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Topographically induced Rossby waves

A. VAZIRI (NEVADA) and D. L. BOYER (WASHINGTON)

It 18 well known that submarine topographies play an important role in the deflection of such
major ocean current systems as the Antarctic Circumpolar Current (ACC). A recent analysis
of oceanographic data by Gordon and Bye (1972), for example, gives evidence of the existence
of standing wave patterns (Rossby waves) in the lee of a rumber of topographic features in the
path of the ACC. The authors have previously reported on a laboratory experiment and accom-
panying theoretical models which could be used to examine the effect of bottom topography
on rotating flows (Vaziri and Boyer 1971). These studies did not, however, include a variable
Coriolis parameter which may be important in the determination of the characteristics of ocean
currents (the Coriolis parameter is the vertical component of the earth’s rotation rate and thus
varies with latitude). In this paper we show how laboratory experiment and theory can be modi-
fied to incorporate a variable Coriolis parameter. The flow over a step topography is given
as an example; the laboratory experiments conducted are found to be in good agreement with
the theory advanced. One aspect of this flow is the existence of standing Rossby waves down-
stream of the step. These are similar in character to those observed by Gordon and Bye. A
numerical solution for the flow past a topographic feature approximating the Campbell Plateau,
which lies in the path of the ACC, is also presented.

Dobrze wiadomo, ze topografia obszarow podmorskich gra waing rolg w odchylaniu wielkich
pradow oceanicznych, takich jak np. Antarktyczny Prad Okolobiegunowy (APO). Niedawno
dokonane analizy danych oceanograficznych (Gordon i Bye, 1972) dowodza istnienia ukladow
fal stojacych (fale Rossby’ego) na wielu elementach topograficznych lezacych na drodze APO.
Autorzy donosili uprzednio o doswiadczeniu laboratoryjnym i odpowiednim modelu teore-
tycznym, ktore mogly sluzy¢ do analizy wplywu topografii dna na przeplywy rotacyjne (Vaziri
i Boyer, 1971). Badania te nie uwzglednialy jednak zmiennego parametru Coriolisa, ktory moze
okazaé sig¢ istotny w okresleniu charakterystyki pradéw oceanicznych; parametr Coriolisa
okresla pionowa skladowa predkosci obrotowej ziemi i dzigki temu zmienia si¢ z szerokoscia
geograficzna. W niniejszej pracy pokazano w jaki sposdb mozna zmodyfikowa¢ wspomniane
doswiadczenia i teori¢, uwzgledniajac wplyw zmiennego parametru Coriolisa. Jako przykiad
omoéwiono przeplyw nad uskokiem topograficznym. Stwierdzono dobra zgodno$¢ wynikow
doéwiadczenia z zaproponowana teorig. Cecha takiego przeplywu jest pojawianie sig
fal stojacych Rossby’ego w obszarze za uskokiem. Ich charakter jest podobny do charakteru
fal zaobserwowanych przez Gordona i Bye'a. Przedstawiono rozwiazanie numeryczne dla
przeplywu nad elementem topograficznym modelujacym w sposob przyblizony Plateau Campbella
lezace na. drodze APO.

Xopowo H3BECTHO, UTO TomorpadusA MOAMOPCKHX o0sacTell HIpaeT Ba)KHYIO pPOJib B OTKJIOHE-
HHAX BEJIMKHMX OKeaHWYECKMX TeUeHMI, TAKMX KaK Harmpumep AHraprrudeckoe Oxomonomoc-
Hoe Teuenne. HenasHo npoBeieHHBIe aHaIN3bI oKeaHorpadmuecknx fanHbIX (Topmon 1 Bait,
1972) mokasbiBaIOT CYLUECTBOBAHHE CHCTEM CTOAUYMX BONH (BomHbl PoccOH) Ha MHOIMX TO-
norpadHUecKHX 3jieMeHTax, nexkammx Ha nyty AOT. Astops! coofuiamy passite o naGopa-
TOPHOM 3KCIIEPHMMEHTE M COOTBETCTBYIOIIE TEOPETHUECKON MOJIENH, KOTOPbIe MOIJIH MOCITy-
JKHTh JUIA aHAIH3a BAMAHUA TororpadMu IHA HAa pOTaljHOHHbIEe TeueHus (Basupy u Boep,
1971). DTH MccnemoBaHMs He YUMTBHIBAJIM OJHAKO nepemeHHoro napamerpa Kopmommca, o-
TOPBI MOJKET OKAa3aThCHA CYILECTBEHHBIM B ONpEIe/ieHHH XapaKTEPHCTHKM OKeaHMYECKHX
TeueHuii; napamerp Kopuomica onpefensaer BepTHKAIBHYIO COCTAB/AIONIYIO CKOPOCTH Bpalie-
HHA 3emnn 1 Grarofgaps ToMy uameHAeTcs ¢ reorpadudeckoil nmporoii. B macrosueit paGore
NOKAa3kIBaeM KakuM obpasoM MOXKHO MoaMbHIMpOBaTh YIIOMAHYTHIE SKCIIEPHMEHT M TEOPHIO,
VYHTBbIBas BIHSHHE IepemeHHoro napamerpa Kopmonmca. Kak npumep obcy)kpaem TedeHue
Haja Tonorpadmuyeckum ycrymom. KoHCTaTHpOBaHO XOpollleeé COBMNAJICHHE PE3Y/BTATOB IKCIIe-
PHMEHTA C NpeIoyKeHHOM TeopHei. XapakTepHO# YepToii TAKOTO TEUCHHA ABJIACTCH HOABIICHHE
croauux BonH PoccOn B obnacti 3a ycrynom. Mx xapaktep aHanorudeH xXapaKTepy BOJIH Ha-
6monaemeix Copionom 1 Baii. IIpeacTaBneHo YAC/HEHHOE PeLlieHKe UIS TEUEHHsT Ha/f TOnorpa-
(bHYECKHM 37TeMEHTOM, MOZIE/IMPYIOLIHM ITpHOMDKeHHEIM o6pasom [Tnato KamnGenna nesxaiee
Ha nyte AOT.
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1. Introduction

IN THE PAPER published by one of us (Boyer, 1971a) was decribed a labor-
atory facility which has been utilized to examine the effects of bottom topography on
rotating flows (e.g. Boyer, 1971b and Vaziri and Boyer, 1971). Theoretical and numerical
results for a number of topographic features (long ridges and cones) were reviewed and
these were shown to be in good agreement with laboratory experiments.
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Fig. 1. The physical system.

The physical system considered above is the same as that given in Fig. 1, except that
the bounding planes in the vertical were horizontal (i.e., see end view). A homogeneous
incompressible fluid is confined between two horizontal plane surfaces. Identical topog-
raphic features are mounted symmetrically on the bounding planes and the entire system
rotates uniformly about a vertical axis. Relative to a rotating observer the flow for upstream
of the topographic features is uniform and rectilinear.

Using the following parametric restrictions, an equation for the lowest order motion
can be derived (for more details see VAzIRI and BoYer, 1971):

(@) E=v20Ll% €1,

(b) Ro = U2wL = kE'* where k is of order unity,

(¢) H/L is of order unity,

(d) A(x, y)/L = ho(x, y) E'* where hy(x, y) is of order unity,

(€) hox and hyy are of order unity.
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In the above E is the Ekman number, » the kinematic viscosity,  the rotation rate,
L the horizontal dimension of the topographic feature, Ro the Rossby number, U the
free stream speed, H half the separation distance of the planes, i(x, y) the height function
of the topographic feature.

Under the above, the lowest order flow consists of Ekman layers along the bounding
surfaces and an interior geostrophic flow. The horizontal motion in the geostrophic region
is given by

D¢,

(1.1) Dt = ;‘%—Co—ao'(w,ho),

where { = V?yp is the vertical component of vorticity relative to a rotating observer, v
is the stream function defined by U, = —w,, ¥V = ., (Up, V,) are the lowest order
velocity components in the (x, y) directions, and @ = L/kH. Relation (1.1) is a transport
equation for the relative vorticity {,. The first term on the right hand side is the dissipation
caused by Ekman suction, while the second is the contribution of the topographic fea-
tures.

One of motivating factors in considering the above physical system is its possible
relation to geophysical phenomena, in particular the deflection of ocean currents by
submarine topographies. In this regard the lower half (i.e. z < 0) of the system sketched
in Fig. 1 can be shown to represent the flow over a submerged topography above which
there is a horizontal free surface on which there are no shearing stresses. In the following
we restrict to z < 0 and take positive x to be “east” and “Y” to be north (since the rotation
is vertically upward, this is a “Northern Hemisphere” model).

Two factors, not incorporated in (1.1), which may play substantial roles in altering
the vertical component of relative vorticity are the wind shear stress and the so-called
p-effect. The fact that wind shear may be important is obvious since horizontal gradients
in the shear stress will tend to “spin-up” or “spin-down” the moving fluid columns. The
inclusion of a wind shear would add a term of the form y curl, 7 to the right hand side
of (1.1) where y is a positive constant, and 7 is a dimensionless shear stress. It is not clear
how this term could be modeled in the laboratory and thus it is not considered further
in this discussion.

If a fluid column is advected across lines of constant latitude it experiences a change
in the local value of the vertical component of the earth’s rotation rate, and thus an attend-
ant change in its relative vorticity. A column moving to the north in either hemisphere
thus tends to have its relative vorticity reduced in this regard (note that the vertical com-
ponent of the earth’s rotation is negative in the Southern Hemisphere). This phenomena
is commonly called the f-effect, § being the coefficient of the first term of a Taylor series
expansion of the vertical component of the earth’s rotation about a given location on the
earth’s surface; i.e.

f=f0+ﬂy+ il

where f = 2Q2sing, is twice the vertical component of the earth’s rotation, f, = 22sin¢,
is the value of fat the origin of the local coordinate system in question, and f = 2Q2cos¢,
(¢ is the latitude).
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The rate of change of vertical vorticity for a fluid column crossing lines of constant
latitude is proportional to the velocity component in the direction, i.e. —cx, where c is
a positive constant. Referring to (1.1), one notes that such a contribution can be included
in the laboratory model by merely tilting the plane surfaces with respect to the y-axis
as indicated in the end view of Fig. 1 (i.e., the spacing between the planes being smaller
toward the north or increasing Y). Thus introduce a new A, function defined by

ho = Soy+hg(x, y)

where s, = sE~1/2, s is the slope of the plane surfaces and #g(x, y) is the height function
for the topographic feature to be considered. Thus (1.1) becomes

(1.2) ‘%‘i" = |/ai Lo—Soayx—al(y, hg).

Let us now consider as an example the flow over a long step topographic feature.

2. Flow over a step

If one considers a topographic feature of constant cross-section and of infinite length
and assumes a steady state solution, relation (1.2) simplifies to a linear ordinary differential
equation with constant coefficients. Let us consider the flow over a step-topography orien-
ted along the y-axis for example. The analytical solution along with some experimental
results for this problem for the case in which the f-term is identically zero (i.e. s = 0)
was given in BOYER (1971b). Figure 2 is an example of the flow over a step for the case
in which s = 0. It is presented here for comparison with the flow in which s # 0, as
below.

The solution for s # 0 is obtained in the same manner as that for s = 0 (see GUALA,
1971, for example). The geostrophic solution is obtained by solving (1.1) in three regions:
upstream, downstream, and above the step. Since the flow is assumed independent of y,
the stream function in each of these regions can be written as

(2.1 p=—y+f(x),
where f(x) is to be determined in each region. Substituting (2.1) into (1.2) and integrating
once, one obtains

2.2) fo

V2
where A is a constant (different in each region).

Vertical shear layers located at the edges of the step separate these geostrophic regions.
The analysis of these layers is identical to that given in BOYER (1971b); i.e. one determines
that there is a balance between inertial and Coriolis effects. The analysis provides the
boundary conditions for the determination of f(x) in the three regions, i.e.

S = A=),
L(=12) = (1), leading edge;
fxx(—lfz)h —f”(—l,-’z)+ = hoa,

fetaf =4,
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rCL) =10,

L) =G trailing edge;

Jfes(U )™ =fex( )t = hoa,
where /, is the step height and the — and + signs represent regions to the left and right,
respectively, of the shear layer in question.

FiG, 2. Experimental and theoretical (dashed line) streamline patterns for flow over a step topography
without f-effect. E= 1781073, Ro = 5.05x10-2, H/L = 0.75, h/L = 0.033 and s = 0. The flow is
from left to right and the rotation is counterclockwise.

For upstream we require the flow to be a uniform rectilinear free stream; i.e.

J(x = —o0) = 0.
Downstream the lateral velocity component vanishes; i.e.
Silx = 00) = 0.

The solution of (2.2) subject to the above boundary conditions is straightforward, is
given in GUALA (1971), and is thus not reproduced here. Relation (2.2) is the classic damped
harmonic oscillator equation and one thus obtains “damped”, “critically damped” and

http://rcin.org.pl
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“overdamped” streamline patterns. The parameter range which can be investigated in
the laboratory restricts to the “damped” regime. One parameter of interest is the wavelength
A of the oscillation which is determined as

2 4y2n
V 8as, —a?* '

FiG. 3. Experimental and theoretical (dashed line) streamline patterns for flow over a step topography.
E=6.5%x10"% Ro=236x10"2, HIL =0.69, h/L = 6.25x10"2 and s = 2.43x1072. The flow is
from left to right and the rotation is counterclockwise.

Figure 3 is an experimental run for the flow over a step topography. The parameters
for the flow are given in Table 1.

Table 1
L = 2.54 cm, E=65%10"%
H=1.76 gm, Ro = 2361072,
h=1.67x10"* cm, h/L = 6.57x 1072,
v = 8.4x10"2 cm?/sec, HJL = 0.69,
@ = 1.0 rad/sec, 5s=243x10"2,

U=1.2x10"* cm/sec,

The experimental streamlines are made visible by introducing a neutrally buoyant
tracer from a series of hypodermic needles upstream of the step and in the mid-plane of
the water tunnel (for more details see BoyER 1971b). The flow in the central portion
of the tunnel (i.e. away from the lateral walls) is approximately independent of the lateral

http://rcin.org.pl
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coordinate (¥) and thus to a good approximation represents flow over an infinite step.
The dashed line is the analytical solution of (2.2) for the parameters in Table 1 and subject
to the boundary conditions above.

The most striking differences between the non-f flow (Fig. 2) and the flow with §-
effects (Fig. 3) are the Rossby wave patterns in the latter and the displacement of the
streamlines to the right of the upstream positions in the former.

It should also be noted that theoretical considerations as above for an easterly flow
(i.e. the one toward negative x) leads to an unstable flow with f(x) growing without limit
downstream of the topography. Experiments were conducted for such a situation. The
experimental flow patterns were qualitatively similar to those shown in Fig. 2 in which
the p-effect was not included. Since the side walls of the channel do not allow unbounded
motions to occur, it is not surprising that unstable downstream flows are not obtained.

The above theoretical results are qualitatively similar to those obtained by PORTER
and RATTRAY (1964). The above formulation, however, is of a considerably simpler form
than that of Porter and Rattray.

3. On the existence of standing Rossby waves in the Antarctic Circumpolar Current

No direct ocean current measurements (i.e., with current meters) are available which
indicate the existence of Rossby wave patterns downstream of topographic features on
the ocean floor. A recent analysis by GORDON and BYE (1972), however, does provide some
evidence of the existence of such waves in the Antarctic Circumpolar Current.

Figure 4 is a plot from their paper of the anomaly of the sea surface dynamic height
relative to the 2500-db isobaric surface (reproduced here with permission of the authors).
The dynamic topography is obtained from direct measurements of the temperature and
salinity. From the given temperature and salinity distributions one calculates the attend-
ant density field. Then assuming that a particular horizontal surface is an isobaric one
(i.e. 2500 meters in the Gordon-Bye calculation), the pressure field relative to that isobaric
surface can be calculated. Figure 4 is a plot of the dynamic topography so-obtained at
the sea su{face, with the numbers given in terms of dynamic meters (see SVERDRUP, JOHNSON
and FLEMING 1942).

Assuming that frictional effects are negligible and that there is a balance between
pressure and Coriolis forces, these lines of equal dynamic height are parallel to streamlines
with the direction of the flow being such that the higher dynamic topography is to the
left of the velocity in the Southern Hemisphere; i.e. eastward flow in Fig. 4.

The above considerations provide an estimate of the flow field relative to that occur-
ring at the 2500 meter level. To obtain the absolute surface velocity one would then have
to add the flow field occurring at 2500 meters. Since no direct measurements of the flow
at that depth (or any other) are available one can but suggest that the surface flow and
that at 2500 meters are qualitatively similar (e.g. any Rossby waves in the implicit cal-
culation would also occur in the flow at 2500 meters).

One must also emphasize that calculations such as those made to obtain Fig. 4 generally
utilize data obtained over periods of many years and thus at most flow patterns so deduced
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FIG. 4. Sea surface dynamic height anomaly relative to the 2500-db level. The depths less than 3000
isobars are given in dynamic meters.
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must be considered as due to “average conditions.” While implicit calculations are thus
not entirely satisfactory, such measurements are the only ones presently available for
providing a measure of the synoptic state of the oceans. They must thus be used, but
with caution.

Returning to Fig. 4 one notes two regions in which a damped Rossby wave-like pattern
occurs. The first is to the east (i.e. downstream) of the Campbell Plateau (170° W) and
the other to the east of the USARP Fracture Zone (near 120° W).

In very general terms the topography near the USARP Fracture Zone may be approxi-
mated by a long ridge of constant cross-section such as the step considered above. One
should note that the step flow in Fig. 3 is for positive upward or Northern Hemisphere
rotation. In order to obtain the Southern Hemisphere equivalent, one transforms y —» —y
in the photograph. Our comparison here is meant to point out the qualitative similarities
of the laboratory and oceanographic flows and, in particular, the damped Ressby wave
pattern downstream of the topographic featurce.
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FiG. 5. Numerical solution for flow past a topographic feature approximating the Campbell Plateau. The
flow is from left to right and the rotation is counterclockwise (i.e., southern hemisphere). E = 3.6 x 1073,
Ro = 3x1072 and s = 0.135. The spacing of ko and v contour lines are 0.1 and 1000 m. respectively.

On the other hand, it is possible to model some of the three-dimensional features of
a topography such as the Campbell Plateau. In this case the governing equation for the
(1.2) is nonlinear and numerical, finite difference solution, using techniques very similar
to those described in VAzIRI and BOYER (1971), may be obtained. Figure 5 is a preliminary
numerical experiment for the flow past a topographic feature approximating the Campbell
Plateau. Again one notes qualitative similarity of the flows in the lee of the topographic
feature and those calculated by Gordon and Bye (Fig. 4). More work on the numerical
modeling of these topographies is in progress.

In summary, these results suggest that simple laboratory and finite difference numerical
models can be used to demonstrate some of the large scale features of the ocean current
systems.
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