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Two representations of sensitivity
and error analysis of a dynamic system

W. GAWRONSKI (GDANSK)

A GENERAL dynamic system with a “white noise” stochastic input as well as with a variable
system matrix is analysed. The variations have a deterministic or stochastic character. Two
methods of solution of both problems are considered. The first one is based on the Taylor expan-
sion given by VETTER [7]; the second one is based on the Taylor expansion given by GAWRONSKI
[3] and the new definition of a correlation matrix [3].

Przeanalizowano ogélny ukiad dynamiczny z wejsciem stochastycznym typu «bialy szum»,
jak rowniez z zaburzeniami macierzy ukladu. Zaburzenia te maja charakter zdeterminowany
lub stochastyczny. Rozwaza si¢ dwa sposoby rozwigzania zagadnienia. Plerwszy oparty Jest
na macierzowym rozwinieciu Taylora wg VETTERA [7]; drugi bazuje na macierzowym rozwinie-
ciu Taylora wg GAWRORSKIEGO [3] i nowej definicji macierzy korelacji [3].

Ananuaupyercss ofluas JUHAMHYECKAd CHCTEM2 CO CTOXACTHYECKMM BXOMOM THNA ,,0eibri
HIyM’’, KaK TOMKe C BO3MYILEHHAMH MATDHLIBI CHCTeMBI. DTH BOSMYIIEHUS HMEIOT AeTCPMUHM~
pOBaHHbLIA WM CTOXacTHUeckux xapaxrep. OOGcy)xparorca ABa cmocoba pemmeHHMa 3amayH.
TlepBblit onupaeTca Ha MaTpuyHoe paanokeHme Teitnopa mo Berrepy [7]; BTopoit Gasupyer
Ha MaTpH4HOM paanoxennn Teitnopa no 'ABPoOHCKOMY [3] B Ha HOBOM ONpe/ieJIeHMH MaTPHIIbLI
Koppensamun [3].

1. Introduction

THE PAPER presents the analysis of a dynamic system described by the equation:

(1.1) X(1) = A(t)x(t)+ B(t)u(t),

with the initial value x(#,), where x(t) is the state vector of order n and, at the same time,
the output vector of the system, u(t) is the input vector of the system of order m, A(t)
and B(t) are the matrices nxn and nxm, respectively.

The output of the system x(¢) is determined when the input u(t) is a white noise sto-
chastic process. On the other hand the analysis of the system with variations of the system
matrix A(t) is provided. These variations are deterministic or random. Their influence
on the output vector x(z) is analysed.

All the cases are examined in two ways. One of them is based on the Taylor expansion
given by VETTER [7]; another is based on the Taylor expansion given by GAWRONSKI [3]
and a new definition of a correlation matrix [3].

2. Description of the methods

Let F and G be matrices of dimensions p x ¢ and #x ¢, respectively; The function
2.1 F = F(G)

is called a matrix function of a matrix argument if the entries of F depends on G:

(2.2 Jiy=fG): i=1,...,p; Jj=1,
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The first method is based on the Taylor expansion given by VETTER [7]. This expansion
consists of a column transformation of the matrices F and G*:

(2.3) f=cs(F), g=es(G).

In this way, from the matrices F and G we obtain the column matrices fand g of order pg
and st, respectively. This transformation gives the first two terms of the expansion in the
form (see [7], also the Appendix)

2.4 f(g) = f(go)+T"(g—go0),
where
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and 4 = pg, v = st. If we denote the variations of f and g as

(2:6) Af = f—f(go), A48 =g—go
then, from Eq. (2.4) we obtain the relationship
2.7 Af = T Ag.

The matrix 77 is the sensitivity matrix of the column matrix f with respect to the column
matrix g, and we call it the first form sensitivity matrix.

If we use the column form fand g of matrices F and G, than, we can define their correla-
tion matrices as

RV = E(Af Af7),
RV = E(A4g Ag7).
These correlation matrices are called the first form correlation matrices. From the defini-

tion equations (2.8) and the relationship equation (2.4) we arrive at the following relation-
ship between the correlation matrices R{" and R{V:

(2.9) R® = THRM (T/9)T.

(2.8)

The second method of the sensitivity and error analysis uses the Taylor expansion
given in [3]. The first two terms of this expansion of a matrix function F(G) are as follows
(see the Appendix):

(2.10) Si(G) = £i(Go)+ SIF o (G—Go),

™ A description of the symbols, definitions and basic relationships can be found in the Appendix.
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i=1,..,p;j=1,..,q; where G, is a fixed value of G, f;; is the ij-th entry of F, and

by oy Wy
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If we denote
(2.12) AF = F—F(Gy), 4G = G—-G,
then, from Eq. (2.10) we obtain
.13 AF =[S 0 AG], i=1,...p, j=1,..,q;

where S{f, given by Eq. (2.11), is the seﬁsitivity matrix of the f; entry of F with respect
to the matrix G, and is called the second form sensitivity matrix.
The correlation matrices of F and G are defined as follows [3]:
R® = E(AF ® AF) = E(AF®?),

(2.14) RY = E(4G ® AG) = E(AG®?).

We call these matrices the second form correlation matrices.
From Egs. (2.13) and (2.14) the relationship between them is

2.15) R = &% o RY,
i,k=1,..,p,j=1,..,q, where:
(2.16) PG = SIF @ S{F.

Note that the second form correlation matrix:

1. Has the same structure as its subject, i.e., correlation matrix of a scalar is a scalar,
correlation matrix of a vector is a vector, and correlation matrix of a matrix is a matrix
itself,

2. Is more general than the first form correlation matrix. The latter one cannot be
applied to matrices unless we transform matrices into vectors.

3. Has the same definition equations for all the types. If « is a scalar, a is a vector, and
A is a matrix, their second form correlation matrices are defined as follows:

R? = E((a—0)®?) = E((x—2)?) = i,
RY = E((a—a0)®?),
RY = E((4—A0)8?),

I

where o, ao, Ay are mean values of «, @, and A. The above relationships show that the
definition of the second form correlation matrices is the same for scalars, vectors and
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matrices. In a general case, when Fis a complex function of a real argument ¢, its correlation
matrix is defined as follows:

(2.17) RP(t,, 1) = E[(F(t,)—Fo(1,)) ® (F(t) — Fo(1))],

where F is the .complex conjugate matrix of F, and F, is the mean value of F.

The correlation coefficients of the entries of the matrix F are distributed in the first
and in the second form correlation matrices as follows. In the first form correlation matrix
R§V the correlation coefficient of f;; and f}, entries of F lies in the u-th row and o-th column
of RV, where

u=(-Dp+i, v=(-1p+k,
and the variance of;; of the fj; entry is in the u-th position in the main diagonal of R{".

In the second form correlation matrix Rf{” the correlation coefficient of fi; and fiu
lies in the ij-th block of R{? in the kl-th position in it. The variance of fj; lies in the ij-th
block of R in the ij-th position in it.

3. Analysis of the dynamic system with a white noise input

The analysis of the system with a stochastic input, according to the two different defini-
tion of correlation matrices, is presented in two ways. One way is when the first form
correlation matrix is applied to the solution of the problem.

Let the input u(r) of the system described by Eq. (1.1) be a white noise stochastic
process with a mean value

(3.1a) uo(t) = E(u(r))
and the first form correlation matrix
(3.1b) ROy, 15) = E(Au(t,) Au™ (1)) = Q(t,) 6(t, — 1),

where Au(t) = u(t)—u,y(t), and &(¢) is a Dirac delta distribution. The output mean value
xo(t) and its first form correlation matrix R{(¢) are determined if the correlation matrix
of the initial value is

(3.1¢) E(Ax(t0)Ax7 (1)) = ¥,

where Ax(t) = x(t)—x,(t), and the input vector and the initial value vector are not
correlated:
E(Ax(to) Au™()) = 0.

The mean value x,(7) is found from the solution of the equation
(3.22) Xo(t) = A(t)xo(2) +B(t)uo(t)
which can be presented in the form

(3.2b) xo(t) = B(t, to) xo(te)+ [ (2, D) B()uo(v)dr,

where (1, t,) is the state transition matrix with the following property:
(3.3) D(t,t) = I.
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The first form correlation matrix R{’(¢) for simplicity we denote RiV(¢, 1) as R (1)
is determined from the following matrix differential equation [I, 6]:

(3.4) RP(1) = A()RDO(t)+ RO () AT (1) + B(1)Q(1) BT (1)
with the initial condition R{"(z,) = ¥.
Now we solve this problem using the second form correlation matrices. The mean

value of the input is given by Eq. (3.1a). The second form correlation matrix of the input
vector u(t) is in fact a vector itself, in the form

(3.5a) R(1,, 1;) = E(du(ty) ® Au(t,)) = q(t,) 8(t, —1).
The initial value correlation matrix is

(3.5b) E((Ax(t0)®%) = v

and the input vector and the initial value vector are not correlated:
(3.5¢) E(Ax(to) ® Au(t)) = 0.

We obtain the mean value of x(¢) from Eqgs. (3.2a) and (3.2b); subtracting Eq. (3.2a)
from Eq. (1.1) we obtain the equation for variation of x with respect to x, in the form

(3.6) Ax(t) = A(t) Ax(t)+ B(t) Au(t).
The direct right multiplication of Eq. (3.6) by Ax(r) gives

Ax(t) ® Ax(t) = A(t) Ax(t) @ Ax(t) + B(t) Au(t) @ Ax(1),
and from the direct left multiplication of Eq. (3.6) by Ax(¢) we acquire

Ax(t) ® Ax(t) = Ax(t) @ A(t) Ax(t)+Ax(t) ® B(t) Au(t).
From the property of the direct product (see the Appendix, eq. (Al)) we transform the
latter equations into the form

Ax(t) ® Ax(t) = (A(1) ®f) (4x(1) ® Ax(1))+ (B(1) ® {) (du(t) ® Ax(1)),
Ax(t) ® Ax(t) = (’i,’ ® A(r)) (Ax(1) ® Ax(t))+ ({® B()) (4x(1) @ Au(r)).

The mean value operation, after adding these two equations and taking into account
(A2), gives

B RP@) = (40) ® I+1® AM))RP()+ (B(t) ® NE(du(t) ® 4x(1))+
+ q ® B(1))E(Ax(t) ® Au(t)).
The solution of Eq. (3.6) gives
Ax(1) = D(t, 1) Ax(te) + [ D(t, ) B(x) du(v)dr,

and from (A1) we obtain
E(Ax(t) ® du(t)) = (D(t, 1) ® ;:)E(Ax(t) ® Au(1))

+ [ (@, DB ®U)E(du(x) ® Aur))dz,
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but the relationships (3.5a) and (3.5¢) give

’ 1
E(Ax(t) ® du(t)) = f (2(1, 7) B(7) ® ;}pq(t) é(t—1)dr = 1 B(1)® "{)q(r)
fo
thus, because of Eq. (3.3) and the symmetry of d(¢). In a similar way we obtain

E(Au(r) ® Ax(0)) = (I ® B®))q(0).

‘The last two equations as well as Eq. (3.7) give

(3.8) RP(1) = (1) RO (1) +B(1)q(1),
where

(3.9) (1) = A1) @ I+1® A(1),
(3.10) A(r) = (B(1))®* = B(1) ® B(1),

and the initial value is R (%) = ».

Notice that the first form correlation matrix is obtained from the matrix equation
(3.4), and the second form correlation matrix is determined from Eq. (3.8) which is an
ordinary differential vector equation. The solution of Eq. (3.8) is simpler than that of
Eq. (3.4).

Example 1. The system matrices are as follows (a simple vibratory system):

Lo i) o1

the output is a vector of order 2: x = col (x;, x;), and the input u(z) is a scalar white
noise stochastic process with the zero mean value and the correlation matrix (in this case
this matrix is a scalar):
RP (1) = 104(z).
The initial value RY(z,) = 0.
The second form correlation matrix R{®(¢) of the output x(¢) is determined from Eq.
(3.8). From the relationships (3.9) and (3.10) we obtain

0 1 1 0
—100 -2 0 1

ude —100 0 wd 1|’
0 —100 —100 —4

‘B = col(0, 0. 0, 1.
The Laplace transformation of Eq. (3.8) gives

RD(s) = I—f (I-t)'B

or
2
10 s
)(5) = -
ROG) = S5y P rdsTa00) 5 ]

52 4-25+200
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which gives
| 0.0125(1—e=(1.01+0.101sin(19.90¢ + 3.04143))) |

Fep1(2) 0.02525¢ ( 1 +sin (19_90; = %))
s t

R0 =1, ;Er; -

rx22(f) 0.02525¢= 2" (1 +sin '(19.90;_ _72‘ ))

| 2.5 (1 ~1.01e=2*(1 +0.099sin(19.90:—0.3035)))

The graphs of the above functions re, (1), ry12(f) = re2,(t) and rey,(2) are presented in
Fig. 1.
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4. Analysis of the system with variations of the parameters

In the system described by the state equation (1.1) where.x(¢) and u(¢) are output and
input respectively, the remaining quantities, matrices A(f), B(t) and the initial value
vector x(f,) are called parameters of the system. The parameters are assumed to be known
during an investigation of the system. These parameters, however, can be subjected to
variations, and these variations influence the output x(t). Here, we do not examine the
influence of variations of all the parameters on the output vector, but we limit ourselves
to analysing the variations of the state matrix 4(f) only. The analysis of variations of B(z)
and x(1,) is similar. This assumption fixes the values of B(t), x(#,) in Eq. (1.1) and in this
way the vector x(¢) depends on the matrix A4(f) only:

@1 = x(4)

for every t e T, where T is the period of system investigation.
Variations of A(z) can be deterministic or random, and it is assumed, that they are
small in comparison with the fixed values of parameters as a measure of magnitude of 4
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we use its norm. When the variations are deterministic, the analysis is called a sensitivity
analysis; when the variations are random it is called an error analysis.

In the sensitivity analysis of the system we assume that a deterministic variation of
A(t) with respect to the fixed value A44(t) is 44(¢t). This variation results on a variation
Ax(t) of the vector x(t) with respect to x,(¢). The vector x,(¢) is a solution of Eq. (1.1)
with the fixed value 4,(1).

If the deviation of parameter 4(r) has a random character, then, its properties can be
described by its mean value and correlation matrix. An error analysis is understood here
as a description of the relationships between the correlation matrix of the matrix A(r)
and the correlation matrix of the vector x(z).

If we compare the definitions of the sensitivity matrices of the first and the second
form (see Eq. (2.5) and (2.11)), we notice that their entries are those from a matrix:

oF
el
which we call the general sensitivity matrix. Deriving the general sensitivity matrix from
Eq. (4.2) and, in the second step, rearranging its entries we obtain 77¢ and S{f matrices
i=1,...,p,j=1,..,9.

For the function x(4) (see Eq. (4.1)) we derive the general sensitivity matrix
_ Ox '
7
We obtain this matrix through the differentiation of both sides of Eq. (1.1) with
respect to A, for fixed ¢:

4.2 SFe

L]
G=Go

W(4.3) 54

d [ ox 04 ox 0B
4.4 E(‘aﬁ?)“‘”ﬂ(f@")”f@")??Jr'ﬂ(f@“)'

We have assumed that input u(f) does not depend upon A. In this equation we have used
the relationship (A3). If we take into account

4 1@ = Emi®x =x®1,
0A n n n

and if we examine Eq. (4.4) for A = A,, we obtain the differential equation

4.5) .':i"‘"(t) = H(t)S*(t)+ SPA4() U() + X (1)
with the initial value $*4(z,), where S*4(¢) is defined by Eq. (4.3), and
dB
BA(y . 959
Sl e 7y

H(t) = 1® 4o(0),

(4.6) U@) = I®u),
X(1) = x0 &7
xA == ax(fo)
S*(t) = —2 it
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The matrix differential equation (4.5) is equivalent to the following set of vector differen-
tial equations:

“.7 SEP() = Ao() ST (2)+ s (1) u(t) +x0i(t) e;
with the initial value sif(t,), where

- . 0% 6xl
(80 = 50&; A=Au aﬂi, aa,,) A=A,

is the ij-th block of S*4, furthermore:

dbyy,  0by, Obym
éa,, aﬂ'u 6au
cb,, ob,, 0b,m
B | day; da;, ~ day
4.8b skt = — =
( ) " 60;,- A=Ag | * v e it i s
abul 6bﬂ2 abnn
i 50;,- aau o aau Ni=40
is the ij-th block of S$%4,
0x(to) (axl (1) 0x,(20)
4.8 [ = col SR
Kie) sij (o) = 0aij |a=4a0 da;j 0aij ||a=4o

is the ij-th block of S*4(t,), and
(4.8d) ¢; = col(0, ...,0,1,0,...,0)

jn_entry
and xy; is the i~th entry of x,(t).
The solution of Eq. (4.7) is the set of vectors sif'(t),i,j = 1, ..., n. These vectors give
the sensitivity matrices of the first and the second form:

9) 7% = [siis3t ... s,
B X a
STik S12k - Sim
a xa xa
S31k S33k - S3m
(4.10) SfA =] coevirvnnciacins
xa
Snik Snzk -+ Samk |

where s} is the k-th entry of the vector 5. In this way the relationship between variations
AA(t) and Ax(t) has the form

4.11) Ax(t) = T*(t)da(t),
4.12) Ax(t) = [S§FA(t) e 4A(1)], k=1,..,n
where

(4.13) da = cs(4A4).
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The relationship between the first form correlation matrices is as follows:

(4.14) ROy, 1) = T*(t) RO(ty, 1) (T(12))T,

where

Rgtl)(tl s fl) = E(AX(IL)AxT(!‘z)_L
RM(ty, ;) = E(da(ty) Aa™(1,)),

and between the second form correlation matrices has the form

(4.15) RP(ty, 1) = [ (1, 1) o ROty 1)),
k,I=1,...,n; where

(4.16) Fii(ty, 1) = SPA(t) ® SiA(t2)
and

RP(1, 1) = E(Ax(t,) @ Ax(t3)),
RY(ty, 1) = E(AA(t,) ® AA(1y)).
Example 2. The system is described by Eq. (1.1), where

x,(1) 0 5
X(I) = [xg(‘)]' B = [l]’ u(‘) = 0(1),
aid (i) =0,

The system matrix A
1. Has a deterministic variation AA4

4 0 0
4=110 02
with respect to the fixed value 4,:

0 1
Ao = —100 -2 |

The fixed value x,(f) and the variation Ax(t) are determined.

2. Has the random variation described by the second form correlation matrix:

‘0 0 0 o0
0 0 0 O
0 0 o0 O
50 -2 =2 06

RP =

and the value 4, as above. The mean value of x(7) and its second form correlation matrix

are determined.

In both cases it is assumed that matrices 4 and B do not depend on time and, addition-

ally, that B and x(#,) do not depend upon A.

Since the fixed value of A4 in case 1 and the mean value of 4 in case 2 are both equal
to Ay, then both the fixed value of x(#) and its mean value are determined from the equa-

tion
Xo(t) = Aoxo(t)+Bi(1).
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The solution of this equation is

%0107 _ 0 10050 sin(9.95¢)
XM=, o] =%190%" 106in©.951.47) |
Now, from Eq. (4 7) we determine s;; for i, j = 1, 2; since B and x(t,) do not depend

on A, therefore sif = 0, si{(t,) =0 for i,j =1, 2. Consequently, we obtain Eqgs. (4.7)
in the form

. 1]
51i(t) = Aosﬂ(!)"f‘xox(‘)[o z
y 2 0]
573() = Anslg(t)+x01(t) uE
ok
531(t) = Aos31(t)+x0,(2) 0|’
. 0]
535(t) = Aos35(2) +x0,(2) |

The solution of these equations is

m5% (1 simait—99.5tcon (we+- 147
sH(1) = m()]=0.0005076€“[mw ean o )]

| s712(1) — 100 (sinwt —9.95¢ coswt) |’
- [ 575.(2) _,[sinwr—9.95tcoswt
siz(t) = _s’,“'u(t)] = Gabiiee [—sinwt—99.5rcos(wr—1.47)]’

2(0) [s39.:(2 — 0.05076e 0.98sinw? —9.95tcoswt
5% =
A s’z‘u 1) ‘| sineor+99.5tcos(wr—1.47) |’

s35(1) = 101 _ 6 0s076e-
| 5222(7)

—0.01sinw? —0.995¢cos(wt — 1.47)
sinwt—9.95¢cos(wt +0.20) i

where w = 9.95. From Eq. (4.10) we obtain matrices S74(z) and S34(¢):

s111(8) ngl(f)]
30 3.0 )

s112(2) Sf%;(t)]

s312(1)  53%2(1)

ST = [

S34 () = [
therefore, from Eq. (4.12) we have

Ax,(1) = S74(1) 0o AA = 105%%,(2)+0.2 5351 (1)
= 0.05074 e~"(9.8 sinwt—99.5tcos wt —0.199 cos(wt — 1.47)),
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Ax,(t) = S34(1) o At = 10 53%,(2) +0.2535,(8)
= 0.05076 ~*(—9.8 sinw?—995 tcos(wt — 1.47)—0.199 tcos(w? +0.20)

and

Ax;
Ax(t) = [ALE:;]

The graphs of the functions Ax, () and Ax,(¢) are presented in Fig. 2.
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FiG. 2.
The correlation matrix R (¢, t;) is computed from the formulas (4.15) and (4.16).
We obtain
‘9’?1‘(‘1 ’ !2) = STA(II) ® Sim(tz) o

|
11:(0)  sT1(2) sTu) si%(t) | sT3.(t)  sTia(r2) si5.(t)  sT5.(t2)
sTi(t)  s35.()  sTha(t)  s35:(12) : s130(8)  s535.(22)  sT5.(8) 535.(22)

s3() sta()  s30.()  s120(t) 1 535.(0)  sTL(t)  $35.(1)  sT2a(12)
| s35.(0) s34:(r) s35.(0)  s35.(r2) | s330(0)  s35.(2)  $35.(8)  s35.(0)
therefore
Ruii(ty, 1) = (11, 12) o RY = 50539, (2;) 535:(22)
—25311(11) 533 (t2) =2 532, (1) 5371(13) +0.6 533, (1)) 535.:(12).
Similarly, we obtain
Ruia(ty, 13) = S4(t, 1) o RY = 50 537, (8y) $312(12) —2 531.(8)) $322(12)
—2535.:(t)) 5312(12) +0.6 533, (1,) 5332(¢2),
Ruai (11, 1) = Ryyo(15, 1)),
Reax(ty, 1) = F35(ty, 12) o R = 50 539,(1;) 5312(12) =2 531,(8,) 533.(12)

—2 5352(2,) 5392(12) +0.6 5332(2,) 5322(22),
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and
Ryyi(t, t3)
Reia(ty, 13)
Ru) f,f s x12\51
At 1) Reai (2, 12)
Rez2(t, 12)

The graphs of the functions R, ,(¢, 1), Rey2(t, t) = Ry, (¢, t) and Ry,,(2, t) are given
in Fig. 3.
Examples where the first from correlation matrices are used can be found in [2].
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FIG. 3.

5. Conclusions

The paper has analysed a dynamic system with a white noise stochastic input as well
as with a variable system matrix. The deterministric and random variations of the ma-
trix have been considered. The analysis has been provided in two ways based on two rep-
resentations of the matrix Taylor expansion [3] and [7], and two definitions of a correlation
matrix [3]. It has been shown that in the case of a white noise stochastic input, when the
new definition of a correlation matrix is applied, the correlation matrix of the output
can be found as a solution of an ordinary linear differential equation. The previously
existing definition of a correlation matrix in this case leads to a Riccati differential equation.

In the case of a variable system matrix two ways of solution have been presented as
well. The method is applied to the analysis of the parametric sensitivity of mechanical
system [2, 4] and to the analysis of data errors in computations of large systems [2, 5].
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Some notations and relationships

E(.) mean value operator;
Enxn permutation matrix NxN dimensioned (N = n?);
col(.) symbol of vector;

AT transposition of a matrix A4;

A complex conjugate matrix of A;
A* complex conjugate transposition of A;

¢s(A) column transformation of a matrix A, p x ¢: ¢s(4) = col(a,); i = 1, ..., q, here a; is the i-th column

of A;

Ao B inner product of matrices 4 and B : 4 o B = tr(AB*), where tr(4B8*) is a trace of a matrix 4AB*;

pPxq  pxq

A® B direct (Kronecker) product of matrices 4 and B : AQ B= [ayB), i=1, ...,

pPxq st

A®%  Kronecker power of a matrix A: A9 = AQA® ...® 4 (k factors), AQ° =

The following property of the direct product is valid [7]:

(A1) (AB)® (CD) = (A® C) (B® D)
if the proper operations are possible;
. derivative of a,matrix A with respect to a matrix B
3.8 pxq Al
dA 04
-EB_=|:WH]‘ k—-—l,...,s, f—l,...,t,
where

dA Bau G i
ab&] _[ab*[] '_19---!)9! J_ll"‘!q'

The following properties of the matrix derivative are valid:

d dF dG
GﬁZ) E?(FQQCD =':E“@}G-Ff19—3r,
d dF dG
(A3) W(FG}—?G+FW.

Matrix Taylor expansions:

a) from VETTER [7], for a matrix function 4 of a vector b, sx 1:
Pxq

a@u;'

IHTOk (b—bo)®k ® {)"‘RJ\HI,

N
Ab) = Abo)+ Ym(
where

b
1 IRW+1) 4 _
Ryiy = _U_V—rlﬁdbf (Wﬁ)‘) ({@ b-28V @ g)(d:@:'),

'o

psi=1,..,4q;

1, A®' = 4.
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b) from Gawronski [3], for a matrix 4 of a matrix argument B:

Pxq sxt
O 1 o8k, |
ﬂ',‘j
o s E P i — B\Rk 4 p(N+1)
a;j(B) = a;;(Bo)+ . k!  2B®k §8=B.,°(B By) +riy s
i=1,...,p, j=1,...,q9, where:
B
1 -~ a@(N-:—])al_j

(N+1)
r) Y =

DU S i, - N+ 1)
W+D! J 0Z@N+h d(B—Z)®T*D.
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