

In the present plane-strain problem the external loadings, the displacement vector \mathbf{u} and the rotation vector ω depend only on the coordinates x_{1}, x_{2} and time t; the body couples and body forces are neglected. In this case the system of Eqs. (2.4) splits into two independent systems of equations:

$$
\begin{align*}
& (\mu+\alpha) \nabla^{2} u_{1}+(\lambda+\mu-\alpha) e_{.1}+2 \alpha \omega_{3,2}=\varrho \ddot{u}_{1}, \\
& (\mu+\alpha) \nabla^{2} u_{2}+(\lambda+\mu-\alpha) e_{, 2}-2 \alpha \omega_{3,1}=\varrho \ddot{u}_{2}, \tag{2.6}\\
& (\gamma+\varepsilon) \nabla^{2} \omega_{3}-4 \alpha \omega_{3}+2 \alpha\left(u_{2,1}-u_{1,2}\right)=J \ddot{\omega}_{2},
\end{align*}
$$

and

$$
\begin{align*}
(\gamma+\varepsilon) \nabla^{2} \omega_{1}+(\gamma+\beta-\varepsilon) \chi_{, 1}-4 \alpha \omega_{1}+2 \alpha u_{3,2} & =J \ddot{\omega}_{1}, \\
(\gamma+\varepsilon) \nabla^{2} \omega_{2}+(\gamma+\beta-\varepsilon) \chi_{, 2}-4 \alpha \omega_{2}-2 \alpha u_{3,1} & =J \ddot{\omega}_{2}, \tag{2.7}\\
(\mu+\alpha) \nabla^{2} u_{3}+2 \alpha\left(\omega_{2,1}-\omega_{1,2}\right) & =\varrho \ddot{u}_{3},
\end{align*}
$$

where

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}, \quad e=u_{1,1}+u_{2,2}, \quad x=\omega_{1,1}+\omega_{2,2}
$$

and the stresses $\sigma_{j i}$ and couple-stresses $\mu_{j i}$ corresponding to the fields ($u_{1}, u_{2}, 0$) and $\left(0,0, \omega_{3}\right)$; and $\left(0,0, u_{3}\right)$ and ($\left.\omega_{1}, \omega_{2}, 0\right)$ related with the systems of Eqs. (2.6) and (2.7) respectively, are given in the following form:
and

$$
\begin{align*}
& \sigma_{11}=2 \mu u_{1,1}+\lambda e, \quad \sigma_{22}=2 \mu u_{2,2}+\lambda e, \quad \sigma_{33}=\lambda e, \\
& \sigma_{12}=\mu\left(u_{2,1}+u_{1,2}\right)+\alpha\left(u_{2,1}-u_{1,2}\right)-2 \alpha \omega_{3}, \\
& \sigma_{21}=\mu\left(u_{2,1}+u_{1,2}\right)-\alpha\left(u_{2,1}-u_{1,2}\right)+2 \alpha \omega_{3}, \tag{2.8}\\
& \mu_{13}=(\gamma+\varepsilon) \omega_{3,1}, \quad \mu_{31}=(\gamma-\varepsilon) \omega_{3,1}, \quad \mu_{23}=(\gamma+\xi \varepsilon) \omega_{3,2}, \\
& \mu_{32}=(\gamma-\varepsilon) \omega_{3,2}
\end{align*}
$$

$$
\begin{align*}
& \sigma_{13}=(\mu+\alpha) u_{3,1}+2 \alpha \omega_{2}, \quad \sigma_{31}=(\mu-\alpha) u_{3,1}-2 \alpha \omega_{2}, \\
& \sigma_{23}=(\mu+\alpha) u_{3,2}-2 \alpha \omega_{1}, \quad \sigma_{32}=(\mu-\alpha) u_{3,2}+2 \alpha \omega_{1}, \\
& \mu_{11}=2 \gamma \omega_{1,1}+\beta \chi, \quad \mu_{22}=2 \gamma \omega_{2,2}+\beta x, \quad \mu_{33}=\beta \varkappa, \tag{2.9}\\
& \mu_{12}=\gamma\left(\omega_{2,1}+\omega_{1,2}\right)+\varepsilon\left(\omega_{2,1}-\omega_{1,2}\right), \quad \mu_{21}=\gamma\left(\omega_{2,1}+\omega_{1,2}\right)-\varepsilon\left(\omega_{2,1}-\omega_{1,2}\right) .
\end{align*}
$$

Now, we have already stated in our problem that the load moves in the negative direction of the x_{1}-axis with uniform speed U.

Therefore, an observer moving with a load at the same speed would see the load as stationary. Thus, if a Galilean transformation

$$
\begin{equation*}
x_{1}^{\prime}=x_{1}+U t, \quad x_{2}^{\prime}=x_{2}, \quad t^{\prime}=t \tag{2.10}
\end{equation*}
$$

is introduced, then, the boundary conditions are independent of t^{\prime} since x_{1} and t enter the boundary conditions only in the combination $x_{1}+U t$. We may assume that the loadings of the boundary can be divided into two groups. The first produces the displacement $\mathbf{u}=\left(u_{1}, u_{2}, 0\right)$ and the rotation $\boldsymbol{\omega}=\left(0,0, \omega_{3}\right)$ involved in the system of Eqs. (2.6), and the second causes the displacement $\mathbf{u}=\left(0,0, u_{3}\right)$ and the rotation $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, 0\right)$ involved in the system of Eq. (2.7). In the first case, there exists only a stress normal to the semi-space. The boundary conditions for a concentrated load moving over the plane boundary of the semi-space in moving coordinates are

$$
\begin{equation*}
\sigma_{22}=-P \delta\left(x_{1}^{\prime}\right), \quad \sigma_{21}=0, \quad \mu_{23}=0 \tag{2.11}
\end{equation*}
$$

where $\delta\left(x_{1}^{\prime}\right)$ is the Dirac-delta function.
In the second case, only the moment stress on the semi-space surface exists and the vector of this moment stress is directed along the positive x_{2}-axis. The boundary conditions for concentrated loading in moving coordinates are

$$
\begin{equation*}
\mu_{22}=-l \delta\left(x_{1}^{\prime}\right), \quad \mu_{21}=0, \quad \sigma_{23}=0 \tag{2.12}
\end{equation*}
$$

We are to seek solutions of Eqs. (2.6) and (2.7) subject to the boundary conditions (2.11) and (2.12), respectively.

3. General solution of the equations (2.6)

In the present plane strain problem the elastic displacements $u_{1}, u_{2},\left(u_{3}=0\right)$ are derivable from the displacement potentials $\phi\left(x_{1}, x_{2}, t\right)$ and $\psi\left(x_{1}, x_{2}, t\right)$, so that

$$
\begin{equation*}
u_{1}=\phi_{.1}-\psi_{.2}, \quad u_{2}=\phi_{.2}+\psi_{.1} \tag{3.1}
\end{equation*}
$$

and the only component of rotation $\omega_{3}\left(\omega_{1}=\omega_{2}=0\right)$ is a function of x_{1}, x_{2} and t. Substituting Eqs. (3.1) into Eqs. (2.6), we find that the functions ϕ, ψ and ω_{3} satisfy the following differential equations:

$$
\begin{align*}
\left(\nabla^{2}-\frac{1}{c_{1}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \phi & =0, \\
\left(\nabla^{2}-\frac{1}{c_{2}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \psi-p \omega_{3} & =0, \tag{3.2}\\
\left(\nabla^{2}-v_{0}^{2}-\frac{1}{c_{4}^{2}}-\frac{\partial^{2}}{\partial t^{2}}\right) \omega_{3}+s \nabla^{2} \psi & =0
\end{align*}
$$

where

$$
\begin{gathered}
c_{1}^{2}=\frac{\lambda+2 \mu}{\varrho}, \quad c_{2}^{2}=\frac{\mu+\alpha}{\varrho}, \quad c_{4}^{2}=\frac{\gamma+\varepsilon}{J}, \quad s=\frac{2 \alpha}{\gamma+\varepsilon}, \\
p=\frac{2 \alpha}{\mu+\alpha}, \quad v_{0}^{2}=\frac{4 \alpha}{\gamma+\varepsilon}, \quad \nabla^{2}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}} .
\end{gathered}
$$

The second and third equations in (3.2) are coupled partial differential equations. On eliminating one of the unknown functions ψ and ω_{3}, we obtain separately the same partial differential equation

$$
\begin{equation*}
\left[\left(\nabla^{2}-v_{0}^{2}-\frac{1}{c_{4}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right)\left(\nabla^{2}-\frac{1}{c_{2}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right)+v_{1}^{2} \nabla^{2}\right]\left(\psi, \omega_{3}\right)=0 \tag{3.3}
\end{equation*}
$$

where

$$
v_{1}^{2}=p s=4 \alpha^{2} /(\gamma+\varepsilon)(\mu+\alpha) .
$$

In view of Eqs. (2.10), the differential equations satisfied by ϕ and ψ, ω_{3} are

$$
\begin{align*}
\left(1-\frac{U^{2}}{c_{1}^{2}}\right) \frac{\partial^{2} \phi}{\partial x_{1}^{\prime 2}}+\frac{\partial^{2} \phi}{\partial x_{2}^{\prime 2}} & =0 \\
{\left[\{ (1 - \frac { U ^ { 2 } } { c _ { 4 } ^ { 2 } }) \frac { \partial ^ { 2 } } { \partial x _ { 1 } ^ { \prime 2 } } + \frac { \partial ^ { 2 } } { \partial x _ { 2 } ^ { \prime 2 } } - v _ { 0 } ^ { 2 } \} \left\{\left(1-\frac{U^{2}}{c_{2}^{2}}\right) \frac{\partial^{2}}{\partial x_{1}^{\prime 2}}\right.\right.} & \left.+\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}\right\} \tag{3.4}\\
& \left.+v_{1}^{2}\left(\frac{\partial^{2}}{\partial x_{1}^{\prime 2}}+\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}\right)\right]\left(\psi, \omega_{3}\right)=0 .
\end{align*}
$$

Let us now introduce the Mach numbers

$$
\begin{equation*}
M_{i}=\frac{U}{c_{i}}, \quad i=1,2,4 \tag{3.5}
\end{equation*}
$$

and the parameters

$$
\begin{equation*}
\beta_{i}^{2}=1-\frac{U^{2}}{c_{i}^{2}}=1-M_{i}^{2}, \quad(i=1,2,4) \quad \text { if } \quad M_{i}<1, \tag{3.6}
\end{equation*}
$$

and

$$
\beta_{i}^{\prime 2}=\frac{U^{2}}{c_{i}^{2}}-1=M_{i}^{2}-1, \quad(i=1,2,4) \quad \text { if } \quad M_{i}>1 .
$$

In the case when $M_{i}>1$ (supersonic), we obtain the following partial differential equations:

$$
\begin{gather*}
\beta_{1}^{\prime 2} \frac{\partial^{2} \phi}{\partial x_{1}^{\prime 2}}-\frac{\partial^{2} \phi}{\partial x_{2}^{\prime 2}}=0 \\
{\left[\left(\beta_{4}^{\prime 2} \frac{\partial^{2}}{\partial x_{1}^{\prime 2}}-\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}+v_{0}^{2}\right)\left(\beta_{2}^{\prime 2} \frac{\partial^{2}}{\partial x_{1}^{\prime 2}}-\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}\right)+v_{1}^{2}\left(\frac{\partial^{2}}{\partial x_{1}^{\prime 2}}+\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}\right)\right]\left(\psi, \omega_{3}\right)=0 .} \tag{3.7}
\end{gather*}
$$

Assuming $c_{1}>c_{2}>c_{4}$ and c_{4} to be very small, we consider the cases in which $M_{1}<$ $<M_{2}<1, M_{4}>1$ (subsonic case) and $M_{1}<1, M_{2}>1, M_{4}>1$ (transonic case). The partial differential equations corresponding to these cases are, respectively,

$$
\begin{gather*}
\beta_{2}^{1} \frac{\partial^{2} \phi}{\partial x_{1}^{\prime 2}}+\frac{\partial^{2} \phi}{\partial x_{1}^{\prime 2}}=0, \tag{3.8}\\
{\left[\left(\beta_{4}^{\prime 2} \frac{\partial^{2}}{\partial x_{1}^{\prime 2}}-\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}+v_{0}^{2}\right)\left(\beta_{2}^{\prime 2} \frac{\partial^{2}}{\partial x_{1}^{\prime 2}}+\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}\right)-v_{1}^{2}\left(\frac{\partial^{2}}{\partial x_{1}^{\prime 2}}+\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}\right)\right]\left(\psi, \omega_{3}\right)=0 ;} \\
\beta_{1}^{2} \frac{\partial^{2} \phi}{\partial x_{1}^{\prime 2}}+\frac{\partial^{2} \phi}{\partial x_{2}^{\prime 2}}=0, \\
{\left[\left(\beta_{4}^{\prime 2} \frac{\partial^{2}}{\partial x_{1}^{\prime 2}}-\frac{\partial^{2}}{\partial x_{1}^{\prime 2}}+v_{0}^{2}\right)\left(\beta_{2}^{\prime 2} \frac{\partial^{2}}{\partial x_{1}^{\prime 2}}-\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}\right)+v_{1}^{2}\left(\frac{\partial^{2}}{\partial x_{1}^{\prime 2}}+\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}\right)\right]\left(\psi, \omega_{3}\right)=0 .}
\end{gather*}
$$

Solution of the problem in different cases
C a se I. Supersonic case: $M_{i}>1(i=1,2,4)$. In this case the first equation of (3.7) admits the elementary solution

$$
\begin{equation*}
\phi\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=A e^{i x x_{1}^{\prime}} e^{-i \beta_{1}^{\prime} \lambda x_{2}^{\prime}} \tag{3.10}
\end{equation*}
$$

and the solutions of the second equations of (3.7) will be sought for in the form

$$
\begin{equation*}
\left(\psi\left(x_{2}^{\prime}, x_{2}^{\prime}\right), \omega_{3}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right)=\left(\bar{\psi}\left(x_{2}^{\prime}\right), \bar{\omega}_{3}\left(x_{2}^{\prime}\right)\right) e^{i \lambda x_{1}^{\prime}} \tag{3.11}
\end{equation*}
$$

These solutions are as follows:

$$
\begin{gather*}
\psi\left(x_{2}^{\prime}\right)=B(\lambda) e^{-i \lambda_{1} x_{2}^{\prime}}+C(\lambda) e^{-i \lambda_{2} x_{2}^{\prime}} \\
\omega_{3}\left(x_{2}^{\prime}\right)=B_{1}(\lambda) e^{-i \lambda_{1} x_{2}^{\prime}}+C_{1}(\lambda) e^{-i \lambda_{2} x_{2}^{\prime}} \tag{3.12}
\end{gather*}
$$

where

$$
\begin{aligned}
\lambda_{1,2}= & \frac{1}{\sqrt{2}}\left[\left\{\lambda^{2}\left(\beta_{4}^{\prime 2}+\beta_{2}^{\prime 2}\right)-v_{0}^{2}+v_{1}^{2}\right\}\right. \\
& \left.\left.\quad \pm \sqrt{\left\{\lambda^{2}\left(\beta_{4}^{\prime 2}+\beta_{2}^{\prime 2}\right)-v_{0}^{2}+v_{1}^{2}\right\}^{2}-4\left\{\lambda^{2} \beta_{2}^{\prime 2}\left(\lambda^{2} \beta_{4}^{\prime 2}-v_{0}^{2}\right)-\lambda^{2} v_{1}^{2}\right.}\right\}\right]^{1 / 2}
\end{aligned}
$$

The other possible solutions of the form $\exp \left[i \lambda_{2} x_{2}^{\prime}\right]$ are rejected on the basis of the radiation condition at infinity.

Since λ is an arbitrary constant and the system is linear, we may let the constant A and B depend on λ and integrate over λ. Hence, we may write the general solution in the form

$$
\begin{align*}
\psi\left(x_{1}^{\prime}, x_{2}^{\prime}\right) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{B(\lambda) e^{-i \lambda_{1} x_{2}^{\prime}}+C(\lambda) e^{-i \lambda_{2} x_{2}^{\prime}}\right\} e^{i \lambda x^{\prime}} d \lambda, \tag{3.13}\\
\omega_{3}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{B_{1}(\lambda) e^{-i \lambda_{1} x_{2}^{\prime}}+C_{1}(\lambda) e^{-i \lambda_{2} x_{2}^{\prime}}\right\} e^{i \lambda x^{\prime}} d \lambda
\end{align*}
$$

The quantities B_{1}, B and C_{1}, C are related by means of the second or third equation of (3.2).

Equating the coefficient of $e^{-i \lambda_{1} x_{2}^{\prime}}$ and $e^{-i \lambda_{2} x_{2}^{\prime}}$, we obtain from the second equation of (3.2) the relations

$$
\begin{equation*}
B_{1}(\lambda)=\varkappa_{1} B(\lambda), \quad C_{1}(\lambda)=\varkappa_{2} C(\lambda) \tag{3.14}
\end{equation*}
$$

where

$$
x_{1}=\frac{1}{p}\left(\beta_{2}^{\prime 2} \lambda^{2}-\lambda_{1}^{2}\right), \quad x_{2}=\frac{1}{p}\left(\beta_{2}^{\prime 2} \lambda^{2}-\lambda_{2}^{2}\right) .
$$

In view of Eqs. (2.8), (2.10), (3.1), (3.5) and (3.13), we obtain from the boundary conditions (2.11)

$$
\begin{gather*}
\left(M_{2}^{2}-2\right) \lambda^{2} A(\lambda)-2\left\{\lambda_{1} B(\lambda)+\lambda_{2} C(\lambda)\right\} \lambda=i \lambda P(\lambda) \\
2 \lambda^{2} \beta_{1}^{\prime} A(\lambda)+\left[\lambda^{2}\left(\alpha \frac{M_{2}^{2}}{\mu}+M_{2}^{2}-2\right)-\left\{(p-2) \frac{\alpha}{\mu}+p\right\} \varkappa_{1}\right] B(\lambda) \tag{3.15}\\
+\left[\lambda^{2}\left(\alpha \frac{M_{2}^{2}}{\mu}+M_{2}^{2}-2\right)-\left\{(p-2) \frac{\alpha}{\mu}+p\right\} \varkappa_{2}\right] C(\lambda)=0 \\
\chi_{1} \lambda_{1} B(\lambda)+\varkappa_{2} \lambda_{2} C(\lambda)=0
\end{gather*}
$$

where $i \lambda P(\lambda)$ is the Fourier transform of $\frac{P}{\mu} \delta\left(x_{1}^{\prime}\right)$, the representation of $\delta\left(x_{1}^{\prime}\right)$ being $\lim _{\epsilon \rightarrow 0} \frac{1}{2 \pi \epsilon} \int_{-\infty}^{\infty} \frac{\sin \lambda \epsilon}{\lambda} e^{i \lambda x_{1}^{\prime}} d \lambda$. Hence,

$$
\begin{gather*}
A(\lambda)=\left(\Delta_{1}-\frac{x_{1} \lambda_{1}}{x_{2} \lambda_{2}} \Delta_{2}\right) \frac{i P(\lambda)}{\Delta}, \quad B(\lambda)=\frac{-2 i P(\lambda)}{\Delta} \lambda^{2} \beta_{1}^{\prime}, \tag{3.16}\\
C(\lambda)=-\frac{x_{1} \lambda_{1}}{x_{2} \lambda_{2}} B(\lambda),
\end{gather*}
$$

where

$$
\begin{aligned}
\Delta_{i} & =\lambda^{2}\left(\alpha \frac{M_{2}^{2}}{\mu}+M_{2}^{2}-2\right)-\left\{(p-2) \frac{\alpha}{\mu}+p\right\}{x_{i}} \quad(i=1,2) \\
\Delta & =\lambda\left(\Delta_{1}-\frac{\varkappa_{1} \lambda_{1}}{x_{1} \lambda_{2}} \Delta_{2}\right)\left(M_{2}^{2}-2\right)+4\left(1-\frac{\varkappa_{1}}{x_{2}}\right) \lambda^{2} \lambda_{1} \beta_{1}^{\prime}
\end{aligned}
$$

Hence, in view of Eqs. (3.13), (3.14), (3.16) and (3.1), we obtain the displacements u_{1}, u_{2} and rotation ω_{3}

$$
\begin{aligned}
u_{1}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=-\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\left(\Delta_{1}+\frac{x_{1} \lambda_{1}}{x_{2} \lambda_{2}} \Delta_{2}\right) e^{-i \lambda \beta_{1}^{\prime} x_{2}^{\prime}}+\right. & 2 \lambda \lambda_{1} \beta_{1}^{\prime}\left(e^{-i \lambda_{1} x_{2}^{\prime}}\right. \\
& \left.\left.-\frac{x_{1}}{x_{2}} e^{-i \lambda_{2} x_{2}^{\prime}}\right)\right\} \frac{\lambda P(\lambda)}{\Delta} e^{i \lambda x_{1}^{\prime}} d \lambda
\end{aligned}
$$

$$
\begin{align*}
& u_{2}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)= \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\left(\Delta_{1}-\frac{x_{1} \lambda_{1}}{x_{2} \lambda_{2}} \Delta_{2}\right) e^{-i \lambda \beta_{1}^{\prime} x_{2}^{\prime}}+\right. \tag{3.17}\\
&+2 \lambda \beta_{1}^{\prime}\left(e^{-i \lambda_{1} x_{2}^{\prime}}\right. \\
&\left.\left.-\frac{x_{1} \lambda_{1}}{x_{2} \lambda_{2}} e^{-i \lambda_{2} x_{2}}\right)\right\} \frac{P(\lambda)}{\Delta} e^{i \lambda x_{1}^{\prime}} d \lambda \\
& \omega_{3}\left(x_{1}^{\prime} x_{2}^{\prime}\right)=-\frac{1}{\pi} \int_{-\infty}^{\infty} x_{1}\left(e^{-i \lambda_{1} x_{2}^{\prime}}-\frac{\lambda_{1}}{\lambda_{2}} e^{-i \lambda_{2} x_{2}^{\prime}}\right) \frac{i \lambda^{2} \beta_{1}^{\prime} P(\lambda)}{\Delta} e^{i \lambda x_{1}^{\prime}} d \lambda
\end{align*}
$$

The displacements u_{1}, u_{2} and the rotation ω_{3} being known, stresses and couple-stresses can be determined from the formulae (2.8).

For $\alpha \rightarrow 0$ what corresponds to the classical theory of elasticity, we obtain [10, 13]

$$
\begin{align*}
u_{1} & =\frac{P}{\mu \Delta_{0}}\left[\left(2-M_{2}^{2}\right) I\left(x_{1}^{\prime}-\beta_{1}^{\prime} x_{2}^{\prime}\right)+2 \beta_{1}^{\prime} \beta_{2} I\left(x_{1}^{\prime}-\beta_{2}^{\prime} x_{2}^{\prime}\right)\right] \\
u_{2} & =\frac{P}{\mu \Delta_{0}}\left[-\beta_{1}^{\prime}\left(2-M_{2}^{2}\right) I\left(x_{1}^{\prime}-\beta_{1}^{\prime} x_{2}^{\prime}\right)+2 \beta_{1}^{\prime} I\left(x_{1}^{\prime}-\beta_{2}^{\prime} x_{2}^{\prime}\right)\right] \tag{3.18}\\
\omega_{3} & =0
\end{align*}
$$

where

$$
\Delta_{0}=\left(2-M_{2}^{2}\right)^{2}+4 \beta_{1}^{\prime} \beta_{2}^{\prime}, \quad \frac{P}{\mu} I\left(x_{1}^{\prime}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} P(\lambda) e^{i \lambda x_{1}^{\prime}} d \lambda .
$$

Case II. Subsonic case, $M_{1}<1, M_{2}<1, M_{4}>1$. In this case the solutions of the Eqs. (3.8) may be taken in the form

$$
\begin{align*}
\phi\left(x_{1}^{\prime}, x_{2}^{\prime}\right) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} A(\lambda) e^{-\beta_{1}|\lambda| x_{2}^{\prime}} e^{i \lambda x_{1}^{\prime}} d \lambda \\
\psi\left(x_{1}^{\prime}, x_{2}^{\prime}\right) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(B(\lambda) e^{-\lambda x_{2}^{\prime}}+C(\lambda) e^{-\lambda_{2} x_{2}^{\prime}}\right) e^{i x_{1}^{\prime}} d \lambda \tag{3.19}\\
\omega_{3}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(B_{1}(\lambda) e^{-\lambda_{1} x_{2}^{\prime}}+C_{1}(\lambda) e^{-\lambda_{2} x_{2}^{\prime}}\right) e^{i \lambda x_{1}^{\prime}} d \lambda
\end{align*}
$$

where

$$
\begin{aligned}
\lambda_{1,2}=\frac{1}{\sqrt{2}}\left[\left\{\left(\beta_{2}^{2}-\beta_{4}^{\prime 2}\right) \lambda^{2}\right.\right. & \left.+v_{0}^{2}-v_{1}^{2}\right\} \\
& \left. \pm \sqrt{\left\{\left(\beta_{2}^{2}-\beta_{4}^{\prime 2}\right) \lambda^{2}+v_{0}^{2}-v_{1}^{2}\right\}^{2}-4\left\{\beta_{2}^{2} \lambda^{2}\left(v_{0}^{2}-\beta_{4}^{\prime 2} \lambda^{2}\right)-v_{1}^{2} \lambda^{2}\right\}}\right]^{1 / 2}
\end{aligned}
$$

In view of the coupling of the second and third equations of (3.2), we have

$$
\begin{equation*}
B_{1}(\lambda)=\bar{x}_{1} B(\lambda), \quad C_{1}(\lambda)=\bar{x}_{2} C(\lambda) \tag{320}
\end{equation*}
$$

where

$$
\bar{x}_{1}=\frac{1}{p}\left(\lambda_{1}^{2}-\lambda^{2} \beta_{2}^{2}\right), \quad \bar{x}_{2}=\frac{1}{p}\left(\lambda_{2}^{2}-\lambda^{2} \beta_{2}^{2}\right) .
$$

In view of the boundary conditions (2.11), we obtain

$$
\begin{gather*}
A(\lambda)=\left(\Delta_{1}^{\prime}-\frac{\bar{x}_{1} \lambda_{1}}{\bar{x}_{2} \lambda_{2}} \Delta_{2}^{\prime}\right) \frac{P(\lambda)}{i \lambda \Delta^{\prime}}, \quad B(\lambda)=-2|\lambda| \beta_{1} \frac{P(\lambda)}{\Delta^{\prime}} \tag{3.21}\\
C(\lambda)=-\frac{\bar{x}_{1} \lambda_{1}}{\bar{x}_{2} \lambda_{2}} B(\lambda)
\end{gather*}
$$

where

$$
\begin{aligned}
\Delta_{i}^{\prime} & =\left[\left\{(p-2) \frac{\alpha}{\mu}+p\right\} \bar{\chi}_{i}-\lambda^{2}\left(\alpha \frac{M_{2}^{2}}{\mu}+M_{2}^{2}-2\right)\right] \quad(i=1,2), \\
\Delta^{\prime} & =\left(2-M_{2}^{2}\right)\left(\Delta_{1}^{\prime}-\frac{\bar{\chi}_{1} \lambda_{1}}{\bar{\chi}_{2} \lambda_{2}} \Delta_{2}^{\prime}\right)-4 \lambda_{1}|\lambda| B_{1}\left(1-\frac{\bar{\chi}_{1}}{\bar{x}_{2}}\right) .
\end{aligned}
$$

In view of Eqs. (3.19)-(3.21) and (3.1), we obtain the displacements u_{1}, u_{2} and the rotation ω_{3} as

$$
\begin{array}{r}
u_{1}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\left(\Delta_{1}^{\prime}-\frac{\bar{x}_{1} \lambda_{1}}{\bar{x}_{2} \lambda_{2}} \Delta_{2}^{\prime}\right) e^{-\beta_{1} \mid \lambda_{i}^{\prime} x_{2}^{\prime}}-2 \lambda_{1}\left(e^{-\lambda_{1} x_{2}^{\prime}}-\frac{\bar{x}_{1}}{\bar{x}_{2}} e^{-\lambda_{2} x_{2}^{\prime}}\right)|\lambda| \beta_{1}\right\} \\
\times \frac{P(\lambda)}{\Delta^{\prime}} e^{i \lambda x_{1}^{\prime}} d \lambda
\end{array}
$$

$$
\begin{align*}
& \begin{aligned}
& u_{2}\left(x_{1}^{\prime} x_{2}^{\prime}\right)=-\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\left(\Delta_{1}^{\prime}-\frac{\bar{x}_{1} \lambda_{1}}{\bar{x}_{2} \lambda_{2}} \Delta_{2}^{\prime}\right) \frac{e^{-\beta_{1}|\lambda| x_{2}^{\prime}}}{i \lambda}\right. \\
&\left.+2\left(e^{-\lambda_{1} x_{2}^{\prime}}-\frac{\bar{x}_{1} \lambda_{1}}{\bar{x}_{2} \lambda_{2}} e^{-\lambda_{2} x_{2}^{\prime}}\right) i \lambda\right\} \frac{\beta_{1}|\lambda| P(\lambda)}{\Delta^{\prime}} e^{i \lambda x_{2}^{\prime}} d \lambda, \\
& \omega_{3}=-\frac{1}{\pi} \int_{-\infty}^{\infty} \bar{x}_{1}\left(e^{-\lambda_{1} x_{2}^{\prime}}-\frac{\lambda_{1}}{\lambda_{2}} e^{-\lambda_{2} x_{2}^{\prime}}\right) \frac{P(\lambda)|\lambda| \beta_{1}}{\Delta^{\prime}} e^{i \lambda x_{1}^{\prime}} d \lambda .
\end{aligned} \tag{3.22}
\end{align*}
$$

Making use of the formulae (2.8) we can determine the stresses and couple-stresses in the semi-infinite micropolar medium.

In the particular case, $\alpha \rightarrow 0$, we obtain the displacement components in elastokinetics [11] in which no rotation occurs

$$
\begin{align*}
& u_{1}=\frac{P K_{1}}{\mu}\left(\frac{1}{2}-\frac{1}{\pi} \tan ^{-1} \frac{\beta_{1} x_{2}^{\prime}}{x_{1}^{\prime}}\right)-\frac{P}{\mu} \beta_{2} K_{2}\left(\frac{1}{2}-\frac{1}{\pi} \tan ^{-1} \frac{\beta_{2} x_{2}^{\prime}}{x_{1}^{\prime}}\right), \tag{3.23}\\
& u_{2}=\frac{P}{2 \pi \mu}\left\{K_{2} \log \left(x_{1}^{\prime 2}+\beta_{2}^{2} x_{2}^{\prime 2}\right)-K_{1} \beta_{1} \log \left(x_{1}^{\prime 2}+\beta_{1}^{2} x_{2}^{\prime 2}\right)\right\},
\end{align*}
$$

where

$$
K_{1}=\frac{2-M_{2}^{2}}{\left(2-M_{2}^{2}\right)^{2}-4 \beta_{1} \beta_{2}}, \quad K_{2}=\frac{2 \beta_{1}}{\left(2-M_{2}^{2}\right)^{2}-4 \beta_{1} \beta_{2}} .
$$

Case III. Transonic case: $M_{1}<1, M_{2}>1, M_{4}>1$. In this case the solution of Eqs. (3.9) are

$$
\begin{align*}
& \phi\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} A(\lambda) e^{i \lambda x_{1}^{\prime}} e^{-\beta_{1}|\lambda| x_{2}^{\prime}} d \lambda \\
& \psi\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{B(\lambda) e^{-i \lambda_{1} x_{2}^{\prime}}+C(\lambda) e^{-i \lambda_{2} x_{2}^{\prime}}\right\} e^{i \lambda x_{1}^{\prime}} d \lambda \tag{3.24}\\
& \omega_{3}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{B_{1}(\lambda) e^{-i \lambda_{1} x_{2}^{\prime}}+C_{1}(\lambda) e^{-i \lambda_{2} x_{2}^{\prime}}\right\} e^{i \lambda x_{1}^{\prime}} d \lambda,
\end{align*}
$$

where λ_{1} and λ_{2} are given by Eqs. (3.12). The relations between $B_{1}(\lambda), B(\lambda)$ and $C_{1}(\lambda)$, $C(\lambda)$ are given by Eqs. (3.14).

In view of the boundary conditions (2.11), we obtain

$$
\begin{gather*}
A(\lambda)=-i \frac{P(\lambda)}{\lambda \Delta}\left(\Delta_{1}-\frac{x_{1} \lambda_{1}}{x_{2} \lambda_{2}} \Delta_{2}\right), \quad B(\lambda)=2|\lambda| \beta_{1} P(\lambda) / \Delta \tag{3.25}\\
C(\lambda)=-\frac{x_{1} \lambda_{1}}{x_{2} \lambda_{2}} B(\lambda)
\end{gather*}
$$

where

$$
\Delta=\left(2-M_{2}^{2}\right)\left(\Delta_{1}=\frac{\varkappa_{1} \lambda_{1}}{x_{2} \lambda_{2}} \Delta_{2}\right)+4 i|\lambda| \beta_{1} \lambda_{1}\left(1-\frac{x_{1}}{x_{2}}\right),
$$

Δ_{1} and Δ_{2} are given by Eqs. (3.16). Hence, we obtain the displacements u_{1}, u_{2} and rotation ω_{3} as

$$
\begin{aligned}
& u_{1}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\left(\Delta_{1}-\frac{x_{1} \lambda_{1}}{x_{2} \lambda_{2}} \Delta_{2}\right) e^{-\beta_{1}|\lambda| x_{2}^{\prime}}+2\left(e^{-\lambda_{1} x_{2}^{\prime}}\right.\right. \\
&\left.\left.-\frac{x_{1}}{x_{2}} e^{-\lambda_{2} x_{2}^{\prime}}\right) \lambda_{1} \beta_{1}|\lambda|\right] \frac{P(\lambda)}{\Delta} e^{i \lambda x_{1}^{\prime}} d \lambda,
\end{aligned}
$$

$$
\begin{align*}
& u_{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[i \beta _ { 1 } | \lambda | \left\{\left(\Delta_{1}-\frac{x_{1} \lambda_{1}}{x_{2} \lambda_{2}} \Delta_{2}\right) \frac{e^{-\beta_{1}|\lambda| x_{2}^{\prime}}}{\lambda}\right.\right.+2 i \lambda\left(e-i \lambda_{1} x_{2}^{\prime}\right. \tag{3.26}\\
&\left.\left.\left.-\frac{x_{1} \lambda_{1}}{x_{2} \lambda_{2}} e^{-i \lambda_{2} x_{2}^{\prime}}\right)\right\}\right] \frac{P(\lambda)}{\Delta} e^{i \lambda x_{1}^{\prime}} d \lambda, \\
& \omega_{3}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(e^{-i \lambda_{1} x_{2}}-\frac{\lambda_{1}}{\lambda_{2}} e^{-i \lambda_{2} x_{2}^{\prime}}\right) x_{1} \frac{2|\lambda| \beta_{1} P(\lambda)}{\Delta} e^{i \lambda x_{1}^{\prime}} d \lambda .
\end{align*}
$$

The stresses and couple-stresses can be determined from the formulae (2.8).
In the particular case, $\alpha \rightarrow 0$, the displacement components and rotations are found to be [12, 13]

$$
\begin{aligned}
& \begin{aligned}
\begin{aligned}
& u_{1}= \frac{P}{\mu} K_{4}\left\{\left(\frac{1}{2}-\frac{1}{\pi} \tan ^{-1} \frac{\beta_{1} x_{2}^{\prime}}{x_{1}^{\prime}}\right)+\frac{2 \beta_{1} \beta_{2}^{\prime}}{\pi\left(2-M_{2}^{2}\right)} \log \left|x_{1}^{\prime}-\beta_{2}^{\prime} x_{2}^{\prime}\right|\right\} \\
& \quad+\frac{P}{\mu} K_{3}\left\{\frac{\beta_{1}}{2 \pi} \log \left(x_{1}^{\prime 2}+\beta_{1}^{2} x_{2}^{\prime 2}\right)-\frac{2 \beta_{1} \beta_{2}^{\prime}}{2-M_{2}^{2}} I\left(x_{1}^{\prime}-\beta_{2}^{\prime} x_{2}^{\prime}\right)\right\}, \\
& \begin{aligned}
u_{2}= & -\frac{P}{\mu \pi} K_{4}\left\{\frac{\beta_{1}}{2} \log \left(x_{1}^{\prime 2}+\beta_{1}^{2} x_{2}^{\prime 2}\right)-\frac{2 \beta_{1}}{2-M_{2}^{2}} \log \left|x_{1}^{\prime}-\beta_{2}^{\prime} x_{2}^{\prime}\right|\right\}
\end{aligned} \\
&+\frac{P}{\mu} K_{3}\left\{\left(\frac{1}{2}-\frac{1}{\pi} \tan ^{-1} \frac{\beta_{1} x_{2}^{\prime}}{x_{1}^{\prime}}\right) \beta_{1}-\frac{2 \beta_{1}}{2-M_{2}^{2}} I\left(x_{1}^{\prime}-\beta_{2}^{\prime} x_{2}^{\prime}\right)\right\},
\end{aligned} \\
\begin{array}{l}
\omega_{3}=0
\end{array}
\end{aligned} .
\end{aligned}
$$

where

$$
K_{3}=\frac{-4 \beta_{1} \beta_{2}^{\prime}\left(2-M_{2}^{2}\right)}{\left(2-M_{2}^{2}\right)^{4}+16 \beta_{1}^{2} \beta_{2}^{\prime 2}}, \quad K_{4}=\frac{\left(2-M_{2}^{2}\right)^{3}}{\left(2-M_{2}^{2}\right)^{4}+16 \overline{\beta_{1}^{2} \beta_{2}^{\prime 2}} .}
$$

4. General solution of the equations (2.7)

Let us now consider the displacement and rotation fields described by the vectors $\mathbf{u}=\left(0,0, u_{3}\right)$ and $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, 0\right)$. The displacement u_{3} and the rotations ω_{1}, ω_{2} arise in the semi-infinite space due to the loading which acts on the boundary $x_{2}=0$: the moment u_{22}.

Introducing the elastic potentials ϕ, ψ connected with the rotations, we obtain

$$
\begin{equation*}
\omega_{1}=\phi_{, 1}-\psi,,_{2}, \quad \omega_{2}=\phi_{, 2}+\psi_{, 1} . \tag{4.1}
\end{equation*}
$$

By substituting Eqs. (4.1) into Eqs. (2.7), we find the functions ϕ, ψ and u_{3} satisfying the differential equations

$$
\begin{align*}
\left(\nabla^{2}-v_{2}^{2}-\frac{1}{c_{3}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \phi & =0 \\
\left(\nabla^{2}-v_{0}^{2}-\frac{1}{c_{4}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \psi-s u_{3} & =0 \tag{4.2}\\
\left(\nabla^{2}-\frac{1}{c_{2}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) u_{3}+p \nabla^{2} \psi & =0
\end{align*}
$$

We have introduced the notations

$$
v_{2}^{2}=\frac{4 \alpha}{2 \gamma+\beta}, \quad c_{3}^{2}=\frac{2 \gamma+\beta}{2}, \quad s=\frac{2 \alpha}{\gamma+\varepsilon}, \quad p=\frac{2 \alpha}{\mu+\alpha}, \quad v_{0}=\frac{4 \alpha}{\gamma+\varepsilon} .
$$

Eliminating ψ (or u_{3}) from the second and third equations of (4.2), we arrive at the partial differential equation

$$
\begin{equation*}
\left[\left(\nabla^{2}-\frac{1}{c_{2}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right)\left(\nabla^{2}-v_{0}^{2}-\frac{1}{c_{4}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right)+v_{1}^{2} \nabla^{2}\right]\left(\psi, u_{3}\right)=0 \tag{4.3}
\end{equation*}
$$

which is identical with Eq. (3.3).
Since an observer is always with the load, he would see the load as stationary. Introducing Galilean transformation, (2.10), Mach numbers $M_{i}=\frac{U}{c_{i}}, i=2,3,4$ and the parameters

$$
\begin{align*}
\beta_{i}^{2} & =1-\frac{U^{2}}{c_{i}^{2}}=1-M_{i}^{2} \quad(i=2,3,4) \quad \text { if } \quad M_{i}<1 \tag{4.4}\\
\beta_{i}^{\prime 2} & =\left(\frac{U^{2}}{c_{i}^{2}}-1\right)=M_{i}^{2}-1, \quad \text { if } \quad M_{i}>1
\end{align*}
$$

and assuming $c_{2}>c_{3}>c_{4}$ and c_{3}, c_{4} to be very small, we obtain from the first equation of (4.2) and (Eq. 4.3) the following partial differential equations:

$$
\begin{equation*}
\left(\beta_{3}^{\prime 2} \frac{\partial^{2}}{\partial x_{1}^{\prime 2}}-\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}+v_{2}^{2}\right) \phi=0, \tag{4.5}
\end{equation*}
$$

$$
\left[\left\{\beta_{2}^{\prime 2}-\frac{\partial^{2}}{\partial x_{1}^{\prime 2}}-\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}\right\}\left\{\beta_{4}^{\prime 2} \frac{\partial^{2}}{\partial x_{1}^{\prime 2}}-\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}+v_{1}^{2}\right\}+v_{0}^{2}\left(\frac{\partial^{2}}{\partial x_{1}^{\prime 2}}+\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}\right)\right]\left(\psi, u_{3}\right)=0
$$

if $M_{1}>1, M_{i}>1$ (supersonic case) and $M_{1}<1, M_{i}>1$ (transonic case), and

$$
\begin{gather*}
\left(\beta_{3}^{\prime 2} \frac{\partial^{2}}{\partial x_{1}^{\prime 2}}-\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}+v_{2}^{2}\right) \phi=0 \\
{\left[\left\{\beta_{2}^{\prime 2} \frac{\partial^{2}}{\partial x_{1}^{\prime 2}}+\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}\right\}\left\{\beta_{4}^{\prime 2} \frac{\partial^{2}}{\partial x_{1}^{\prime 2}}-\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}+v_{0}^{2}\right\}-v_{1}^{2}\left(\frac{\partial^{2}}{\partial x_{1}^{\prime 2}}+\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}\right)\right]\left(\psi, u_{3}\right)=0} \tag{4.6}
\end{gather*}
$$

if $M_{2}<1, M_{4}>M_{3}>1$ (subsonic case).
C a se I. $M_{1}>1, M_{i}>1$ (supersonic case) $M_{1}<1, M_{i}>1$ (transonic case).
In this case we assume the general solution of Eqs. (4.5) in the form

$$
\phi=\frac{1}{2 \pi} \int_{-\infty}^{\infty} A(\lambda) e^{-i \sigma x_{2}^{\prime}} e^{i \lambda x_{1}^{\prime}} d \lambda
$$

$$
\begin{align*}
& \psi=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{B(\lambda) e^{-i \lambda_{1} x_{2}^{\prime}}+C(\lambda) e^{-i \lambda_{2} x_{2}^{\prime}}\right\} e^{-i \lambda x_{1}^{\prime}} d \lambda \tag{4.7}\\
& u_{3}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{B_{1}(\lambda) e^{-i \lambda_{1} x_{2}^{\prime}}+C_{1}(\lambda) e^{-i \lambda_{2} x_{2}^{\prime}}\right\} e^{i \lambda x_{1}^{\prime}} d \lambda
\end{align*}
$$

where

$$
\begin{gathered}
\sigma^{2}=\beta_{3}^{\prime 2} \lambda^{2}-v_{2}^{2}, \\
\lambda_{1,2}^{2}=\frac{1}{2}\left[\left\{\left(\beta_{4}^{\prime 2}+\beta_{2}^{\prime 2}\right) \lambda^{2}+v_{1}^{2}-v_{0}^{2}\right\}\right. \\
\mp \sqrt{\left.\left\{\left(\beta_{4}^{\prime 2}+\beta_{2}^{\prime 2}\right) \lambda^{2}+v_{1}^{2}-v_{0}^{2}\right\}-4\left\{\beta_{2}^{\prime 2} \lambda^{2}\left(\beta_{4}^{\prime 2} \lambda^{2}-v_{0}^{2}\right)-v_{1}^{2} \lambda^{2}\right\}\right]} .
\end{gathered}
$$

Introducing ψ and u_{3} into the third equation of (4.2), we obtain the relations

$$
\begin{equation*}
B_{1}=\hat{\varkappa}_{1} B, \quad C_{1}=\hat{\varkappa}_{2} C \tag{4.8}
\end{equation*}
$$

where

$$
\hat{x}_{1}=-p \frac{\lambda^{2}+\lambda_{1}^{2}}{\lambda_{1}^{2}-\lambda^{2} \beta_{2}^{\prime 2}}, \quad \hat{\varkappa}_{2}=-p \frac{\lambda^{2}+\lambda_{2}^{2}}{\lambda_{2}^{2}-\lambda^{2} \beta_{2}^{\prime 2}} .
$$

Applying the boundary conditions (2.12), one obtains

$$
A=i \lambda \beta_{11} Q(\lambda) / \Delta, \quad B=i \lambda \beta_{22} Q(\lambda) / \Delta, \quad C=i \lambda \beta_{33} Q(\lambda) / \Delta
$$

where

$$
\begin{gather*}
\beta_{11}=\left(\alpha_{22} \alpha_{33}-\alpha_{23} \alpha_{32}\right), \quad \beta_{22}=\alpha_{23} \alpha_{31}-\alpha_{21} \alpha_{33}, \\
\beta_{33}=\alpha_{21} \alpha_{32}-\alpha_{22} \alpha_{31}, \\
\Delta=\alpha_{11}\left(\alpha_{22} \alpha_{33}-\alpha_{23} \alpha_{32}\right)+\alpha_{12}\left(\alpha_{23} \alpha_{31}-\alpha_{21} \alpha_{33}\right)+\alpha_{13}\left(\alpha_{21} \alpha_{32}-\alpha_{22} \alpha_{31}\right), \\
\alpha_{11}=(2 \gamma+\beta) \sigma^{2}+\beta \lambda^{2}, \quad \alpha_{12}=-2 \gamma \lambda \lambda_{1}, \quad \alpha_{13}=-2 \gamma \lambda \lambda_{2}, \\
\alpha_{21}=2 \gamma \sigma \lambda, \quad \alpha_{22}=(\gamma+\varepsilon) \lambda_{1}^{2}-(\gamma-\varepsilon) \lambda^{2}, \quad \alpha_{23}=(\gamma+\varepsilon) \lambda_{2}^{2}-(\gamma-\varepsilon) \lambda^{2}, \tag{4.9}\\
\alpha_{31}=2 \alpha i \lambda, \quad \alpha_{32}=\left\{(\mu+\alpha) \hat{x}_{1}+2 \alpha\right\} i \lambda_{1}, \quad \alpha_{33}=\left\{(\mu+\alpha) \hat{x}_{2}+2 \alpha\right\} i \lambda_{2},
\end{gather*}
$$

$i \lambda Q(\lambda)$ is the Fourier Transform of the concentrated moment $l \delta\left(x_{1}^{\prime}\right)$.

Hence, in view of Eqs. (4.9) and (4.7), making use of Eqs. (4.1), we finally obtain

$$
\begin{aligned}
\omega_{1} & =-\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\frac{\lambda^{2} \beta_{11}}{\Delta} e^{-i \sigma x_{2}^{\prime}}+\left\{\frac{\beta_{22} \lambda_{1}}{\Delta} e^{-i \lambda_{1} x_{2}^{\prime}}+\frac{\beta_{33} \lambda_{2}}{\Delta} e^{-i \lambda_{2} x_{2}^{\prime}}\right\} \lambda\right] Q(\lambda) e^{i \lambda x_{1}^{\prime}} d \lambda, \\
\omega_{2} & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\frac{\lambda \sigma \beta_{11}}{\Delta} e^{-i \sigma x_{2}^{\prime}}-\left(\frac{\beta_{22}}{\Delta} e^{-i \lambda_{1} x_{2}^{\prime}}+\frac{\beta_{33}}{\Delta} e^{-i \lambda_{2} x_{2}^{\prime}}\right) \lambda^{2}\right] Q(\lambda) e^{i \lambda x_{1}^{\prime}} d \lambda, \\
u_{3} & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\hat{\chi}_{1} \beta_{22} e^{-i \lambda_{1} x_{2}^{\prime}}+\hat{\chi}_{2} \beta_{33} e^{-i \lambda_{2} x_{2}^{\prime}}\right) \frac{i \lambda Q(\lambda)}{\Delta} e^{i \lambda x_{1}^{\prime}} d \lambda .
\end{aligned}
$$

Knowing the functions ω_{1}, ω_{2} and u_{3}, we can determine the stresses and couple-stresses from the formulae (2.9).

In the particular case, $\alpha \rightarrow 0$, we obtain the following independent partial differential equations for ϕ, ψ and u_{3} :

$$
\begin{align*}
& \left(\beta_{3}^{\prime 2} \frac{\partial^{2}}{\partial x_{1}^{\prime 2}}-\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}\right) \phi=0, \\
& \left(\beta_{4}^{\prime 2} \frac{\partial^{2}}{\partial x_{1}^{\prime 2}}-\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}\right) \psi=0, \tag{4.11}\\
& \left(\beta_{2}^{\prime 2} \frac{\partial^{2}}{\partial x_{1}^{\prime 2}}-\frac{\partial^{2}}{\partial x_{2}^{\prime 2}}\right) u_{3}=0 .
\end{align*}
$$

The solutions of Eqs. (4.11) are

$$
\begin{align*}
& \phi=\frac{1}{2 \pi} \int_{-\infty}^{\infty} A^{0}(\lambda) e^{-i \sigma_{0} x_{2}^{\prime}} e^{i \lambda x_{1}^{\prime}} d \lambda, \\
& \psi=\frac{1}{2 \pi} \int_{-\infty}^{\infty} B^{0}(\lambda) e^{-\lambda x_{2}^{0} x_{2}^{\prime}} e^{i \lambda x_{1}^{\prime}} d \lambda, \tag{4.12}\\
& u_{3}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} C^{0}(\lambda) e^{-\lambda_{2}^{0} x_{2}^{\prime}} e^{i \lambda x_{1}^{\prime}} d \lambda,
\end{align*}
$$

where $A^{0}(\lambda), B^{0}(\lambda)$ and $C^{0}(\lambda)$ are found from the boundary condition (2.12) as

$$
\begin{gathered}
A^{0}(\lambda)=\frac{i \alpha_{22}^{0} Q(\lambda)}{\Delta^{0} \lambda}, \quad B^{0}(\lambda)=-i \alpha_{21} Q(\lambda) / \Delta^{0} \lambda, \quad C^{0}(\lambda)=0, \quad \sigma=\beta_{3}^{\prime} \lambda, \\
\lambda_{1}^{0}=\beta_{4}^{\prime} \lambda, \quad \lambda_{2}^{0}=\beta_{2}^{\prime} \lambda, \quad \Delta^{0}=\alpha_{11}^{0} \alpha_{22}-\alpha_{12}^{0} \alpha_{21}, \quad \alpha_{11}^{0}=(2 \gamma+\beta) \beta_{3}^{\prime}+\beta, \\
\alpha_{12}^{0}=-2 \gamma \beta_{4}^{\prime}, \quad \alpha_{21}^{0}=2 \gamma \beta_{3}^{\prime}, \quad \alpha_{22}^{0}=(\gamma+\varepsilon) \beta_{4}^{\prime 2}-(\gamma-\varepsilon) .
\end{gathered}
$$

Hence, in view of Eqs. (4.12) and (4.1), we have

$$
\begin{align*}
& \omega_{1}=\frac{l}{\Delta^{0}}\left\{\alpha_{21}^{\prime} \beta_{4}^{\prime} I\left(x_{1}^{\prime}-\beta_{4}^{\prime} x_{2}^{\prime}\right)-\alpha_{22}^{0} I\left(x_{1}^{\prime}-\beta_{3}^{\prime} x_{2}^{\prime}\right)\right\} \\
& \omega_{2}=\frac{l}{\Delta^{0}}\left\{\alpha_{21}^{0} I\left(x_{1}^{\prime}-\beta_{4}^{\prime} x_{2}^{\prime}\right)+\alpha_{22}^{0} \beta_{3}^{\prime} I\left(x_{1}^{\prime}-\beta_{3}^{\prime} x_{2}^{\prime}\right)\right\} \tag{4.13}\\
& u_{3}=0
\end{align*}
$$

The formulae (4.13) indicate the rotation field $\omega\left(\omega_{1}, \omega_{2}, 0\right)$ in a hypothetical medium in which no displacement occurs. This field is produced by the action of concentrated moment $l \delta\left(x_{1}^{\prime}\right)$ on the boundary $x_{1}^{\prime}=0$.

It is also observed from Eqs. (4.13) that the disturbances are marked by two Mach waves

$$
x_{1}^{\prime}-\beta_{3}^{\prime} x_{2}^{\prime} \quad \text { and } \quad x_{1}^{\prime}-\beta_{4}^{\prime} x_{2}^{\prime}
$$

Case II. $M_{2}<1, \quad M_{4}>M_{3}>1$.
In this case the solution to the partial differential Eqs. (4.6) may be taken in the form

$$
\begin{align*}
\phi & =\frac{1}{2 \pi} \int A(\lambda) e^{-i \sigma x_{2}^{\prime}} e^{i \lambda x_{1}^{\prime}} d \lambda \\
\psi & =\frac{1}{2 \pi} \int\left\{B(\lambda) e^{-i \lambda_{1} x_{2}^{\prime}}+C(\lambda) e^{-i \lambda_{2} x_{2}^{\prime}}\right\} e^{i \lambda x_{1}^{\prime}} d \lambda \tag{4.14}\\
u_{3} & =\frac{1}{2 \pi} \int\left\{B_{1}(\lambda) e^{-i \lambda_{1} x_{2}^{\prime}}+C_{1}(\lambda) e^{-i \lambda_{2} x_{2}^{\prime}}\right\} e^{i \lambda x_{1}^{\prime}} d \lambda
\end{align*}
$$

where

$$
\begin{gathered}
\sigma^{2}=\left(\beta_{3}^{\prime 2} \lambda^{2}-v_{2}^{2}\right), \\
\lambda_{1,2}^{2}=\frac{1}{2}\left[\left\{\lambda^{2}\left(\beta_{4}^{\prime 2}-\beta_{2}^{2}\right)-v_{0}^{2}+v_{1}^{2}\right\}\right. \\
\mp \sqrt{\left\{\lambda^{2}\left(\beta_{4}^{\prime 2}-\beta_{2}^{2}\right)-v_{0}^{2}+v_{1}^{2}\right\}^{2}+4\left\{\beta_{2}^{2} \lambda^{2}\left(\lambda^{2} \beta_{4}^{\prime 2}-v_{0}^{2}\right)+\lambda^{2} v_{1}^{2}\right]}
\end{gathered}
$$

In view of Eqs. (4.14) and the third equation of (4.2), we obtain the relations

$$
\begin{equation*}
B_{1}=\hat{\varkappa}_{1} B, \quad C_{1}=\hat{\varkappa}_{2} C, \tag{4.15}
\end{equation*}
$$

where

$$
\hat{x}_{1}=-p\left(\lambda^{2}+\lambda_{1}^{2}\right) /\left(\beta_{2}^{2} \lambda^{2}+\lambda_{1}^{2}\right), \quad \hat{x}_{2}=-p\left(\lambda^{2}+\lambda_{2}^{2}\right) /\left(\beta_{2}^{2} \lambda^{2}+\lambda_{2}^{2}\right),
$$

$A(\lambda), B(\lambda)$ and $C(\lambda)$ are obtained from the boundary conditions (2.12) and are given by the expression (4.9), only replacing the values of λ_{1}, λ_{2} and $\hat{\varkappa}_{1}, \hat{\kappa}_{2}$ by those given in Eqs. (4.14) and (4.15), respectively. Hence, the rotation components ω_{1}, ω_{2} and the displacement component u_{3} are given by the same expression (4.10) where the values of $\lambda_{1}, \lambda_{2}, \hat{\chi}_{1}, \hat{\chi}_{2}$, are given by Eqs. (4.14) and (4.15).

In the particular case, $\alpha \rightarrow 0$, we obtain the same rotational field $\omega\left(\omega_{1}, \omega_{2}, 0\right)$ given by Eqs. (4.13) in the hypothetical medium in which no displacement occurs.

References

1. W. Nowacki, Bull. Acad. Polon. Sci., Série Sci.'Techn., 14, 506 (802), 1966.
2. W. Nowacki, Ind. J. Mech. Math., Part I, 16-22, 1968.
3. W. Nowacki, W. K. Nowacki, Arch. of Mech., 21, 3, 1969.
4. W. Nowacki, Proc. Vibr. Probl., 10, 2, 1969.
5. W. Nowacki, Bull. Acad. Polon. Sci., Série Sci. Techn., 17, 39 (55), 1969.
6. A. C. Eringen, E. S. Suhubi, Int. J. Eng. Sci., 2, 189, 1964.
7. A. C. Eringen, E. S. Suhubi, ibid., 2, 389, 1964.
8. V. A. Palmov, Prikl. Mth. Mech., 28, 401, 1964.
9. P. Chardwick, Ind. J. Mech. Math., Part II, Spl. Issue, 1, 1969.
10. H. Lamb, Phil. Trans. Roy. Soc., London, Ser. A. 203, 1-42, 1904.
11. I. N. Sneddon, Fourier transforms, New York, Mc Graw-Hill, 445-449, 1951.
12. J. Cole and J. Huth, J. Appl. Mech., 25, 433-436, 1958.
13. Y. C. Fung, Foundations of solid mechanics, Prentice-Hall of India, Private limited, New Delhi 1968.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF KALYANI, KALYANI, NADIA, WEST BENGAL, INDIA
and
FULIA TOWNSHIP
fUlia colony, nadia, west bengal, india.
Received April 16, 1976.

