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Two representations of sensitivity 
and error analysis of a dynamic system 

W. GA WRONSKI (GDANSK) 

A GENERAL dynamic system with a "white noise" stochastic input as well as with a variable 
system matrix is analysed. The variations have a deterministic or stochastic character. Two 
methods of solution of both problems are considered. The first one is based on the Taylor expan­
sion given by VETTER [7]; the second one is based on the Taylor expansion given by GAWRONSKI 
[3] and the new definition of a correlation matrix [3]. 

Przeanalizowano og6lny uklad dynamiczny z wejSciem stochastycznym typu «bialy szum», 
jak r6wniei: z zaburzeniami macierzy ukladu. Zaburzenia te maj~ charakter zdeterminowany 
lub stochastyczny. Rozwai:a siC( dwa sposoby roz\.vi~ia zagadnienia. Pierwszy oparty jest 
na macierzoWYm rozwinie(ciu Taylora wg VETTERA [7]; drugi bazuje na macierzowym rozwinie(­
ciu Taylora wg GA WRONSKIEGO [3] i nowej definicji macierzy korelacji [3]. 

AHaJIH3HpyeTCH o6~aH ~aMHl.leCKaH CHCTeMa CO CTOxaCTHl.leCKHM BXO~OM THIIa ,,6eJibilf 
myM ", KaK TO>I<e C B03My~eHWIMH Ma-rpHI.\bl CHCTeMbi. 3TH B03M~eHWI HMeiOT ~eTepMmm­
poBaHHhiH HJIH CTOXaCTHl.leCKHX xapaKTep. 06cym~aiOTCH ~a CIIOCOOa pememm: 38~81.1H. 
TiepBhiH onl'lpaeTcH Ha Ma-rpHl.IHoe pa3JIO>KeHHe Te:H:nopa no BETTEPY [7]; BTopo:H 6a3HPYeT 
Ha M&TpHtiHOM pa3JIO>J<eHHH Te:Hnopa no r ABPOHCKOMY [3] H Ha HOBOM onpe~eJieHHH M8TPHI.\bl 
KOppeJIHIUIH (3]. 

1. Introduction 

THE PAPER presents the analysis of a dynamic system described by the equation: 

(1.1) x(t) = A(t)x(t)+B(t)u(t), 

with the initial value x(t0 ), where x(t) is the state vector of order n and, at the same time, 
the output vector of the system, u(t) is the input vector of the system of order m, A(t) 
and B(t) are the matrices n x n and n x m, respectively. 

The output of the system x(t) is determined when the input u(t) is a white noise sto­
chastic process. On the other hand the analysis of the system with variations of the system 
matrix A(t) is provided. These variations are deterministic or random. Their influence 
on the output vector x(t) is analysed. 

All the cases are examined in two ways. One of them is based on the Taylor expansion 
given by VEITER [7]; another is based on the Taylor expansion given by GA WRONSKI [3] 
and a new definition of a correlation matrix [3]. 

2. Description of the methods 

Let F and G be matrices of dimensions p x q and 3X t, respectively; The function 

(2.1) F = F(G) 

is called a matrix function of a matrix argument if the entries of F depends on G: 

(2.2) fij = fij( G); i = 1 ' ... ' p; j = 1 ' ... ' q. 
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The first method is based on the Taylor expansion given by VETTER [7]. This expansion 
consists of a column transformation of the matrices F and G<*>: 

(2.3) f = cs(F), g = cs(G). 

In this way, from the matrices F and G we obtain the column matrices/and g of order pq 
and st, respectively. This transformation gives the first two terms of the expansion in the 
form (see [7], also the Appendix) 

(2.4) f(g) = f(go)+ J'lD(g-go), 

where 

oft o/1 oft 
ogl og2 ogll 

o/2 o/2 

(2.5) Tfg_- _! 
oif I og1 og2 

- ogT g=go - • • • • • •. • • •• • • • ••••• 

ofu ofu 
g=go 

and u = pq, v = st. If we denote the variations off and g as 

(2.6) L1f = f-f(go), L1g = g-go 

then, from Eq. (2.4) we obtain the relationship 

(2.7) L1f= Tto L1g. 

The matrix Tf9 is the sensitivity matrix of the column matrix/with respect to the column 
matrix· g, and we call it the first form sensitivity matrix. 

If we use the column form/ and g of matrices F and G, than, we can define their correla­
tion matrices as 

(2.8) 
Rj1> = E(L1f LJfT), 

R~l) = E(L1g L1gT). 

These ~orrelation matrices are called the first form correlation matrices. From the defini­
tion equations (2.8) and the relationship equation (2.4) we arrive at the following relation­
ship between the correlation matrices R~1 > and R~1 >: 

(2.9) 

The second method of the sensitivity and error analysis uses the Taylor expansion 
given in [3]. The first two terms of this expansion of a matrix function F(G) are as follows 
(see the Appendix): 

(2.10) 

<*) A description of the symbols, definitions and basic relationships can be found in the Appendix. 
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i = 1, ... , p; j = 1, ... , q; where G0 is a fixed value of G, .fii is the ij-th entry ofF, and 

ofij ofij ofij_ 
ogl; og12 oglt 

ofij .!_'fji_ ofij 

(2.11) sf~ = aJiL I. 

'
1 oG G=Go 

og2~ iJg22 iJg2t 

G=Go 

If we denote 

(2.12) LJF = F-F(G0 ), L1G = G-G0 

then, from Eq. (2.10) we obtain 

(2.13) L1 F = [ S{i6 
o L1 G], i = 1 , ... , p, j = I , ... , q; 

where S{f, given by Eq. (2.11), is the sensitivity matrix of the fii entry ofF with respect 
to the matrix G, and is called the second form sensitivity matrix. 

The correlation matrices of F and G are defined as follows [3]: 

(2.14) 
R~2 > = E(L1F ® L1F) = E(L1FQ9 2

), 

R<J> = E(L1G ® LJG) = E(L1GQ9 2
). 

We call these matrices the second form correlation matrices. 
From Eqs. (2.13) and (2.14) the relationship between them is 

(2.15) 

i, k = 1 , ... , p, j = 1 , ... , q, where: 

(2.16) 5P{Jiz = S{f ® S{,a. 

Note that the second form correlation matrix: 

I. Has the same structure as its subject, i.e., correlation matrix of a scalar is a scalar, 
correlation matrix of a vector is a vector, and correlation matrix of a matrix is a matrii 
itself. 

2. Is more general than the first form correlation matrix. The latter one cannot be 
applied to matrices unless we transform matrices into vectors. 

3. Has the same definition equations for all the types. If a is a scalar, a is a vector, and 
A is a matrix, their second form correlation matrices are defined as follows: 

R< 2
> = E((a-a0 )Q9 2 ) = E((a-a0 )

2
) =a;, 

R~2> = E((a-a0 )®2
), 

R<]> = E((A- A0 )®2
), 

where a0 , a0 , A0 are mean values of a, a, and A. The above relationships show that the 
definition of the second form correlation matrices is the same for scalars, vectors and 
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matrices. In a general case, when F is a complex function of a real argument t, its correlation 
matrix is defined as follows: 

(2.17) 

where F is .the .complex conjugate, matrix of F, and F0 is the mean value of F. 
The correlation coefficients of the entries of the matrix Fare distributed in the first 

and in the second form correlation matrices as follows. In the first form correlation matrix 
R}1> the correlation coefficient of fii and.fk1 entries ofF lies in the u-th row and v-th column 
of Rji>, where 

u = U-l)p+i, V= (1-l)p+k, 

and the variance a}ii of the fii entry is in the u-th position in the main diagonal of R}1>. 
In the second form correlation matrix R~2> the correlation coefficient of fii and .fk1 

lies in the ij-th block of R~2> in the k/-th position in it. The variance of fii lies in the ij-th 
block of R~2> in the ij-th position in it. 

3. Analysis of the dynamic system with a white noise input 

The analysis of the system with a stochastic input, according to the two different defini­
tion of correlation matrices, is presented in two ways. One way is when the first form 
correlation matrix is applied to the solution of the problem. 

Let the input u(t) of the system described by Eq. (1.1) be a white noise stochastic 
process with a mean value 

(3.1a) u0 (t) = E(u(t)) 

and the first form correlation matrix 

(3.1b) 

where Au(t) = u(t)-u0 (t), and ~(t) is a Dirac delta distribution. The output mean value 
x0 (t) and its first form correlation matrix R~l)(t) are determined if the correlation matrix 
of the initial value is 

(3.lc) 

where Ax(t) = x(t)- x 0 (t), and the input vector and the initial value vector are not 
correlated : 

E(Ax(t0 )AuT(t)) = 0. 

The mean value x0 (t) is found from the solution of the equation 

(3.2a) x0 (t) = A(t)x0 (t)+B(t)u0 (t) 

which can be presented in the form 
t 

(3.2b) x 0 (t) = t!J(t, t0)x0 (t0) + J t!J(t, r)B( r)u0 ( r)dr, 
to 

where t!J(t 1 , t 2 ) is the state transition matrix with the following property: 

(3.3) t!J(t, t) = I. 
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The first form correlation matrix R~1 >(t) for simplicity we denote R~O(t, t) as RU>(t) 

is determined from the following matrix differential equation [I, 6]: 

(3.4) R~1 >(t) = A(t)R~O(t) + R~O(t)AT(t) + B(t)Q(t)BT(t) 

with the initial condition R~0(t0) = 'P. 
Now we solve this problem using the second form correlation matrices. The mean 

value of the input is given by Eq. (3.Ia). The second form correlation matrix of the input 
vector u(t) is in fact a vector itself, in the form 

(3.5a) 

The initial value correlation matrix is 

(3.5b) 

and the input vector and the initial value vector are not correlated: 

~3.5c) E(L1x(t0 ) ® LJu(t)) = 0. 

We obtain the mean value of x(t) from Eqs. (3.2a) and (3.2b); subtracting Eq. (3.2a) 
from Eq. (1.1) we obtain the equation for variation of x with respect to x 0 in the form 

(3.6) L1x(t) = A(t)L1x(t) + B(t)L1u(t). 

The direct right multiplication of Eq. (3.6) by L1x(t) gives 

L1x(t) ® LJx(t) = A(t)L1x(t) ® L1x(t)+B(t)L1u(t) ® L1x(t), 

and from the direct left multiplication of Eq. (3.6) by L1x(t) we acquire 

Llx(t) ® L1x(t) = L1x(t) ® A(t)L1x(t)+L1x(t) ® B(t)L1u(t). 

From the property of the direct product (see the Appendix, eq. (AI)) we transform the 
latter equations into the form 

L1x(t) ® Llx(t) = (A(t) ®I) (L1x(t) ® LJx(t) )+ (B(t) ®I) (L1u(t) ® L1x(t) ), 
~ n 

L1x(t) ® Llx(t) = (I® A(t)) (Llx(t) ® Llx(t) )+(I® B(t)) (L1x(t) ® L1u(t) ). 
n n 

The mean value operation, after adding these two equations and taking into account 
(A2), gives 

(3.7) R~2>(t) = (A(t) ®I+ I® A(t) )R~2>(t) + (B(t) ® l)E(L1u(t) ® L1x(t) )+ 
n n n 

+(I® B(t) )E(Llx(t) ® L1u(t) ). 
n 

The solution of Eq. (3.6) gives 
t 

L1x(t) = C/J(t, t0 )L1x(t0 )+ J C/J(t, -r)B(-r)Llu(-r)d-r, 
to 

and from (AI) we obtain 

E(L1x(t) ® L1u(t)) = (C/J(t, t0 ) ® I)E(L1x(t) ® L1u(t)) 
m 

t 

+ J (C/J(t, r)!J(r) ®]!)E(LJil(r) ® Au(t))d-r, 
to 
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'58 W. GAWRONSKI 

but the relationships (3.5a) and (3.5c) give 
t 

E(Lix(t) ® Llu(t)) = J (f/J(t, r)B(r) ® ~)q(t)~(t- r)dr =--} (B(t) ® ,!)q(t) 
to 

thus, because of Eq. (3.3) and the symmetry of ~(t). In a similar way we obtain 

1 
E(Liu(t) ® Llx(t)) = 2 (! ® B(t) )q(t). 

The last two equations as well as Eq. (3.7) give 

(3.8) R~2>(t) = d{t) R~2>(t) + PA(t)q(t)' 
where 

(3.9) 

(3.10) 

d(t) = A(t) ® 1+1® A(t), 
n n 

Bl(t) = (B(t) )02 = B(t) ® B(t), 

and the initial value is R~2>(t0) = 1p. 

Notice that the first form correlation matrix is obtained from the matrix equation 
,(3.4), and the second form correlation matrix is determined from Eq. (3.8) which is an 
-ordinary differential vector equation. The solution of Eq. (3.8) is simpler than that of 
£q. (3.4). 

Example 1. The system matrices are as follows (a simple vibratory system): 

A=[-~oo -a B=[a 
·the output is a vector of order 2: x = col (x1 , x 2), and the input u(t) is a scalar white 
noise stochastic process with the zero mean value and the correlation matrix (in this case 
this matrix is a scalar): 

The initial value R<j>(t0 ) = 0. 
The second form correlation matrix R~2>(t) of the output x(t) is determined from Eq. 

(3.8). From the relationships (3;9) and (3.1 0) we obtain 

d = [-10~ 
-100 

0 

I 
-2 0 

0 -2 
-100 -100 

!], 
-4 

':11= col(O, 0 . 0, 1). 

The La place transformation of Eq. (3.8) gives 

R< 2>(s) = _!_Q (s/-d)- 1f!J 
X S 

or 
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which gives 

-0.0125 ( 1-e- zt {1.01 +0.10lsin(19.90t+ 3.04143) )) -

0.02525e-" (I +sin ( 19.901- ~)) 

0.02525e-" (!+sin ( 19.901- ~)) 
_ 2.5 ( l-1.01e-2t {1 +0.099sin{l9.90t-0.3035) )) 

59 

The graphs of the above functions rx 11 (t), rx 12 (t) = rx21 (t) and rx22 (t) are presented in 
Fig. 1. 

o-.J0005 
~ 

0::: 

0.000 

FIG.l. 

4. Analysis of the system with variations of the parameters 

In the system described by the state equation (1.1) where.x(t) and u(t) are output and 
input respectively, the remaining quantities, matrices A(t), B(t) and the initial value 
vector x(t0 ) are called parameters of the system. The parameters are assumed to be known 
during an investigation of the system. These parameters, however, can be subjected to 
variations, and these variations influence the output x(t). Here, we do not examine the 
influence of variations of all the parameters on the output vector, but we limit ourselves 
to analysing the variations of the state matrix A(t) only. The analysis of variations of B(t) 
and x(t0 ) is similar. This assumption fixes the values of B(t), x(t0 ) in Eq. (1.1) and in this 
way the vector x(t) depends on the matrix A(t) only: 

(4.1) x = x(A) 

for every t E T, where T is the period of system investigation. 
Variations of A(t) can be deterministic or random, and it is assumed, that they are 

small in comparison with the fixed values of parameters as a measure of magnitude of A 
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we use its norm. When the variations are deterministic, the analysis is called a sensitivity 
analysis; when the variations are random it is called an error analysis. 

In the sensitivity analysis of the system we assume that a: deterministic variation of 
A(t) with respect to the fixed value A 0 (t) is LIA(t). This variation results on a variation 
Llx(t) of the vector x(t) with respect to x 0 (t). The vector x 0 (t) is a solution of Eq. (1.1) 
with the fixed value A0 (t). 

If the deviation of parameter A(t) has a random character, then, its properties can be 
described by its mean value and correlation matrix. An error analysis is understood here 
as a description of the relationships between the correlation matrix of the matrix A(t) 

and the correlation matrix of the vector x(t). 

If we compare the definitions of the sensitivity matrices of the first and the second 
form (see Eq. (2.5) and (2.11)), we notice that their entries are those from a matrix: 

(4.2) sFG = oF I 
oG G=Go' 

which we call the general sensitivity matrix. Deriving the general sensitivity matrix from 
Eq. (4.2) and, in the second step, rearranging its entries we obtain Tf9 and S£G matrices 
(i = 1, ... ,p,j = 1, ... , q). 

For the function x(A) {see Eq. (4.1)) we derive the general sensitivity matrix 

.(4.3) sxA = ox I' 
oA A=Ao. 

We obtain this matrix through the differentiation of both sides of Eq. (1.1) with 
respect to A, for fixed t: 

d ( ox ) oA ox oB 
<4·4) dt oA = oA <!®x)+(!®A) oA + oA <!®u). 

We have assumed that input u(t) does not depend upon A. In this equation we have used 
the relationship (A3). If we take into account 

~AA (I® x) = E:::(l ® x) = x ® I, 
u n n n 

and if we examine Eq. (4.4) for A = A 0 , we obtain the differential equation 

(4.5) sxA(t) = H(t)SXA(t)+S8 A(t) U(t)+X(t) 

with the initial value sxA(to), where sxA(t) is defined by Eq. (4.3), and. 

sBA(t) = oB I , 
oA A=Ao 

H(t) = I® A 0 (t), 
" 

(4.6) U(t) = I® u(t), 
n 

X(t) = x 0 (t) ® I, 
n 
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The matrix differential equation (4.5) is equivalent to the following set of vector differen­
tial equations: 

(4.7) 

with the initial value sij(t0 ), where 

(4.8a) xa _ ox I _ 1(ax1 ox")l S;j - -- - CO --, •. • , --
oaij A= Ao OQij Oaij ,A= Ao 

is the ij-th block of sxA, furthermore: 

ab11 ab12 ab1m 
aaij aaij aaij 

ab21 ab22 ab2m 

(4.8b) 
Ba aB ,. 

Sij = Oa;j A=Ao 

aaij a a;) aaij 

obn1 obn2 obnm 
aaij aaij -aati _A=Ao 

is the ij-th block of S8 A, 

(4.8c) sfl(to) = ax(to) I = col (axl (to) , ... , ax,.(to) )I 
Oa;j A=Ao OQij OQ;j A=Ao 

iS the ij-th block Of sxA(fo), and 

(4.8d) ei = col(O, ... , ~' ... , 0) 
j-th entry 

and ·'"oi is the i-th entry of x0 (t). 
The solution of Eq. ( 4. 7) is the set of vectors sfl (t), i, j = 1 , ... , n. These vectors give 

the sensitivity matrices of the first and the second form: 

(4.9) 

(4.10) 

where srjk is the k-th entry of the vector sfj. In this way the relationship between variations 
LIA(t) and L1x(t) has the form 

(4.11) 

(4.12) 

where 

(4.13) 

Llx(t) = rxa(t)Lia(t), 

L1x(t) = [S:A(t) o L1A(t)), k = 1, ... , n, 

Lla = cs(LIA). 
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The relationship between the first form correlation matrices is as follows: 

(4.14) R~1 >(tl, t2) = yxa(tl)R~l)(tl, t2)(Txa(t2))T, 

where 

R~l)(tl, t2 ) = E(Lix(t1)LJxT(t2)), 

R~l)(t1 , t2) = E(Lia(t1)LJaT(t2)), 

and between the second form correlation matrices has the form 

(4.15) 

k, I = 1 , ... , n; where 

(4.16) 

and 

R~2>(t1 , t2) = E(Lix(t1 ) ® Ltx(t2) ), 

R~2>(t1 , t2 ) = E(LIA(t 1) ® LIA(t2) ). 

Example 2. The system is described by Eq. ( 1.1 ), where 

[
x1 (t)J 

x(t) = x 2(t) ' B =[a u(t) = b(t), 

and x(t0 ) = 0. 
The system matrix A 

1. Has a deterministic variation LIA 

L1A = [ 1~ o.~J 
with respect to the fixed value A 0 : 

A.=[-~~ -a 
The fixed value x 0 (t) and the variation L1x(t) are determined. 

2. Has the random variation described by the second form correlation matrix: 

R<j> = , . ~ 
50 
j j j] 

and the v,alue A 0 as above. The mean value of x(t) and its second form correlation matrix 
are determined. 

In both cases it is assumed that matrices A and B do not depend on time and, addition­
ally, that Band x(t0 ) do not depend upon A. 

Since the fixed value of A in case 1 and the mean value of A in case 2 are both equal 
to Ao, then both the fixed value of x(t) andits mean value are determined from the equa­
tion 

x0 (t) = A 0 x 0 (t)+Bb(t). 
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The solution of this equation is 

[
x01 (t)] [sin(9.95t) ] 

Xo(t) = x 02(t) = O.IOOSe-r 10sin(9.95t -1.47) · 

Now, from Eq. (4.7) we determine st" for i,j = 1, 2; since Band x(t0 ) do not depend 
on A, therefore s~l = 0, sfl(t0) = 0 for i,j = I, 2. Consequently, we obtain Eqs. (4.7} 
in the form 

·~~(1) = Aosf~(l)+xor(t>[ ~]. 

Sf~(l) = AosfW)+Xor(I)[~J. 

·~~(1) = A0 s~:(t)+xo2(1) [ ~]. 

·~~(1) = Aos~~(l) +xo2(t) [~ J. 
The solution of these equations is 

xa [sf~t(l)] -r [sinwt-99.5tcos(wt+ 1.47)] 
s11 (t) = = 0.0005076e . , 

sf~2(t) · -IOO(smwt-9.95tcoswt) 

[
sfi 1(t)] [sinwt-9.95tcoswt ] 

sfi(t) = = 0.0005076e- r . , 
sfi2(t) · -smwt-99.5tcos(wt-1.47) 

[s~~ 1 (t)] [0.98sinwt-9.95tcoswt ] 
s~~ (t) = = 0.05076e- r • , 

s~~2(t) smwt+99.5tcos(wt-1.41) 

xa [s~it(t)] -r [-0.01sinwt-0.995tcos(wt-1.47)] 
s22(t) = = 0.05076e . , 

s~i2(t) smwt- 9.95tcos(wt+0.20) 

where w = 9.95. From Eq. (4.10) we obtain matrices SfA(t) and S~A(t): 

therefore, from Eq. (4.12) we have 

.dxt(t) = SfA(t)o.dA = 10s~~ 1 (t)+0.2s~i 1 (t) 

= 0.05074 e-r(9.8 sinwt-99.5tcos wt-O.l99cos(wt-1.47) ), 
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LJx2(t) = S~A(t) 0 LJt = 10 S~~2(1) +0.2s~~it) 

= 0.05076 e-t( -9.8 sinmt-995 lcos(mt-1.471-0.199 tcos(mt+0.20) 

and 

The graphs of the functions L1x1 (t) and LJx2(t) are presented in Fig. 2. 

0 
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0 10 20 80 40 T=wt 

FIG. 2. 

The correlation matrix R~2> (t1 , t2 ) is computed from the formulas (4.15) and (4.16). 
We obtain 

.9~1(tt' t2) = SfA(Il) ® SfA(t2) = 

- - - - - - - - - - - - - - - - - - - -,- - - - - - - - - - - - - - - - - - - -
s2~t(tJ sf~t{t2) s~~t(tt) sf~t(t2) 's2~t{tt) sf~1(t2) s~~t{tt) sf~it2) 

_ J1~1(t1) s~~t{t2) s2~t{tt) s~~t(t2); s~~t{tt) s~~t{t2) s2~1(t1) s~~t(t2) 

therefore 

Rx11{t1,t2) = .9tf(t1,t2)oR<j> = 50s~~ 1 (t1)s2~1(12) 

-2 si~ 1 (t 1) s2~ 1 (I 2)- 2 s2~ 1 (t 1) s~~ 1 (t 2) + 0.6 s~~ 1 (t 1) s2~ 1 (t 2) . 

.Similarly, we obtain 

Rx12(t1, t2) = .9~1{tt, t2) o R~2 > = 50 s~~ 1 {tt) si~2(t2)-2 s2~1{t1) si~2(t2) 

-2 s2~ 1 {tt) si~2(t2)+0.6 si~1(t1) s~~2(t2), 

Rx21(t1, !2) = RxJ2(t2, 11), 

Rx22(t1, t2) = .921(!1 , l2) o R~2 > =50 s2~ 2 (t 1 ) s2~ 2 (t2)-2 s~~2(t1) s~~2(t2) 

-2 s2~ 2 (t 1 ) s~~2(t2)+0.6 s2~2(t1) si~2(t2), 
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and 

[

Rxll(tl,t2)] 
R~2>(t,t 2)= Rxt2(tt,t2) . 

Rx21(tl, f2) 

Rx22(tl, t2) 

The graphs of the functions Rx 11 (t, t), Rx12 (t, t) = Rx21 (t, t) and Rx22 (t, t) are given 
m Fig. 3. 

Examples where the first from correlation matrices are used can be found in [2]. 

- 11 
ll " " 11 11 ,, 
'I ll 
I I I I 11 

11 :I I I I I 
I I I I 

100 I 
~ "" "' "' ~ Cl:: 

FIG. 3. 

5. Conclusions 

The paper has analysed a dynamic system with a white noise stochastic input as well 
as with a variable system matrix. The deterministric and random variations of the ma­
trix have been considered. The analysis has been provided in two ways based on two rep­
resentations of the matrix Taylor expansion [3] and [7], and two definitions of a correlation 
matrix [3]. It has been shown that in the case of a white noise stochastic input, when the 
new definition of a correlation matrix is applied, the correlation matrix of the output 
can be found as a solution of an ordinary linear differential equation. The previously 
existing definition of a correlation matrix in this case leads to a Riccati differential equation. 

In the case of a variable system matrix two ways of solution have been presented as 
well. The method is applied to the analysis of the parametric sensitivity of mechanical 
system [2, 4] and to the analysis of data errors in computations of large systems [2, 5]. 

5 An.:h. Mech. Stos. nr 1!77 
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Some notations and relationships 

E(.) mean value operator; 

Appendix 

e=~= permutation matrix N x N dimensioned (N = n2
); 

col(.) symbol of vector; 
AT transposition of a matrix A; 

A complex conjugate matrix of A; 
A* complex conjugate transposition of A; 

W. GAWRONSKI 

cs(A) column transformation of a matrix A, p x q: cs(A) = col(a1); i = 1, ... , q, here a1 is the i-th column 
of A; 

A oB inner product of matrices A and B : A oB= tr(AB*), where tr(AB*) is a trace of a matrix AB*; 
p x q p x q 

A® B direct (Kronecker) product of matrices A and B : A0 B = [auB], i = 1, ... ,p, j = 1, ... , q; 
pxq s ;< t 

A®k Kronecker power of a matrix A: A0k = A 0 A 0 ... 0 A (k factors), A0° = 1, A® 1 = A. 

The following property of the direct product is valid [7]: 

(AI) (AB)® (CD)= (A® C) (B® D) 

if the proper operations are possible ; 

oA . . f . . . 
::~B - denvative o a,matnx A With respect to a matnx B 
u p x q s x t 

00~- = [:~.]. k= I , ... , s; I = I , ... , t, 

where 

oA [ oa· ·] 
ob"' = ob~~ ' i=l, ... ,p, j=l, ... ,q. 

The following properties of the matrix derivative are valid: 

(A2) !!_ (F 10\ G) = dF 10\ G F 10\ dG 
dt 'Cl dt 'Cl + 'Cl dt ' 

(A3) !!___ (FG) = dF G+FdG. 
dt dt dt 

Matrix Taylor expansions: 
a) from VETTER [7], for a matrix function A of a vector b, s x I : 

p x q 

N 

" I ( o®k A I k ) A(b) = A(b0 )+ ) - · - ---- (b-b0 )® ®I +RN+tt 
~ k! ObTQ?)k b-b q 
k=J I - 0 

where 
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b) from GAWRONSKI [3], for a matrix A of a matrix argument B: 
p x q s x t 

N k I 

( ) ( ) ~ I a® aij . ( )tO.k <N+ 1) a· · B =a .. B0 + - ------- o B-B0 ~<::~ +r .. 
IJ IJ k! cB®k i B=Bo I) ' 

k=1 

i = I, ... , p, j = I, .. . , q, where: 
8 

r!N+l) = --~--- J. c0(N+ I)aij o d(B-Z)®'<N+O. 
•J (N +I)' -az<®N+ l> 

Bo 
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