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Topographically induced Rossby waves 

A. V AZIRI (NEVADA) and D. L. BOY ER (WASHINGTON) 

IT IS well known that submarine topographies play an important role in the deflection of such 
major ocean current systems as the Antarctic Circumpolar Current (ACC). A recent analysis 
of oceanographic data by Gordon and Bye (l972}, for example, gives evidence of the existence 
of standing wave patterns (Rossby waves) in the lee of a number of topographic features in the 
path of the A CC. The authors have previously reported on a laboratory experiment and accom­
panying theoretical models which could be used to examine the effect of bottom topography 
on rotating flows (Vaziri and Boyer 1971). These studies· did not, however, include a variable 
Coriolis parameter which may be important in the determination of the characteristics of ocean 
currents (the Coriolis parameter is the vertical component of the earth's rotation rate and thus 
varies with latitude). ~n this paper we show how laboratory experiment and theory can be modi­
fied to incorporate a variable Coriolis parameter. The flow over a step topography is given 
as an example; the laboratory experiments conducted are found to be in good agreement with 
the theory advanced. One aspect of this flow is the existence of standing Rossby waves down­
stream of the step. These are similar in character to those observed by Gordon and Bye. A 
numerical solution for the flow past a topographic feature approximating the Campbell Plateau, 
which lies in the path of the ACC, is also presented. 

Dobrze wiadomo, ze topografia obszar6w podmorskich gra wai:nll rol~ w odchylaniu wielkich 
prqd6w oceanicznych, takich jak np. Antarktyczny Prqd Okolobiegunowy (APO). Niedawno 
dokonane analizy danych oceanograficzriych (Gordon i Bye, 1972) dowodlll istnienia uklad6w 
fa! stoj(lcych (fale Rossby'ego) na wielu elementach topograficznych le:Zllcych na drodze APO. 
Autorzy donosili uprzednio o doswiadczeniu laboratoryjnym i odpowiednim modelu teore­
tycznym, kt6re mogly slu:lyc do analizy wplywu topografii dna na przeplywy rotacyjne (Vaziri 
i Boyer, 1971). Badania te nie uwzgl~dnialy jednak zmiennego parametru Coriolisa, kt6ry moi:e 
okazac si~ istotny w okresleniu charakterystyki prlld6w oceanicznych; parametr Coriolisa 
okresla pionowll skladowll pr~dkosci obrotowej ziemi i dzi~ki temu zmienia si~ z szerokoscill 
geograficznq. W niniejszej pracy pokazano w jaki spos6b moi:na zmodyfikowac wspomniane 
doswiadczenia i teori~, uwzgl~dniajllc wplyw zmiennego parametru Coriolisa. Jako przyklad 
om6wiono przeplyw nad uskokiem topograficznym. Stwierdzono dobrll zgodnosc wynik6w 
doswiadczenia z zaproponowan(l teorill. Cechll takiego przeplywu jest pojawianie si~ 
fal stojllcych Rossby'ego w obszarze za uskokiem. lch charakter jest podobny do charakteru 
fal zaobserwowanych przez Gordona i Bye'a. Przedstawiono rozwillzanie numeryczne dla 
przeplywu nadelementem topograficznym modeluj(lcym w spos6b przyblizony Plateau Campbella 
le:Zllce na. drodze APO. 

Xopowo H3BeCTHO, qTo TOITOrpa<i>HH ITOJJ;MOpCKHX o6JiaCTeH HrpaeT BaH<HYIO pOJib B OTKJIOHC­
HHHX BeJIHKHX OKeaHHqecKHX TeqeHHH, TaKHX KaK HaiTpHMep AHTapKTH'tleCKOe 0KOJIOITOJIIOC­
HOe TeqeHHe. Hep;aaHo npoaep;eHHhie aHaJIH3hi oKeaHorpa<l>HqecKHX JJ;aHHhiX (rop;:J;OH H Ea:H, 
1972) ,IJ;OKa3hiBaiOT cy~eCTBOBaHHe CHCTCM CTOHqHX BOJIH (BOJIHbl Pocc6H) Ha MHOI'HX TO­
norpa<i>HqecKHX :meMeHTax, Jie>Ka~HX Ha nyTH AOT. AaTOpbi coo6~aJIH paHbiiie o na6opa­
TOpHoM 3KCnepHMeHTe H COOTBeTCTByiO~eH TeopeTHqCCKOH MO)J;eJIH, KOTOpbie MOrJIH ITOCJIY­
>KHTb JJ;JIH aHaJIH3a BJIHHHHH Tonorpa<l>HH JJ;Ha Ha poTai.{HOHHbie TeqeHHH (BaaHp~ H Eoep, 
1971). 3TH HCCJiep;oaaHHH He yt.IHThiBaJIH o;:J;HaKo nepeMeHHoro napaMeTpa KopHoJIHca, Ko­
TOphlli MO>KeT OKa3aTbCH C~eCTBeHHbiM B onpep;eJieHHH xapaKTepHCTHKH OKeaHHtiCCKHX 
TeqeHH:H; napaMeTp KopHoJIHca onpep;eJIHeT aepTHI<aJibHYIO cocraaJIHIO~ CKOpOCTH apa~e­
HHH 3eMJIH H 6Jiarop;apH TOMY H3MeHHeTcH c reorpa<PHqecKo:H IIIHpOTo:H. B HaCToH~e:H pa6oTc; 
ITOKa3biBaeM KaKHM o6pa30M MO>KHO MOJJ;H<i>HI.UlpOBaTb ynOMHsyTbie 3KcnepHMCHT H TCOpHIO, 
Yt:J:HThiBaH BJIHHHHe nepeMeHHoro napaMeTpa KopHOJIHca. KaK npHMep o6cy>KJJ;aeM TeqeHHe 
Hap; Tonorpa<t>HtieCI<Kl\1 ycrynoM. KoHCTaTHpoaaHo xopoiiiee coBnap;eHHe peayJibTaTOB 3Kcne­
pHMeHTa c npep;Jio>KeHHo:H TeopHe:H. XapaKTepHo:H qepTO:H TaKoro Teqemrn: HBJIHeTCH noHaJieHHe 
crowrnx BOJIH Pocc6H B o6JiaCTH aa ycrynoM. Hx xapaKTep aHaJiorHtieH xapaKTepy BOJIH Ha-
6JIIO~aeMbiX rop;:J;OHOM H Ea:H. Tipep;CTaBJICHO 'tiHCJieHHoe peiiieHHe JJ;JIH TetleHIDI Ha;:J; TOnorpa­
<l>HqecKHM 3JieMeHToM, Mop;eJiupyro~HM npH6JIH>KeHHhiM o6paaoM TIJiaTo K3Mn6eJIJia Jie>K~ee 
Ha nyTH AOT. 

http://rcin.org.pl



4 A. VAZIRI AND D. L. BoYER 

1. Introduction 

IN THE PAPER published by one of us (Boyer, 1971a) was decribed a labor­
atory facility which has been utilized to examine the effects of bottom topography on 
rotating flows (e.g. Boyer, 197Ib and Vaziri and Boyer, 1971). Theoretical and numerical 
results for a number of topographic features (long ridges and cones) were reviewed and 
these were shown to be in good agreement with laboratory experiments. 
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FIG. 1. The physical system. 

The physical system considered above is the same as that given in Fig. 1, except that 
the bounding planes in the vertical were horizontal (i.e., see end view). A homogeneous 
incompressible fluid is confined between two horizontal plane surfaces. Identical topog­
raphic features are mounted symmetrically on the bounding planes and the entire system 
rotates uniformly about a vertical axis. Relative to a rotating observer the flow for upstream 
of the topographic features is uniform and rectilinear. 

Using the following parametric restrictions, an equation for the lowest order motion 
can be derived (for more details see VAZIRI and BoYER, 1971): 

(a) E = vf2wL2 ~ I, 
(b) Ro = U/2wL = kE112 where k is of order unity, 
(c) H/L is of order unity, 
(d) h(x, y)/L = h0 (x, y)E1

'
2 where h0 (x, y) is of order unity, 

(e) hox and h01 are of order unity. 
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TOPOGRAPHICALLY INDUCED ROSSBY WAVES 5 

In the above E is the Ekman number, v the kinematic viscosity, w the rotation rate, 
L the horizontal dimension of the topographic feature, Ro the Rossby number, U the 
free stream speed, H half the separation distance of the planes, h(x, y) the height function 
of the topographic feature. 

Under the above, the lowest order flow consists of Ekman layers along the bounding 
surfaces and an interior geostrophic flow. The horizontal motion in the geostrophic region 
is given by 

(1.1) 

where ~ = V2 tp is the vertical component of vorticity relative to a rotating observer, tp 

is the stream function defined by U0 = -tp,, V0 = 1px, (U0 , V0 ) are the lowest order 
velocity components in the (x, y) directions, and a = L/kH. Relation (I. I) is a transport 
equation for the relative vorticity ~0 • The first term on the right hand side is the dissipation 
caused by Ekman suction, while the second is the contribution of the topographic fea­
tures. 

One of motivating factors in considering the above physical system is its possible 
relation to geophysical phenomena, in particular the deflection of ocean currents by 
submarine topographies. In this regard the lower half (i.e. z ~ 0) of the system sketched 
in Fig. 1 can be shown to represent the flow over a submerged topography above which 
there is a horizontal free surface on which there are no shearing stresses. In the following 
we restrict to z ~ 0 and take .positive x to be "east" and "Y" to be north (since the rotation 
is vertically upward, this is a "Northern Hemisphere" model). 

Two factors, not incorporated in (1.1), which may play substantial roles in altering 
the vertical component of relative vorticity are the wind shear stress and the so-called 
P-effect. The fact that wind shear may be important is obvious since horizontal gradients 
in the shear stress will tend to "spin-up" or "spin-down" the moving fluid columns. The 
inclusion of a wind shear would add a term of the form y curlz 7: to the right hand side 
of (1.1) where y is a positive constant, and 7: is a dimensionless shear stress. It is not clear 
how this term could be modeled in the laboratory and thus it is not considered further 
in this discussion. 

If a fluid column is advected across lines of constant latitude it experiences a change 
in the local value of the vertical component of the earth's rotation rate, and thus an attend­
ant change in its relative vorticity. A column moving to the north in either hemisphere 
thus tends to have its relative vorticity reduced in this regard (note that the vertical com­
ponent of the earth's rotation is negative in the Southern Hemisphere). This phenomena 
is commonly called the P-effect, p being the coefficient of the first term of a Taylor series 
expansion of the vertical component of the earth's rotation about a given location on the 
earth's surface; i.e. 

f=fo+/Jy+ ... , 

where f = 2Qsin4J0 is twice the vertical component of the earth's rotation, / 0 = 2Qsin4J0 

is the value off at the origin of the local coordinate system in question, and P = 2Qcos4J0 

( 4> is the latitude). 
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6 A. VAZIRI AND D. L. BOYER 

The rate of change of vertical vorticity for a fluid column crossing lines of constant 
latitude is proportional to the velocity component in the direction, i.e. -ex, where c is 
a positive constant. Referring to (I. I), one notes that such a contribution can be included 
in the laboratory model by merely tilting the plane surfaces with respect to the y-axis 
as indicated in the end view of Fig. I (i.e., the spacing between the planes being smaller 
toward the north or increasing Y). Thus introduce a new h0 function defined by 

ho = soy+h~(x, y) 

where s0 = sE- 112 , s is the slope of the plane surfaces and h~(x, y) is the height function 
for the topographic feature to be considered. Thus (1.1) becomes 

(1.2) D~ a * Dt = J/ f Co-s0 a'lfJx-al('lfJ, h0 ) . 

Let us now consider as an example the flow over a long step topographic feature. 

2. Flow over a step 

If one considers a topographic feature of constant cross-section and of infinite length 
and assumes a steady state solution, relation (1.2) simplifies to a linear ordinary differential 
equation with constant coefficients. Let us consider the flow over a step-topography orien­
ted along they-axis for example. The analytical solution along with some experimental 
results for this problem for the case in which the {3-term is identically zero (i.e. s = 0) 
was given in BOYER (197lb). Figure 2 is an example of the flow over a step for the case 
in which s = 0. It is presented here for comparison with the flow in which s =I= 0, as 
below. 

The solution for s =1= 0 is obtained in the same manner as that for s = 0 (see GuALA, 

1971, for example). The geostrophic solution is obtained by solving (1.1) in three regions: 
upstream, downstream, and above the step. Since the flow is assumed independent of y, 
the stream function in each of these regions can be written as 

(2.1) 'lfJ = -y+f(x), 

where f(x) is to be determined in each region. Substituting (2.1) into (1.2) and integrating 
once, one obtains 

a 
fxx+----;=- fx+af =A, 

Jl2 
(2.2) 

where A is a constant (different in each region). 
Vertical shear layers located at the edges of the step separate these geostrophic regions. 

The analysis of these layers is identical to that given in BoYER (1971b); i.e. one determines 
that there is a balance between inertial and Coriolis effects. The analysis provides the 
boundary conditions for the determination of f(x) in the three regions, i.e. 

f( - 1 I 2)- = f( - 1 I 2)+, 

fx( - 1 l2)- = fx( - 1 12)+, 

fxx(- 1 /2)--fxxC- 112)+ = hoa, 
} leading edge; 
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1e12)- =tel2)+, 
!xe I 2)- = !xe l2)+, 
!xxe I 2)- -fxxC1 I 2)+ = ho a, 

} trailing edge; 

7 

where h0 is the step height and the - and + signs represent regions to the left and right, 
respectively, of the shear layer in question. 

FIG. 2. Experimental and theoretical (dashed line) streamline patterns for flow over a step topography 
without {3-etfect. E = 1.78 x 10- 3

, Ro = 5.05x 10- 2
, H/L = 0.75, h/L = 0.033 and s = 0. The flow is 

from left to right and the rotation is counterclockwise. 

For upstream we require the flow to be a uniform rectilinear free stream; i.e. 

f(x- -CXJ) = 0. 

Downstream the lateral v~locity component vanishes; i.e. 

fx(x- oo) = 0. 

The solution of (2.2) subject to the above boundary conditions is straightforward, is 
given in GUALA (1971), and is thus not reproduced here. Relation (2.2) is the classic damped 
harmonic oscillator equation and one thus obtains "damped", "critically damped" and 

http://rcin.org.pl



8 A. VAZIRI AND D. L. BOYER 

"overdamped" streamline patterns. The parameter range which can be investigated in 
the laboratory restricts to the "damped" regime. One parameter of interest is the wavelength 
A of the oscillation which is determined as 

----- ---------- ·-·- ·-·-·-·- ·-·r·- ·-·- ·-·-·-·-·-·-
~~h ~ u~ 

--------------~ L~,~----------------~--------------------------

FIG. 3. Experimental and theoretical (dashed line) streamline patterns for flow over a step topography. 
E = 6.5 x 10-4, Ro = 2.36 x 10- 2 , H/L = 0.69, h/L = 6.25 x 10- 2 and s = 2.43 x to- 2

• The flow is 
from left to right and the rotation is counterclockwise. 

Figure 3. is an experimental run for the flow over a step topography. The parameters 
for the flow are given in Table 1. 

Table 1 

L = 2.54 cm, 
H = 1.76 gm, 
h = 1.67x 10- 1 cm, 
v= 8.4xl0- 3 cm2 /sec, 

m = 1.0 rad/sec, 
U = 1.2 x 10- 1 cm/sec, 

E = 6.5 X 10- 4
, 

Ro = 2.36 x 10- 2
, 

h/L = 6.57x 10- 2
, 

H/L = 0.69, 
s = 2.43xto- 2

• 

The experimental streamlines are made visible by introducing a neutrally buoyant 
tracer from a series of hypodermic needles upstream of the step and in the mid-plane of 
the water tunnel (for more details see BoYER 197lb). The flow in the central portion 
of the tunnel (i.e. away from the lateral walls) is approximately independent of the lateral 
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coordinate (y) and thus to a good approximation represents flow over an infinite step. 
The dashed line is the analytical solution of (2.2) for the parameters in Table 1 and subject 
to the boundary conditions above. 

The most striking differences between the non-/3 flow (Fig. 2) and the flow with /3-
effects (Fig. 3) are the Rossby wave patterns in the latter and the displacement of the 
streamlines to the right of the upstream positions in the former. 

It should also be noted that theoretical considerations as above for an easterly flow 
(i.e. the one toward negative x) leads to an unstable flow withf(x) growing without limit 
downstream of the topography. Experiments were conducted for such a situation. The 
experimental flow patterns were qualitatively similar to those shown in Fig. 2 in which 
the {3-effect was not included. Since the side walls of the channel do not allow unbounded 
motions to occur, it is not surprising that unstable downstream flows are not obtained. 

The above theoretical results are qualitatively similar to those obtained by PoRTER 
and RATTRAY (1964). The above formulation, however, is of a considerably simpler form 
than that of Porter and Rattray. 

3. On the existence of standing Rossby waves in the Antarctic Circumpolar Current 

No direct ocean current measurements (i.e., with current meters) are available which 
indicate the existence of Rossby wave patterns downstream of topographic features on 
the ocean floor. A recent analysis by GoRDON and BYE (1972), however, does provide some 
evidence of the existence of such waves in the Antarctic Circumpolar Current. 

Figure 4 is a plot from their paper of the anomaly of the sea surface dynamic height 
:.:eiative to the 2500-db isobaric surface (reproduced here with permission of the authors). 
The dynamic topography is obtained from direct measurements of the temperature and 
salinity. From the given temperature and salinity distributions one calculates the attend­
ant density field. Then assuming that a particular horizontal surface is an isobaric one 
(i.e. 2500 meters in the Gordon-Bye calculation), the pressure field relative to that isobaric 
surface can be calculated. Figure 4 is a plot of the dynamic topography so-obtained at 
the sea surface, with the numbers given in terms of dynamic meters (see SVERDRUP, J6HNSON 
and FLEM~NG 1942). 

Assuming that frictional effects are negligible and that there is a balance between 
pressure and Coriolis forces, these lines of equal dynamic height are parallel to streamlines 
with the direction of the flow being such that the higher dynamic topography is to the 
left of the velocity in the Southern Hemisphere; i.e. eastward flow in Fig. 4. 

The above considerations provide an estimate of the flow field relative to that occur­
ring at the 2500 meter level. To obtain the absolute surface velocity one would then have 
to add the flow field occurring at 2500 meters. Since no direct measurements of the flow 
at that depth (or any other) are available one can but suggest that the surface flow and 
that at 2500 meters are qualitatively similar (e.g .. any Rossby waves in the implicit cal­
culation would also occur in the flow at 2500 meters). 

One must also emphasize that calculations such as those made to obtain Fig. 4 generally 
utilize data obtained over periods of many years and thus at most flow patterns so deduced 
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FIG. 4. Sea surface dynamic height anomaly relative to the 2500-db level. The depths less than 3000 meters are shaded. Dynamic-height 
isobars are given in dynamic meters. 
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must be considered as due to "average conditions." While implicit calculations are thus 
not entirely satisfactory, such measurements are the only ones presently available for 
providing a measure of the synoptic state of the oceans. They must thus be used, but 
with caution. 

Returning to Fig. 4 one notes two regions in which a da~ped Rossby wave-like pattern 
occurs. The first is to the east (i.e. downstream) of the Camp bell Plateau (I 70° W) and 
the other to the east of the USARP Fracture Zone (near 120° W). 

In very general terms the topography near the USARP Fracture Zone may be approxi­
mated by a long ridge of constant cross-section such as the step considered above. One 
should note that the step flow in Fig. 3 is for positive upward or Northern Hemisphere 
rotation. In order to obtain the Southern Hemisphere equivalent, one transforms y -+ - y 

in the photograph. Our comparison here is meant to point out the qualitative similarities 
of the laboratory and oceanographic flows and, in partict:12.r, the ci<t.mped Rossby wave 
pattern downstream of the topographic feate.:-c s. 

FIG. 5. Numerical solution for flow past a topographic feature approximating the Campbell Plateau. The 
flow is from left to right and the rotation is counterclockwise (i.e., southern hemisphere). E = 3.6 x 10-3, 
Ro = 3 x J0- 2 and s = 0.135. The spacing of h0 and tp contour lines are 0.1 and 1000 m. respectively. 

On the other hand, it is possible to model some of the three-dimensional features of 
a topography such as the Campbell Plateau. In this case the governing equation for the 
(1.2) is nonlinear and numerical, finite difference solution, using techniques very similar 
to those described in VAZIRI and BoYER (1971), may be obtained. Figure 5 is a preliminary 
numerical experiment for the flow past a topographic feature approximating the Campbell 
Plateau. Again one notes qualitative similarity of the flows in the lee of the topographic 
feature and those calculated by Gordon and Bye (Fig. 4). More work on the numerical 
mode ling of these topographies is in progress. 

In summary, these results suggest that simple laboratory and finite difference numerical 
models can be used to demonstrate some of the large scale features of the ocean current 
systems. 
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