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On wave propagation in a coupled thermo-elastic-plastic medium 

V. N. KUKUDJANOV (MOSCOW) 

IN nns paper the conditions for propagation of three-dimensional acceleration and strong 
discontinuity (shock) waves and for the amplitude attenuation in thermo-elastic viscoplastic 
materials are derived. The results shows that the velocities of propagation in these materials 
are the same as in thermoelastic material. Moreover, for Fourier's law only one longitudinal 
wave propagates. On the front of this wave the entropy suffers discontinuity but not temperature. 
The amplitude decaying depends on thermoconductivity but not on energy dissipation. For the 
Cattaneo relation, however, two longitudinal waves exist and all dependent variables including 
temperature are discontinuous on their fronts. The attenuation of the amplitude is stronger and 
also depends on plastic energy dissipation. 

W niniejszej pracy wyprowadzono warunki na propagacj~ tr6jwymiarowych fal przyspieszenia 
i fal silnej nieci~glosci (uderzeniowych) oraz zmian~ amplitudy w materiale spr~zysto-plastycznym 
i spr~zysto-lepkoplastycmym. Wykazano, :2:e pr~dkosci propagacji fal w tych materialach pokry
waj~ si~ z odpowiednimi pr~dkosciami fal w materiale termospr~zystym. Ponadto przy uzyciu 
prawa Fouriera tylko jedna fala podh.J.Zna mo:Ze si~ .rozprzestrzeniac, na kt6rej czole en tropia 
domaje nieci~glosci, a temperatura jest ci~gla. Malenie amplitudy zalezy od przewodnictwa 
cieplnego lecz nie od energii dysypacji. Natomiast w przypadku r6wnania Cattaneo istniej~ dwie 
fale podlume i na ich czolach wszystkie zmienne zalezne, l~cmie z temperatur~. domaj~ sko
k6w. Malenie amplitudy jest bardziej macme i zalezy r6wniez od energii dysypacji. 

B HacromueH: pa6oTe BhiBe~eHbi ypaaJieHHR pacrrpocrpaHeHHR TpeXMepHbiX aoJIH yCKopeHHa 
H BOJIH CHJILHOrO pa3pbiBR (y~apHbiX) H H3MeHeHHR aMrnnrry~I B TepMO-ynpyro-BR3KO
-IIJIRC11fqeCKHX MaTepHaJiax. floKR3aHO, 'ITO CKOpOCTH pacrrpocrpaHeHHR BOJIH B 3THX 
MaTepHaJiax COBna~aiOT C COOTBeTCTBYIOII.tHMH CKOpOCTRMH BOJIH B TepMoynpyrOM MaTepHaJie. 
KpoMe 3Toro, npH HcnoJIL30BaHHH 3aKoHa <l>ypLe, MO>KeT pacnpocrpaHRTLC.JI TOJILKO o~a 
npo~OJILHa.JI BOJIHa, Ha <flpoHTe KOTOpOH 3HTpOnH.JI HCnbiTbiBaeT pa3pbiB, a TeMnepaTYpa 
He.npep&IBHa. Y6&IBaHHe aMrnnrry.iJbi 3aBHCHT OT TeiiJionpoao~oCTH, HO He OT 3HeprHH 
~ccHnai.UIH. B CJI~ae >Ke ypaaaeHHa KaTTaHeo cYII.teCTayroT ~e npo~oJILHhie BOJIHbi H aa 
HX <flpoHTax ace 3aBHCHM&Ie nepeMeHHbie, BK1IJOllaR TeMnepaTypy, Hcn&IThiBaiOT CKatJKH. 
Y6&IBaHHe aMIIJIHTy.lU>I 6oJiee 3HatJ:HTeJILHo H 3aBHCHT oT 3HeprHH ~cCHnai.UIH. 

Introduction 

A PROPAGATION of thre~dimensional strong discontinuities and acceleration waves of an 
arbitrary geometry in an elastic-plastic medium with small deformations is investigated. 
The model of a medium is based on general thermodynamic principles. For heat conduction 
the Maxwell-Cattaneo equation [I] is obtained in the same manner as it was done in 
[2, 3, 4] where one-dimensional waves were considered in materials with internal state 
variables. 

The wave propagation speeds coincide with the respective speeds in a thermoelastic 
medium. Differential equations for determining the intensities of shock and acceleration 
waves were derived. Cases of Fourier's law and the Maxweii-Cattaneo relation are in
vestigated. 
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326 V. N. KUKUDJANOV 

There is only one longitudinal wave, in the case of Fourier's law, at the front of which 
entropy is discontinuous and temperature remains continuous. The attenuation of the 
intensity is dependent on thermoconduction but is independent of a dissipation of the 
energy. In the case when a speed of propagation of thermal signals is finite, we have two 
fronts of longitudinal waves at which all variables including temperature are discontinuous. 
In the last case the attenuation is stronger than in the case of Fourier's law, and it also 
depends on plastic dissipation energy. 

An isothermal case of wave propagation in an elasto-viscoplastic medium was con
sidered in [5, 6]. 

1. The constitutive equations for the thermo-elastic-viscoplastic medium 

In order to build the model of a thermo-elastic-visco-plastic material we shall make 
use of thermodynamical principles. 

We assume that the following variables determine the local state of a heat conducting 
elastic-plastic body: the StreSS tensor a, the elastic and plastiC Strain tenSOrS ee and eP, the 
specific free energy F, the specific entropy s, the absolute temperature T, the tempera
ture gradient g, the heat flux vector q, the mass density e and internal structural para
meters X· 

Assume that there exist two groups of the internal state parameters x, namely, the 
mechanical para~eters XM and the thermal parameters Xr. The last group is connected 
with a temperature gradient history [2, 3]. 

Let us assume the set of independent<l) variables ee, eP, T, x, g in terms of which 
all the remaining variables may be expressed, e.g.: 

(1.1) 

The second law of thermodynamics is here expressed by the Claisius-Duhem inequality 
[7, 8] 

(1.2) 
• 1 • qg 

-F+-uiJelJ-sT--- ~ 0, 
eo eoT 

e11 is the total strain rate tensor, eo is the initial density. Taking into account Eqs. (1.1), 
we hav! 

(1.3) ( u11 _ oF) ef.J- (oF + s) T- oF g,+ ( u11 _ oF )eu- oF it- q,T,t ~ O. 
eo oefJ oT og, eo oefJ ox, (!o T 

So far as the underlined terms in inequality (1.3) are independent of ef1, T and g1 the 
following restrictions are imposed on the constitutive equations (1.1) [9]: 

(1.4) oF= 0 og 

(1) It is possible to include e' in internal state variables and consider a total strain tensor e instead of ee 
and e'. 
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and also the inequality of the general dissipation must be satisfied 

(1.5) 

h 
oF . . 

w ere 1:;1 = (Ji1-eo -
0 

, IS an active stress tensor. 
eo 

Following [2, 3], we assume the form of evolution equations for 

(1.6) XT = gradT+ i*(e, T, x). 

Introducing Eq. (1.6) into inequality (1.5)? we obtain 

(1.7) ( 
aF q1 ) oF . , aF . i 1 , - --+-- r,---x --·-lM+-7:;·E,J~o. 
ox~ eo T ' ox~ * oxM eo 1 
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The underlined terms in (1. 7) are independent of g since Xr is independent of g [3], 

and we obtain 

aF _ qj 1 , aF 1 aF . 1 (1.8) . - --, D = -'l:jJEj1 - -
8
-,-xM- -

8 
, x. ~ o. 

ox'r eT e XM xr 
In our following considerations we shall use the approach based on introducing the dis
sipation function D and on Onsager's general principle. Instead of Onsager's principle 
we can postulate the equivalent but physically more evident Zigler's principle [10] of the 
maximum dissipation rate in a real process which requires 

1 oF • 1 o:D oF • 
D = -'l:;JefJ+-0 x1 ~ -7:sJ"1J+~ll· e Xt e ux1 

It means that the dissipation reaches a maximum value in the process with the real elj 
and i 1, and efj f1 are variables in an arbitrary process. 

This implies the following relations: 

aD aD 
(1.9) 'l:IJ = ;. -a , ' Fx, = ;. -a. . 

eu X• 
If the function D and Fare ,given, then Eqs. (1.4), (1.6), (1.8), (1.9) are the constitutive 

equations for an elastic-plastic medium. 
Assume that the dissipation function D is represented by the expression 

(1.10) D = D1(e!J, XM)+D,(if.) = (I + t) I,[k,(T, XM)+ 'l'(l,)]+ 2:T Xl!, i:~, 
and the free energy F consists of two terms 

(1.11) F = Ft(ee, T)+F2(eP, T, x). 

The assumption (1.11) means that plastic deformations do not give an influence on the 
elastic properties of the material. 

In the Eq. (1.10) I, = (ef.Je~)1 12 - is the second invariant of the plastic strain 
t 

tensor, XM = W, = f 1:11 e1} dt is the plastic deformation work of the active stresses, the 
0 

relation k, = k.(xM, T) is dependence one can determines from one dimensional static 

loading, the function qJ(Jp) is characterising the strain rate influence on constitutive equa-
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328 V. N. KUKUDJANOV 

tions and one can determine it from dynamic experiments [11]. If 'l'(/11 ) = 0 we have 
equations for the strain rate independent plasticity. 

Relatively function F2 we assume that it is a square power function of his arguments 

(1.12) 

From the. assumption (1.10) follows that the inequality (1.8) can be represented, as two 
independent inequalities 

1 iJF · 
Dl =- 'l'jJCfJ+ -:~-XM ~ 0, e uxM 

Taking into account that XM = ri1Ef1 and using Eqs. 
the first inequality 

( 
XM) iJD1 

(1.13) 1 + k; T;J = A iJEfJ , 

That leads to 

(1.14) 

iJF '* DJ = -:::1- XT :>; 0· ux 17 r, 

(1.9), (1.12), one can obtain from 

Thus the made assumptions lead us to the particular form of the constitutive equations 
for the visco-plastic medium with the isotropic and kinematic hardening. 

It is necessary to remark that from (1.13)-(1.14) it is clear, that the kinematic hardening 
always is connected with a dry friction mechanism and depends only on efb x, T but not 
on ef;. At the same time isotropic hardening can depend both on the viscosity and on the 
dry friction mechanism. 

Let us now find i. 
(1.15) 

• 1 
X*= -xr 

'fo 

and, using Eqs. (1.6), (1.8), (1.12), we obtain 

( 1.16) r 0 q = k grad T- q, 

where r 0 is the thermal relaxation time and k, the coefficient of thermal conductivity. 
This equation is the Maxwell-Cattaneo equation. A survey of the works where this 

equation is investigated can be found in [3, 12]. 
It is clear from Eq. (1.16) that the heat flux q can be considered as an internal state 

variable [3, 4]. 
Let us determine now the elastic part of the free energy F1 ; then, the constitutive 

equations of the model considered will be determined completely. 
Since we assume small strains and small temperature increments we can take, in the 

expansion of F1 , only quadratic terms 

( ) A. 2 p 3A. + 2p C£ )2 0 ( 3 T
3 

) 
1.17 F1 = 2i E1 + e E2 - (! a.(T- T0 )E1 - 2To (T- To + eiJ, T~ , 

where E1 = efh E2 = ef1ef1 are the first and second invariants of the elastic strain tensor 
ee, A. and p are the elastic constants of the material, a. is the coefficient of thermal expansion 
and cE is the specific heat at constant deformations. 
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Relations (1.4) and (1. 7) give the following expressions: 

(1.18) 

(1.19) 

a;i = J.efk <5ii+2,ueT1- (3J.+2,u) cx(T- To) <5ib 

3J.+2,u e T- To 
s = cxekk+cE---. 

(! To 
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Determining efi through the total strains eii and assuming efi = 0, we obtain the final 
form of the constitutive equations 

(1.20) 

• , . .~: . (3, 2 ) • .~: 2p, J>(S-ks) 
(]ij = Aekkuij+2p,eij- A+ ,U cxTuij---:r- S S;j, 

J> = {fP(z), 
0, 

z ~ 0, 

z < 0, 
f/J(z) = P- 1 (z), 

'l'kk 
sii = rii- -

3
- <51h r is a constant characterizing the material viscosity dimensions [sek]. 

Equations (1.20) are a modification of the well-known equations for a thermo-elastic
plastic medium [11, 13]. In order to obtain a closed system of equations describing the 
medium considered, the equation of motion 

(1.21) ai1.i-evi = o 
and the equation of heat flux in the form 

(1.22) 

should be added to Eqs. (1.16) and (1.20). 

2. The propagation of strong discontinuity waves 

The total system of equations can be represented as the first order of differential equa
tions with respect to the velocity vector v, the stress tensor a, the temperature T, the heat 
flux q and the plastic strain tensor efJ. 

Using Eqs. (1.14), (1.16), (1.19)-(1.22) and Cauchy relations between Eti and the 
velocity vector v, we obtain the following system: 

a,J,1-evi = o 
. , .~: ( ) .~: 2,u J>cs-ks) 
aii = AVk,kuii+,u Vt,J+vJ,i -(3J.+2,u)cxTuii- 7 S sib 

. 1 1\ 

(3J.+2,u)T0 cxvk k+nc£T = -qi i+ -f/J(S-ks)S, 
• t: • T 

(2.1) 

This system of equations constitutes a quasi-linear hyperbolic first order system with 
the principal linear part. The right-hand sides of Eqs. (2.1) are continuous functions 
of their arguments. For the purpose of investigating the strong discontinuity surfaces 
of the system considered, a general theory developed for equations of a divergent form 
[14] may be used. 
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By a generalized solution of the system ofEqs. (2.1) which may be written in the matrix 
form 

L(U) = (A'U),,+(A 1U), 1+B(U) = 0, 

we mean a piece-wise continuous vector function U having piece-wise continuous deriva
tives in a region G and for which the relation 

(2.3) f [(A'~.r+A;~.;) U-B(U)~]dtdx1 = 0 
R 

holds for arbitrary test functions ~ for all subdomains R c G. Then, in smooth regions 
of the solution, Eq. (2.2) res.ults from Eq. (2.3) and on the discontinuous surface q;(xh t) = 

= 0 should be satisfied 

(2.4) 

Here At and A; are matrices, the vector [U] = u+- u- denotes a jump of solution U 
across the surface q; = 0, c is the speed of propagation of the surface and v is a normal 
of the surface. 

In the case of the system of Eqs. (2.1),' the relations (2.4) yield the following system 
of equations to be satisfied by the "jumps": 

[a;1]v1+ec[v1] = 0, 

(2.5) -c[aii] = ).[v"]v~c~11 +,u([v,]J.'j+[v1]v1)+(3).+2,u)ac[T]~Ib 

(3).+2,u)T0 a[v"]vk-ecc£lT] = - [q,]v, T0 c[q;] = k[T]v,. 

We can find the expressions for [T] and [q;]v1 from the two last equations 

(2.6) [T] = 3).+2,u 
( k r T0 a cEc--- [vt]v", 

e (!C'l'o 

(2.7) [q;]v; = 
3).+ 2,u 

( k r T0 ak cEc--- [v"]v". 
ce'l'o ec'l'o 

Substituting them into Eq. (2.5), we have 

-c[au] = ).*[v"]vk~lJ+,u([vt]v1 + [v1]v;), 

~* - ~ (3).+2,u)2 2T. ( k )-1 
11. -11.+ (X oCCEC--- , 

e ec'l'o 
(2.8) 

().*+,u)[v"]v"v,+(,u-ec2)[v1] = 0. 

It follows from Eqs. (2.8) that for the medium considered two types of waves, longitudinal 
and transverse, exist. 

For transverse waves we have 

(2.9) 

and for longitudinal ones we obtain 

(2.10) c2 = ().*+2,u)e- 1
, [v1] = Wv, -c[a11] == ().*~IJ+2,uv1 v1)W. 
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The speeds of the longitudinal waves c are determined from the equations 

c4
- ( c~ + cj.) c2 + c6 cj. = 0, 

(2.11) 

The roots of the biquadratic equation (2.11) are 

(2.12) er 2 = cf,2 = _!_ (t + Cf) ± [_!_ (t + cj. )2 -- cj.c~ ]1/2. 
• c~ 2 c~ 4 c~ c~ 

Let us obtain the expansion of c1 2 and c~ in a series for the c;mall To 

(2.13) 

cf =_!_+IJ- c~)+O(e), c~ = c~ -e{J(I-{J)+O(e2
), 

e \ CA CA 
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It is clear from Eqs. (2.13) that there exist two longitudinal waves: T- wave with the 
speed c1 and M- wave with the speed c2 • 

If the medium in uncoupled, then a.-+ 0, and one obtains from Eq. (2.12) that d -+ c} 
for the thermal wave and d -+ c5 for the mechanical wave. 

The T- wave speed, c1 and the M- wave speed, c2 satisfy the inequalities 

er> Cf > C~ > C~. 
For Fourier's law we have To-+ 0 and d-+ c~, ci-+ oo; thus there remains only one 
M- wave and the jump of temperature on the wave front vanishes. 

Let us consider now the change of wave intensities during propagation in space. 
The system of Eqs. (2.1) may be rewritten in terms of the jumps 

[a,1•1-e[vt] = o, 
[all] = A.du[vk,kJ + ,u([vi,Jl + [v1.l])- (3A.+ 2,u) a.dl}[TJ- 2,u[efj], 

( ) . 1 " 2.14 (3A.+2,u)Tort[Vt,k]+cEe[T] = -[qt,I]+-:;[<P(S-ks)SJ, 

To [iJ.J + [ q.J = - k [T . .J. [•fJI = ~ [ .Pes -sk,)sli J. 
Using the kinematic conditions of the compatibility of the first order [15], we obtain 

[ of]= -cF+ dU1 ' [of J = Fv,+gr41 oU1 ox1
' 

ot dt ox1 oya. oyp 

F= [:!.}•· 
(2.15) 
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ga.fl is the contravariant metric tensor of wave surface, Ycu Yp are curvilinear coordinates 
on the surface, ex, f3 = 1, 2. Substituting relations (2.15) into Eqs. (2.14), we obtain 

(2.16) 

~ rt.{J o[uij] OXj V ~[vt] 0 
"'-'ijvj+ g ---ay;- OYp + (!e ;-(! ~ = ' 

-eE;j+ ~[O'ij] = ;.(vkvk+grt.{J o[vk] oxk)~ij+ft[V;vj+Vjvi+grt.P( o[v,] OXj 
~~ oyrt. oyp ayrt. cyp 

+ o[vi] ox,)]+ (3A.+ 2ft) ex (cfJ _ ~[11 ) ~-· _ 2ft [ ~(S- ks) s,·] 
OYa oyp ~~ I) "t' s J ' 

(3A+2p} To ex (v•••+g•P 0J;:l !;; ) + c,e (-eO+ ~~~) 
= -Qkvk- g•P a[qA:] axk + ___!___ [tPS], 

ayll oyp -r 

To ( -cQ, + ~~;;)) + [q.J = - k (o., + g«P 
0J2 !;; ) . 

Multiplying the last equation by v; and performing the convolution, one determines 

By means of Eqs. (2.6)-(2.7) and (2.18) we can exclude [T], [q1] and 0 from the second 
equation (2.16) 

~[a,j] ( «P a[vk] axk) r II.{J (a[vd OXj -eE··+-- =A.* ~kvL+g ---- ~--+u V.v-+V·v·+g ---
IJ ~~ .. OYez oyp I) r L I J J I ay(/, ayp 

(2.19) a[v1] ox,)] { ~W ea •P a(Wvt) axk a W b[,;,S]} .i 2 [ "] +---- + a-+-g ---+- - ..., u 11 - ftEo, 
oy(/, ayiJ ~~ 2 ay. ayfl 2-ro 

2kToex2 
( 3 ~ 2 )2 ( k .)-

2 
b (3A.+2ft)eex ( k )-t a= 2 11.+ ft eEe--- , = eEe---

(! e-r0 -r0 ee (!"t' ee-ro 

Multiplying Eqs. {2.19) by v1 and excluding EIJ from the first Eq. (2.16), we obtain three 
equations, respectively V1 

(2.20) ( ~* ) V r, 2) V •tJ o[a;i] axJ ~[v;] ~[a;i]vi 11. +ft A:vkvt+\1"'-ee 1 = eg -----ee--+--
oy« ay{J ~~ ~~ 

-A.•g•fl a[v,a_ axk v,-ft~p( c[v;]. ax} + a[v}L OX; )vj-{a ~w 
ayrt. ay{J oy(/, oy11 ay(/, ay{J ~~ 

ea oWvk fixk aW " \ , + -
2 
~fl-~--~- + -

2
- -b[~S]J v1+2ft[e0 ]vJ. 

uy« uv., -ro 
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Now we can exclude the jump [O'iJ] from Eqs. (2.20) taking into account Eqs. (2.8) 

[ 

{J o[vt]Pk ox, fJ o[vA:] OXt J (2.21) ().*+~)VtPtPI+(}t-ec1)V, = -().*+,u) g« --- +g« ----Pi 
ay~~ oyp ay~~ oyp 

+2,u.Q[v1]-2ec ~[v,] -{a j_W - caDW +_a_ W -b[(/}S]} P1 +2~[ef-]P1 • 
~~ ~~ 2T0 

1 

Here we used the following relations from differential geometry [15]: 

(2 OPJ crrb OXJ 
.22) cJY« = -g a« cJYT' 

ba« are coefficients of the second quadratic form of the surface, D is the mean curvature. 
Multiplying Eq. (2.21) by "• we obtain the equation for determining the intensity of strong 
discontinuity longitudinal waves 

(2.23) 

~W cDW ao W +~[<PS]+ ~ [e11
11]"•"J' 

~ = - 2To(1 +ao) 1 +ao (!C(1 +ao) 

a 
ao=--

2ec' 
b 

bo=--. 
2ec 

For Fourier's law To vanishes and we obtain 

(2.24) 

Comparing these two equations we can find that the attenuation in Fourier's case is inde
pendent of plastic energy dissipation since the third term in Eqs. (2.23) vanishes when 
To ~ 0 and the second term, which characterizes the thermal attenuation, increases. Indeed 

1 c1 

1+--
ao c~-c02 2 Cr2 (3).+2J.L) 2 rt1 T. ,.. ----:;;---:- + 0( T~) > I 0 

2To(l+ao). = 2cT0 1 
c~-c~ 2ek 

+--d· 
c1 > 2(c~-c~). 

where (J).+~:rrt
2

T0 is a coefficient of the thermal attenuation for Fourier's law. As it 

has already been remarked, with To ~ 0 the temperature is continuous on the M-wave, 
and its derivatives and the heat flux are discontinuous; the jumps can then be determined 
from the following relations: 

, Tort 
[T,.J = (3.~~.+2~) /C WP., [qd = - (3).+2,u) Tort WP,. 

Let us now consider transverse waves. Taking into account that c2 = ~e- 1 and [vt]Pt = 
= 0, we obtain from Eq. (2.21) 

~Lv,] o[vj] OXj . 2~ [ ~ ] 
(2.25) ().*+~)VA:Vk'»'t+2ec~+().*+~)gaf1 oya. oyp ,,-2~[v.].Q-T SSjjPj 

+b[$S]Pt = 0. 
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334 V. N. KUKUDJANOV 

Multiplying Eq. (2.25) by vi and performing the convolution we find 

(2.26) 

After multiplying Eq. (2.26) by vi and subtracting the result from Eq. (2.25), we obtain 
the equation for determining tpe intensity of jump for the transverse wave: 

(2.27) 

It is clear that attenuation of intensity of the jump depends on the geometry of the 
wave surface and. on the -visco-plasticity of the material, but is independent of the thermal 
effect and of the dissipation. Temperature and heat flux are continuous on transverse 
waves. 

3. Acceleration waves 

Turning to the acceleration or weak discontinuity wave, we define it as a surface 
9'(x, t) = 0 on which the solution U is continuous and its derivatives are discontinuous, 
i.e. 

(3.1) [U] = 0, [~] ~ 0, ox, [ ~~] .. 0. 

The kinematical conditions of the compatibility of the first order can be obtained from 
Eqs. (2.15), taking into account conditions (3.1). Substituting them into Eqs. (2.16), 
we :find 

(3.2) 

After excluding () from Eqs. (3.2), we obtain the equations 

(3.3) 

which coincide with the same equations for the strong discontinuity waves (2.8)-(2.10). 
Thus there are two types of acceleration waves, longitudinal and transverse, which have 
the same speeds as respective strong waves. 
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For the purpose of determining the intensities of these waves we shall use the following 
kinematic conditions of compatibility of the second order [15]: 

[ 
02(]ij ] p aEij ( OXj ox, ) '\""' a.{J crrb OXj ox, --- = Mij'Vj'Vl+g« -- Y,-+Yj-- -"'-'ijg g a.a----, 

ox1ax, oya. oyp oyp oya. ay'l: 

[ 
o2v, ] - a.p avi ( OXj ox, ) a.p b OXj ox, 
-a a - L,"'J"''+g -a- ,,_a +,J_a -V~g ~ a.a-a -a , 

Xj Xt Ya. Yp Yp Ya Ycx 

(3.4) [ 
o2T ] - a.{J ()() ( OXj ox, ) «P OXj ox, 
-a a - {}"'1"''+g -a "''-a +"'1-a -Og ~b"a-a -a ' Xj Xt Ya Yp Yp Ya. Y1: 

[ 
o2 (]iJ ] _ ( <5EiJ M ) a.p o£11 ox, [ o

2
(]iJ] _ M 2 _ 2 <5Eii 

ox,ot - ~- lj c ,,-cg ay; oyp' ot2 - ijc c llt ' 

[ azv, ] = (tJV, -L~c)Y,-cg«P oV, ox,, [ aozt~'] = L,cz-2c {J;ti, 
ox1ot flt oya. oyp u 

[ iJ2T] = (J!!.. -{}c)Y,-cg«P ~ ox,' [ iJ2T] = {}c2 -2cJ!!.., 
ox1ot . llt oy" oyp ot2 llt 

[a::~.]= D-z!Jo. 
In order to make further calculations simpler we shall restrict our considerations to Fourier's 
law. The way of calculating the Maxwell-Cattaneo equation is the same. 

From Eqs. (2.14) and (3.4), we fir.d 

(3.5) (3-A+ 2,u) T0 cx[vk. tl- ccEeO = k({}- 2.00)+ [ Tfie~]. 

Since for To ---+ 0 on the acceleration surface () = 0, we obtain 

(3.6) 
V {} = (3.A+2,u)T0 cxy. 

Since the last term in Eq. (3.5) vanishes, it is clear that the dissipation of the plastic energy 
has no influence on the intensities of the acceleration waves in Fourier's case. But it should 
be remarked that the dissipation has influence on the second and higher terms of the expan
sions of the solution near the wave front. 

The following dynamic conditions of the compatibility of the second order may be 
obtained from Eqs. (2.1): 

(3.7) 

(3.8) 
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Substituting the expressions for jumps from Eqs. (3.4), into Eqs. (3.7), we find 

(3.9) 

[~~]=-~[a:n 
where the following relations were used: 

[k,) = [elj) = 0, [S,,) = -c(I',i- }EudiJ)· 
Thus it is possible to obtain from Eqs. (3. 7) twenty four equations, respectively M;1 and L;. 
But only the following six equations are independent: 

<5E;j 'l ( «fJ avk OXt ) .i (3 'l 2 )2 2 cTo V .i 
(3.10) dt-Muc = ... LtVt+g ay~~. OYp ul}+ ... + 1-' (X k t'lltUij 

[ 
rz{J(OV; OXj avj ox')] "' a tP(S-K,) [' ] 

+p, L,v}+L}vt+g OYrz oyp + oy~~. OYp + c-r:S as s Stm Skm Sij 

2p, i>(S-K,) [ ] +- S Stj. 
TC 

Indeed, if we multiply Eq. (3.10) by v1 and subtract the result from Eq. (3.9), then we find 

g«P ~o (E1Jc+A.Vtv1 +p,(V1v1+V1 v;)) = 0. 
uy~~. 

This condition is satisfied identically since Eq. (3.3) is true. For other equations it could 
be proved in the same way. Let us obtain three additional independent equations from 
twelve equations of motion (3.8). Substituting the jump expressions from Eqs. (3.4) into 
Eqs. (3.8), we obtain 

~~.p ( ox1 ax, ) a El} ~~.p (1T ax1 ax, 
M;i'~~J'~~l+g v,-+vl- ---EIJg g b~~.a--

oyp oyp oy~~. oyp oyT 

(3.11) ( 
f5V, ) ~~.p av, ax, + L1ec-e-- v1+g ec---- = 0, 
f5t ay~~. oyp 

( f5Eu) ~~.p oE11 ox1 f5V, 
M;·c- -- v1+g c-----2ce--+ec2L1 = 0. 

J f5t oy~~. oyp f5t 

Three independent equations could be obtained after multiplying the first Eq. (3.11) by,, 

(3.12) 
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After excluding M;1 from Eqs. (3.10) by means of Eq. (3.12), one finds the following 
system of three equations, respectively: 

(3.13) 
orij ( 2 ) rt{J aEi1 ax1 ov, 
~v1+ ec -p L;+cg oy« oyp -ec-& = (.A.+p)Lkvkv1 

A rt{J avk oxk rt{J a~ OX; (3.A.+2p)2a 2 Toc 
+ g oy(l GYp v;+pg oy(l Vj GYp + K . Vlcvkvi 

p o <f>(S-Ks) • 2p <f>(S-Ks) 
+ crS S;jVj oS S Skm(Skm]+ U S (sij]Vj• 

Using the expressions (3.2) for Eii through V1 we obtain 

(3.14) -(.A.+p)Lkvkv;+(ec2-p)L; = (.A.+p)g«P ( oVk oxk v;+ oV~cvk ox1
) 

oy(l oyp ay(l oy8 

V
. «fJ aTb oxi oxi 

2 
OV; (3.A.+2p)2a2T0 c V 

-p ;g g rtT-a -a + ec--~+ K lcVIc'Vi 
YT Yp ut 

p o cP(S-Ks) [" ] 2p <f>(S-Ks) • 
+ crS SijVj oS S Skm Skm + U S (sij]Vj, 

where [Sui ~ 2p ( v1 v;- -} 61;) V. 

Multiplying Eqs. (3.14) by v; and taking into account Eqs. (2.22) and (3.3), we obtain 
for the longitudinal wave, the following equation for determining the intensity V: 

(3.15) oV = cnv (3..1.+ 2p)
2
a

2
To V fl { S;jVjVj a { <P) r· ] i> r· ] } 

Ot .:.~ 2ke - erc2 ~ as \s Skm Skm +s Sjj V;Vj . 

Comparing Eq. (3.15) with Eqs. (2.23) for the strong discontinuity, it is evident that the 
thermal attenuation for both waves is the same and the difference is connected with the 
terms characterizing the visco-plastic attenuation. The same conclusion is true for the 
Maxwell-Cattaneo case. 

Assuming c2 = pe-1 and V~cvk = 0 in Eq. (3.14) and multiplying the result by v, one 
finds, for transverse waves, the relation 

(3.16) 

After multiplying Eqs. (3.16) by v1 and subtracting the result from Eq. (3.14), we obtain 
the equation for , determining the intensity of the transverse wave 

OV; n 1 [ SrV·-Sk ·VkVjVi 0 ( i> ) • i> • ) (" ] )] (3.17) 61 = c.:.~ V,- T J J 2~ as s Skm[Skml + s ([SijVj- Skj vkvjvi . 

This equation coincides with the same one for isothermal transverse acceleration waves 

in the elasto-visco-plastic medium considered in [6]. 

10 Arch. Mech. Stos. ~r 2n1 
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