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Difference and finite-element methods for the dynamical 
problem of thermodiffusion in an elastic solid 

M. DRYJA (WARSZAWA) 

IN THE PA.PER for the dynamical problem of thermodiffusion in an elastic solid with the homo
geneous Dirichlet boundary the difference and Galerkin method, particularity the economic 
scheme and alternating direction finite-element methods, which are very efficient in numerical 
practice are considered. The errors estimates of these methods are given. Moreover, the well 
posed of the considered problem in a Sobolev space for the certain regions is proved. 

Dla dynamicznego problemu termodyfuzji w ciele spr~zystym z jednorodnymi warunkami 
brzegowymi Dirichleta rozpatruje si~ metod~ r6znic i metod~ Galerkina, w szczeg6lnosci sche
rnaty ekonomiczne i metod~ element6w skonczonych typu naprzemiennych kierunk6w, kt6re 
S't bardzo wygodne przy ich realizacji na rnaszynach cyfrowych. Podane zostaly oszacowania 
bl~d6w zbieznosci tych metod. Ponadto wykazana jest poprawnosc rozwa:lanego problemu 
dla pewnych obszar6w w przestrzeniach Soboleva. 

,UJHI AHHaMHqecKOH 3a~aql{ TepMO~H<fJ<fJY3HH B ynpyroM TeJie, C OAHOPO~HbiMII KpaeBhiMU 
YCJIOBHHMH .[{HpHXJie' paccMaTpHBalOTCH MeTO~bi CeTOK H ranepKHHa' B qaCTHOCTH 3KOHOMHhie 
CXeMbi H CXeMhi MeTO~a KOHe~biX 3JieMeHTOB THna nepeMeHHbiX HanpaBJieHHH, KOTOpbie 
oqeHb llpHrOAH binpH HX peaJIH3ai.tHH Ha BbiqHCJIHTeJibHbiX I.tH$pOBbiX MaiiiHHaX. ,UaiOTCH 
oueHKH norpeumocreH: cxo~HMOCTH 3THX MeTo~oa. KpoMe 3Toro noKa3aHa KoppeKTHOCTb 
paccMaTpHaaeMoH: 3a~a<m ~JIH HeKOTophiX o6nacreH: a npocTpaHcraax Co6oneaa. 

LET us consider the dynamical problem (1.1)-(1.7) of thermodiffusion in an elastic 
solid with the homogeneous Dirichlet boundary and initial conditions in the region 
Q x (0, T), where Q c R3

• This problem has been formulated by J. S. Podstrigac (see 
W. NowACKI [1] and the references there). G. Fichera has proved the existence and unique
ness of the solution to this problem using the Laplace transform when the boundary 
bQ of Q is C 00-smooth (see [2]). 

In this paper we prove that this problem is well posed in a Sobolev space for certain 
regions with a piece-wise smooth boundary (see theorem 2.1 and 2.2). Next we deal with 
the difference and finite-element methods applied to this problem. We consider the implicit 
difference methods which approximate our problem and are convergent with an error 
O(r2 +h2) if rh c fJQ and O(r2 +h112 ) otherwise; here T, hi are the steps of the time and 
space grid, h = max {h1 , h2 h3 } and T'1, is the boundary of the set grid (see theorem 3.1 
and 3.2). 

If Q is a rectangular parallelepiped we consider an economical scheme (see [3, 4]) 
which is unconditionally stable and convergent with an error 0( r 2 + h2

) (see theorem 
4.1 and 4.2). 

The second part of the paper deals with the discrete Galerkin methods with "viscosity". 
An error estimate in this case (see theorem 5.1) is given. 

If Q is a rectangular parallelpiped, we construct the alternating direction Galerkin 
methods (finite-element methods, see [5]) which are very efficient in numerical practice. 
Convergence with an error 0( r 2 +h) (see theorem 6.1) is proved. 
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1. The differential problem 

The following system of partial differential equations is considered 

3 3 

~1 2 ~ ) ~ D D () D 2 (1.1) G L.J Diu;+(11.+G ~ ;Diui-Po ; -p~ ;ft-gD0 u; 
j=l j=l 

= F; (X ' t) ' i = 1 ' 2 ' 3 ' 
3 3 

(1.2) 
\~ \1 

K.:;...; DJO-cD0 0-dD0 tt- ,.;;;_,; D0 Diui =f(x, t), 
j= 1 j= 1 

3 3 

(1.3) D 2: DJ tt-bD0 tt-dD0 0-p~ 2 D0 Diui = g(x, t), 
j= 1 j= 1 

for (x, t) E QT = Q x (0, T), where Q is a bounded subset of R 3 with a boundary ~Q; 
G, )., Q,p9 ,p~, K, c, d, D and bare given constants; F;,/and g, i = I, 2, 3, are given real 
functions: 

X= (xl 'x2, x3), Do = ofot, D; = ofcx;. 
We associate with the system (I. 1)-(1.3) the foJiowing boundary conditions: 

(1.4) u;(x,t)=O, i=l,2,3, 

U.5) O(x, t) = 0, tt(x, t) = 0, 

for x E ~Q, t E [0, T] and the initinl conditions 

(1.6) 

(I. 7) 

u;(x, 0) = u;,0 (x), D0 u;(x, 0) = u;(x), i = I, 2, 3, 

O(x, 0) = 00 (x), tt(x, 0) = tto(x). 

We shall say that Q satisfies the conditionS if there exists a function y :!2 -+ R 3 such that 
y E C 2 (Q) and S = y(Q) is a ball or a parallelepiped (see [6], p. I30). 

2. A priori estimate 

Denote by (. , .) and 11 . 11 the inner product and the norm in the space L 2 (Q). Let 
H 1 (Q) be the known Sobolev space and HJ(Q) be a subspace H 1 (Q) of functions which 
vanish on the boundary bQ. Recall that Qr = Q x (0, T). Denote by Hk,i (QT) a Sobolev 
space of functions from L 2 (Qr) which have generalized derivatives up to the order k with 
respect to X;, i = I, 2, 3, and up to the order j with respect tot. By Hk(Q·1 ) we mean the 

3 

space Hk,k(QT)· At last let Vu= (D 1 u, D2u, D3u) and 11Vull 2 =}; IID;ull 2
• 

j=l 

Assume that 

F;,/, g E L 2 (Qr), uiO E Hl,(Q), 

u;,oo,floEL2 (Q) for i=I,2,3. 
(2.1) 

THOEREM 2.I. Assume that 

(2.2) G > 0, G + }. > 0, g > 0, c > 0, b > 0, d 2 < cb. 
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If the components of the solution of the problem (1.1)-(1.7) belong to the following 

spaces: ui E H 2(QT), i = 1, 2, 3, 0 and ft E H 2
'
1 (QT), then 

3 t 

(2.3) J; {IIDoui(t)W + 11Vui(t)ll 2
} + j [IIVO(~)II 2 + IIV ,u(~)ll 2]d~ + IIO(t)ll 2 + ll,u(t)ll 2 

i=1 0 
3 t t 3 

~M {2; f IIFi(~)ll 2d~+ f [11/(~)11 2 + llg(~)ll 2]d~ + J; {IIDoui(O)II 2 + IIVui(O)II 2
} 

i= 1 0 0 i= 1 

+ 110(0)11 2 + ll,u(O)II 2
}, 

where t E [0, T] and M is a positive constant independent of the solution and the data 

functions. 
Proof. Let us form the inner products of the equations of the system (1.1)-(1.3) 

with - D 0 ui for i = 1, 2, 3, and with -0, - ft, respectively. Next, let us summ up for 
i = 1, ... , 5 the expressions obtained and next integrate them with respect to~. E. E (0, t). 

Applying the Green formulae we get 
3 t 

(2.4) l~ {eiiDoui(t)W +l(ui(t) )} +cll0(t)ll 2 +hll,u(t)W + .r [K/IVO(~)II 2 +DIIV,u(~)J! 2]d~ 
i= 1 0 

3 

+ 2d(O(t), ~t(t)) ~ 2 [ell Do u;(O)II 2 + I(u;(O) )1 + (c + ldDIIO(O)II 2 + (b +Id I) II ~t(O)II 2 

i=1 
3 t t 

+ 0.5 { _2 f [ :, IIF,(~}II' +e .11 Do uM)II'] d~ +I[ :. llg(~)J I' :, 11/(~)11' +e.IIOWII' 
l=l 0 0 

+ e,ll,uWII'Jd~}. 
where 

3 3 

I(u;(t)) = 2; 2; {G(Diui(t), Diui(t))+(A+G)(Diui(t), Diui(t))}. 
j= 1 i= l 

It is e.asy to verify that 

3 3 3 

G J; IIVui(t)W ~ }; I(u;(t)) ~ max {G, A.+ G} J; 11Vui(t)ll 2
• 

i=l i=l i=l 

Using these estimates, the assumptions (2.2) and the Gronwall's lemma we get the inequality 
(2.3). This completes the proof. 

C o r o 11 a r y 2.1. From (2.3) it follows the uniqueness of the solution of the problem 
(1.1)-(1.7) in the spaces H 2(QT) for ui. i = 1, 2, 3 and H 2·1(QT) for 0 and #· 

The obt~ned estimate (2.3) can be used to prove that our problem is well-posed in the 
so-called energetic class (see [6], p. 227). We only sketch a proof since it is similar to Lady
zenskaja's idea. We shall use a functional method defined in [6]. 

Rewrite the problem (1.1)-(1. 7) in a form of an operator equation as 

Au = {F, u0 , u'}, 

6* 
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84 M. DRYIA 

where 

F = {Fdr=l' F4 =f, F5 = g, uo = {u;o}l=l' u' = {u~;}f=t' 
u~4 = 00 , U~s = fl0 , u = {ui}[=1' u4 = 0, Us= fl· 

s 
The domain of A has to be a subset of n L 2 (Qr) and the range R(A) c: W, where W 

i= 1 

is the Hilbert space defined by 

5 3 5 

W = n L 2 (Qr) x n Hl(Q) x n L 2 (Q) 
i=1 i=l i=1 

with the inner product 

5 3 5 

( {F, u0 , u'}, {G, v0 , v'}) = 2 (Fh G;)Lz<Q > + 2 (uo;, Voi)H'<D> + 2 (u~i' V~;)Lz<m· 
i= 1 T i= 1 i= 1 

Note that A is a linear and unbounded operator. For definiteness we set D(A) = H6· 2 (Qr), 
where H~·2(Qr) is a subspace of H 2

•
2 (Qr) of functions which vanish at x e ~Q and t e {0, T). 

Similarly to [6] (p. 229), it is possible to verify that A can be extended to A-; where A is 
the so-called closure of A. 

Using (2.3) one can prove that A is invertible and R(A) = W. 
We shall call u = A- 1 {F, u0 , u'} the generalized solution of (1.1)-(1.7) in the energetic 

class. Hence we get the following theorem. 
THEOREM 2.2 If Q satisfies the S condition and (2.2) holds, then the problem (1.1)-{1.7) 

has a unique generalized solution which satisfies the estimate (2.3) for t e (0, T). 
Re mark 2.1. It is possible to generalize theorem 2.2 for a region Q which can be 

presented in the form U, il; where for each il; there exists a cover Qj such that ilfn D; satis
; 

fies the S condition (see [6], p. 131). 

3. The implicit differences scheme 

In this section we deal with an implicit difference scheme which approximates the 
problem {1.1)-(1.7). It will be proved that the solution of the difference scheme satisfies 
an estimate analogous to (2.3). Next we shall show convergence provided the solution 
of (1.1)-(1.7) is sufficiently smooth or belongs to a certain Sobolev space. To do this 
the several definitions are needed. Let R; be a grid on R 3 of the form R; = {x = {i1 h1 , 

i2h2, i 3 h3), h1 > 0, i1 -integers, j = 1, 2, 3}. 
By Qh we denote the grid set: 

Qh = {x: x E R2 A ll x e Q A It IT x E Q, i =/: j, i, j = 1 , 2, 3}, 

where 

llx = x±e;hb e; = (~1;, ~2;, ~3;) 
, and ~ii stands for the Kronecker delta. 

Let .Qh = R; n lJ and rh = Dh/Qh. 
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Finally let w-r be a time grid defined by 

W-r={t=nr, n=O, ... ,N, Nr=T}. 

The difference quotients are defined as follows 

oiy(x) = oiy = (Ity-y)/hb o;y = (y-Ii-Y)/h;, 

a;y = (Ity-I;-y)f2h;, 

a;a;y = (Ity-2y+I;-y)fhf, 

)1,' = (y"+1_Y')/r, y'!. = (y"+1_Y'-1)/2r, 
t 

Y;, = (Y'+1_2JI'+y"-1)/'r2, yn = (Y'+1+Y'-1)/2 , 

where 
f;± y(x) = y(llx), y"(x) = y(x, n't'). 

The difference scheme approximating the problem (l.I)-(1.7) is of the form 

3 3 

'\1 -A J.+G '\.1 - - ~ 
(3.1) G ~ o1 o1vi+-

2
-2_; (o;o1 +o;o;)v? 

i=l i=l 
!5 An '; An -.11 F" -pguivz-ppu;Vs-ev;it = ;, 

3 3 

(3.2) K ,2; oi aiv:- CV~i- dv';;-Ps 2 aivj; = f", 
j=l j=l 

3 3 

(3.3) D 2 aj ajVs -bv~-,-dV:; -p/J 2 ajvj; = g" 
j=l )=I 

for x E Q 11 , n = 1, ... , N-I, with the difference boundary conditions 

(3.4) 

(3.5) 

V~ = V~ = V~ = 0, X E rh, 
v: = 0, Vs = 0, X E rh, 

and the initial conditions 

(3.6) v?(x) = U;,0 (x), vt(x) = V;, 1 (x), x E Qh, i = I, 2, 3; 

(3.7) v~(x)=00 (x), vg=f-l0 , vl(x)=01 (x), vA=f-l1, xeQh· 

The functions V;,l (x), ol (x), f-lt (x) can be calculated by 

(3.8) 

(3.9) 

2 

v;,1(x) = u;,o(x)+ruax)+ ~ D5u;(x, 0), 

01 (x) = 00 (x)+rD0 0(x, 0), t-t1 (x) = p,0 (x)+rD0 t-t(x, 0). 

i= I,2,3; 

The difference problem (3.1)-(3.7) approximates the differential problem (I.I)-(1.7) in the 
grid points with an error 0( 1"2 + h2) if rh c bQ and 0( r 2 +h) if rh et: bQ, h = max(h1 , h2 , h3 ) 

provided the solution of (1.1)-(1.7) is sufficiently smooth. 
Now let us consider the stability of the scheme (3.1)-(3.7). To this end let us introduce 

the Hilbert space Hh = L~(Qh) of the grid functions defined on Qh with the following inner 
product and the norm 

(u, v)h = 2 h1 x h~ x h3 u(x) • v(x), llulli = (u, u)h. 
XEDh 
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Let iih be a subspace of Hh of the functions which are equal to zero at the grid points 
of rh. We shall also use the space H~ and HJh which are the difference analogous of H 1 

and HJ, respectively. The space H~ (Qh) is the Hilbert space of the grid functions defined 
on Qh with the inner product 

3 

(u, v)l,h = (u, v)h+hth2h3 .L 2 aiu(x). oiv(x), 
i=l Q~ 

where .Q~ means the set of all points of Qh at which o; are defined. 
The space HJh differs from H~ since the functions of HJh satisfy the conditions: u(x) = 0, 

X Erh. 

I.e. 

Let (B; y) (x) = - Oj a~ y(x)' X E .Qh for y(x) = 0, X E rh. 

3 

LEMMA 3.1. The operator.B = }; Bh B: ih -+ Hh is self-adjoint and positive definite~ 
i=l 

B = B* ~ bE, b > 0, 

where b depends only on the diameter of .Q. The proof of lemma 3.1 can be get by using 
the formulae of summation by parts (see [3], p. 46). In the sequel the Hilbert space HhB 
will be needed which differs from the space Hh only by the definition of the inner product 
and the norm, namely 

(u, v)B = (Bu, v)h, llulli = (Bu, u)h. 

It is easy to prove that the norm of Hh8 and HJh are equivalent with the constants 
independent of h;. To simplify the further formulae we shall drop the index h. 

THEOREM 3.1. If (2.2) holds, then the· solution of (3.1)-(3.7) satisfies the inequality 

3 S N-l 5 

(3.10) max{2 [llvitllh + llv711i1 + 2llvill.i }+ r 2 211v711i 
n i= 1 1=4 n= I 1=4 

N-1 3 

~ M{r 2 [211Fi';lli-t +llf"lli-t +llg"lli-t] 
n=l i=l 

I 3 S 3 

+ 2 {2 [11Ff+ 111i-t +llv'illi1+ 2 llvWJ}+ 211v811h}, 
r=O i=l i=4 i=l 

where M is a positive constant independent on the data functions, the grid steps, and the 
solution of (3.1)-(3.7). 

Proof. Let us form the inner products in ii of (3.1) with -2'l"Vi';, i = 1, 2, 3 and 
(3.2), (3.3) with -2rv?, i = 4, 5, respectively, and perform the summation over i = 
= 1, ... , 5 and n = 1, ... , k -I. Using the formulae of summation by parts (see [3], 
p. 46) and the identity 
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we get 
3 

(3.11) 2; {gllvfr- 1 11 2 +l(vf)+l(v~- 1)}+c[llvlW + llvl- 1 Wl + b[llv;W + llv~- 1 W] 

where 

i= I 

k-1 3 3 

+r 2; {f2d{(v~;,vl)+(vl;,v;)}]+ 2; [llojv;W+IIojv5Wl} = 2; [I(v?)+I(vl) 
11=1 j=l i=1 

+ellv~W]+c[!lv~!l 2 + llvJW] +h[llv~W + llv~Wl 
k-1 3 

+ 2 \
1 

{ " (Fn n_) + (fn ~n) + ( n ~n)\ T ~ ..::::,_; i, V; t , 'l:4 g ''l:s J' 
n= I i=1 

3 

/(vi)= 0.5 L {G(ojvi, ajvi)+(J.+G)(o;Vi, ajvi)}. 
i= I 

It is easy to prove that 
3 3 

(3.12) )1/(vi);:;: 
6
2 

~-, llv?lli. 
~ ~ 
i=l i=1 

A simple calculation yields the following estimates 

k-1 

(3.13) 2r 2; (F[', vi;)~ c1 {ll~flli+llv~- 1 lli}+M(st){IIF/IIi-1 
11=1 

k-l k-2 

+IIF/IIi-~+llv?lli+llvllli+ r 2; IIFitlli-1 + r 2; llv?lli}, 
n=2 n= I 

(3.14) 

where ei > 0 and zcan be'equal tofn ot g". Substituting (3.12)-{3.14) in the equation (3.11) 
we get (3.10) which completes the proof. 

Now we are in a position to prove the convergence of the scheme (3.1)-(3.7). 
THEOREM 3.2. Let the assumptions (2.2) hold. If the functions 

D~uj, D0 Df DJu; (rt.+/3 ~ 4), D5Dfuj, 

D0 Dt p,, D~8, D~p,, D0 Df8, i,j = I, 2, 3 

are bounded, and the functions v;. 0 , i = I, 2, 3, 81 , p, 1 are defined by (3.8), (3.9) then the 
following inequality holds 

3 S N-1 S 

(3.15) llzll~ = max{2; [llz?rll~+llz?IIA-tl+ 2;1lzill~}+r 2 2;11zillfi~ ~ MQ(r, h), 
n i= I i=4 n= I i=4 

where zi = vi-ui, i = I, 2, 3, z! = v! -On, z~ = v~- p,n, 
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88 M. DRYJA 

P r o o f. If rh c {)Q, then theorem 3.2 immediately follows from theorem 3.1 since 
the approximations error of (1.1)-(1.7) is O(r2 +h2

). Hence let rh et: fJQ. Let us express 
the solution of (1.1 )-(l. 7) at the grid points in the form u~ = u'ln + ufr, i = 1 , ... , 5, 
u4 = 0, u5 = f-l, where 

u'/r = {0 for X E Qh and uf(x) for X E rh}. 

The functions uin satisfy the system (3.1)-(3.3) with the right-hand side equal to 

Gi = O( r 2 + h2
) + ;", i = I , ... , 5 

where 

Applying theorem 3.1 for vi-u'iD, i = 1, ... , 5, and the triangle we get (3.15). Hence 
theorem 3.1 follows. 

R e m a r k 3.1. The analogous results hold for a non-uniform grid (in the space 
direction) with an error 0( r 2 + h2) if rh c: {)Q. 

The scheme of (3.1)-(3.7) is convergent under the assumption that the solution of 
(1.1 )-(1. 7) is sufficiently smooth in the classical sense. Such solution exists when the bound
ary {)Q of Q is sufficiently smooth, see [71· 

Let us now pass to the problem of convergence of the scheme (3.1)-(3.7) under the 
assumption that the solution of (1.1)-(1.7) belongs to a certain Sobolev space. 

THEOREM 3.3. Let (2.2) hold and let the following functions belong to L 2 (Qr): 

where uh i = 1, 2, 3, (), f-l is the solution of (1.1)-(1.7). Then 

llzll~ = O(r+h112
), 

where 11 • llu is defined in (3.15) and zi = vi- u;, i = I , 2, 3, z: = v:- ()", z5 = v'S - f-l 5 
, 

and v; is the solution of (3.1)-(3.9). 
The proof is omitted since the proof technique is similar to the proof of theorem 3.2. 

4. The economical scheme 

Let Q be a rectangular parallelepiped. In this case we can approximate the system 
of (1.1)-(1.7) by an economical scheme with a splitting operator. By an economical scheme 
(see [3, 4]) we mean a scheme which is unconditionally stable and the total number of arith
metic operations needed to solve this difference scheme is proportional to the total number 
of the grid points of Qh x roT. 

An example of such scheme for (1.1)-(1.7) is presented below 

3 3 3 

(4.1) en (E-Or2 oi~)v':,-r+G}; aiaivi+0.5(-1+G)}; (o;~ 
j=l j=l i=l 

+~oi)vj-p9 7J;v;-plloivg = Ff, i = 1, 2, 3, 
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3 3 3 

(4.2) n (E- -cA0 1Aoiai)v';+(~ aiv7 )A01p-A01 A~ oifJivn-t 
i= 1 i= 1 i= 1 

= A 0 1 G", x E Qh, n = 1 , ... , N- 1 ,.. 

where 

Ao = (~ ~). A=(~ ~) 
with the difference boundary conditions (3.4), (3.1) and the initial conditions (3.6), (3.7) .. 

THEOREM 4.1. Let the assumptions (2.2) hold. IfO ~ 00 (G, A, e)> 0, then the solutions. 
of (4.1), (4.2), (3.4)-(3.7) satisfi.e the following inequality 

3 S N-1 S 

(4.3) llvll~ = max{~ /t(vr)+ ~ /2(vi)}+r ~ ~ llv?ll~ 
n i=1 i=4 k=1 i=4 

where 

N-1 3 3 5 

~ M { r ~ [~ IIFill2 + 11/"112 + IIK"II2]] + ~ /1 (v?) + ~ /2(v?)} ,. 
n=1 i=1 i=-1 i=4 

/l(vn = llv~t- 1 11~ +llv~lli+ll~-llli+r4 ~ ua,aj~r- 1 11~ +r6 11ot a2a3'Zf,- 1 lln; 
l<j 

1 

l2(vn = llv~llh + ~v~- 1 IID + ~ {~ r 2 llo, oiv~-'11 2 + r3llot o2 o3v~-'llh}. 
r=O l<j 

Proof. Multiply (4.2) by A 0 • After some transformations we get 

3 3 3 

Aov'i--~ Aojaj~"+-c2AQ" 1A~ a,a,ajajv'i-+-c 3A(Ao 1A)2 n aiaiv'i-+ ~ ajv";p = G". 
j=1 l>i i=l j=1 

Let us form the inner products in H of (4.1) with 2-cv'; and next (4.2) with 2-c;$". Simi
larly to the proof of theorem 3.1 we summ up the inner products obtained with respect 
to n, n = 1, ... , k -1. Using the assumption (2.2) and the Gronwall inequality we get 
(4.3). 

THEOREM 4.2. Let the assumptions of theorem 3.2 and 4.1 hold. Besides let the function 
DfD~D~uh i = 1, ... , 5, D~Dt Dju; (I< j), i = 1, 2, 3, D 0 Dt Dju; (1 < j), i = 4, 5· 
be bounded; here Uj, i = 1, 2, 3, u4 = 0, u5 =flare the solutions of the system (1.1)-(1.7). 
Then llziiQ = O(r2 +h2), where II·IIQ is defined in (4.3), zi = vf-u't, i = 1, 2, 3, z: = 
= v~-8", z5 = v5-p,"; v7 is the solution of the problem (4.1), (4.2) and (3.4)-(3.7), and 
u'i, 0", p," are the solutions of the problem (1.1)-(1.7) taken on the grid. 

This theorem directly follows from theorem 4.1 and the approximation of the system 
(1.1)-(1.7) by the scheme (4.1), (4.2), (3.4)-(3.9) with an error O(t2 +h2). 

R e m a r k 4.1. If n = 2 and Q is convex, we can construct an analogous scheme with 
a splitting operator which is unconditionally stable and convergent with an error 0( r 2 + h2

} 

provided Fh c ~Q . Furthermore this can be generalized for n = 3 when Q has the form_ 
Q = t;J2 x (0, 13) and Q2 is convex in the plane R 2 (see [7]). 

http://rcin.org.pl



'90 M. DRYJA 

5. Galerkin methods 

In this section we consider the Galerkin method with "viscosity" for the problem 
(1.1)-(1.7). The presence of the term of order O(r 2

), which is called viscosity, helps to solve 
a system of algebraic linear equations since the matrix of this system has a simple form. 

The Galerkin method is based on the weak form (variational form) of the differential 
·equations. The weak form of (1.1)-(1.7) is as follows 

3 

{5.1) e .2 (D~ui(t), vi)+c(Dou4(t), v4)+d(Dous(t), v4)+b(Dous(t), Vs) 

(5.2) 

(5.3) 

'Where 

i=l 

+d(D0 u4(t), v 5 )+a1 (u(t), v)+az(u, v)+K(Vu4(t), Vv4 ) 

5 

+D(Vu5 (t)~ Vvs)+a3 (D0 u, v) = -}; (Fh vi), 

V Vj E HJ(Q)' i = 1' ... ' 5' 0 < t < T, 

U;(O) = Uoh i = 1, 2, 3, u4 (0) = 00 , Us(O) = flo, 

Dui(O) = u;, i = 1,2, 3, 

u4 =0, u5 =p,, F4 =/, F5 =g, 
3 3 

a1 (u, v) = .2 .2 {G(Diuil D1 v;)+(A.+G)(D;u1, Divi)}, 
j=l i=l 

3 

a2 (u, v) = .2 {p9(D;U4, V;)+piD;u 5 , V;)}, 
i=l 

3 

a3 (Dou, v) = - }; {p8(D0 uj(t), Div4)+pp(D0 ui(t), Divs)}. 
j=l 

i=l 

Let .R be a m-dimensional subs pace of HJ(Q). Let Wy; be the grid of the form 

OJy;={t=nr, n=O, ... ,N, Nr=T}. 

Th~ problem (5.1)--(5.3) is approximated by the discrete Galerkin method in the form: 

3 

{5.4) e .2 (U~, V;)+c(U!i, v4)+d(Uk, v4)+b(U~;' Vs)+d(U!;-, Vs)+al(Uk' v) 
i=l 

3 

+a2(U'k, v) + _2 Or2 (VUi~r• Vv;)+K(VU!, Vv4)+D(VUt Vvs)+a3 (U;, v) 
i=l 

5 

= -.2 (Ff, V;) 
i=l 

for V V; E J(' k = 1' ... 'N -1; 

(5.5) (UP, V;) = (u0;, V;), V V; E .R, i = 1, ... , 5; 

(5.6) (U/,v;) = (u 1 ;,V;), \:IV; EJI, i = 1, ... , 5. 

Here u04 = 00 , u05 = flo and uli are the data functions, which can be calculated from 
(3.8), (3.9). Here 0 is a positive parameter. 
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Now consider the approximation error of the solutions of (5.4)-(5.6) and (5.1)-(5.3). 
THEOREM 5.1. Let (2.2) hold and()~ fJ 0 (G, J.) > 0. Let the following functions VD~uh 

VD6u;, D0 F;, i = 1, ... , 5 belong to L 2 (Qr) and let z? denote zf = u?-U;, where u'/, Ui 
are the solutions of (5.1)-(5.3) and (5.4)-(5.6), respectively. Then zn can be estimated as 
follows 

3 5 N-1 5 

(5.7) llz~ll = max{2 [iiz'ir- 1 II 2 +11Vz'/W1+ };ilz?W}+r}; };11z~ll 2 
n i=1 i=4 k=1 i=4 

3 5 3 N-1 

~ M {max }}; [ilu~W + 11Vuill 2
] + };llu'/11 2

} +}; { r}; [IIVuh-W + llu7,rW1 
11 i=l i=4 i=l k=1 

1 5 N-1 1 

+ _2' IIVziW + llz~W} +}; {}; [IIVUfW+ llu7,-WJ +}; llzrll 2 }+ r4}, 
r=O i=4 k=1 r=O 

where u~ = ~- u; and u; is an arbitrary function from ..11. 
In the proof of theorem 5.1 the identities which are listed below will be used. 
LEMMA 5.1. 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

2r(y~,- , Yh = (y~, y~)t; 
(y~' vk) = (yk, vk)r- (y"+ 1, v~); 

(y~ , vk+ 1) = (yk' vk)r - (yk, v~) ; 

2(y~' yk) = (yk, y")t; 

k 1 k 
(y;' vk) = (yk, vk);- -2- {(;1'+1' v~) + (y"-t' v..,)}; 

(y;' vk) + cJk, V~) = (yk' vk)t ; 

There lemma 5.1 can be proved by simple calculations based on the definitions of 
difference quotients. 

P r o o f of the theorem 5.1. It is easy to see that 

(5.15) 
(Vu;)n =VU'/+~~.;, (D~u;)n = u'/ii+~~h 

(DoUt)n = u'/; + ~li' 
where 

ll~:,llu = O(r 2
), s = 0, 1, 2, i = 1, ... , 5. 

Substitute in Eq. (5.1) t = nr and subtract it from (5.4). Next using (5.15) and 
summing up for k = 1 , ... , n- 1 , we get 

n-1 3 3 

(5.16) 2 {.2 e(z~t' V;) +fJr2 2 (Vzfii' Vv;) +It (z~' v) +a1 (zk' v) +az(Z 'v) 
k=1 i=1 i=1 

n-1 3 

+K(V,Z!,Vv4)+D(VzL Vv5)+a3 (z~,v)} =-}; {}; [e(~~ 1 ,v1)-r2fJ(Vu~ii' Vv;)] 
k=l i=1 

+/1 (~t v)+az(~~4 , v)+a3 (~t v)+K(V~~4 , Vv4)+D(V~is, Vvs)} 

http://rcin.org.pl



92 M. DRYJA 

for V v e vlt, where 

11 (wk, v) = c(w!, v4)+d(wt v4)+b(~, Vs)+d(wl, Vs), 

w" = (wL ... , w~)T, v = (v1, ... , v5)T. 

Let vi in (5.16) be equal to vi= 2r(zt;+i/;';) fori= 1, 2, 3 and vi= 2r(z~+3D for 
i = 4, 5, where uk = ~- ui and u1 js an arbitrary function from J1t. The terms which 
appear in the left-hand side of (5.16) are estimated from below. 

Let J0 denote the first term of the left-hand side of (5.16). From (5.8), (5.9) and the 
e - inequality we get 

n-1 3 1 

(5.17) 2 J~ ~ 2 {eCl-et)llzi'r- 1 II 2 -M{IIz8W~ 2 [lliifr-rW 
k=1 i=1 r=O 

n-2 n-1 

+IIUi'tWl+r 2 llz~rll 2 +r 2 llu~rll 2}}. 
k=1 k=1 

The second term in (5.16) is estimated by (5.17) where e is replaced by r 20 and z, it 
are replaced by Vz, Vu, respectively. The sixth and seventh term of (5.16) are estimated 
using the e - inequality 

(5.18) 2T ~ (Vzt. Vzf+V~);. T i, {<2-e2)11V2tll2- :, IIV~tll'}. 
Let us now estimate the other terms ,of (5.16). To estimate / 1 (z:, v) two inequalities 

are needed. The first one is (with u; = u; for i = 4, 5): 

(5.19) 4r ~ (za, z~+ut) ~ (l-e3){11z711 2 +llz7- 1 11 2 }-MJ-
1 [llu711 2 

k=1 le3 

+ IIU'I-'11'+ T ~ IIUtW+ T ~ llzlll2 + t. £11zfll 2 + IIU;II2l}. 

The inequality (5.19) follows from (5.11) and (5.12). The second inequality needed is 

(5.20) n-1 . n 5 

2r 2;{(z:;,z!+u!)+(z!;,z~+u~)} ~ 2 {<zLz!)-0.5 2 [E411~W+e4 1 llit~ll 21} 
n= 1 k=n-1 i==4 

S n-2 n-1 1 S 

-M{r 2 { 211z~ll 2 + 211utrll 2
} + 2 2 lllztll 2 +11u,WJ}. 

i=4 k=O k=O k=O l-=4 

To prove (5.20) it is sufficient to use (5.13), (5.12) and the £-inequality. 
Using (5.19), (5.20) we get 

n-1 S n 

(5.21) 2 l1(z}, 2rr+2ruk) ~ 2 { 2 [(d-e3- c4)ll~ll 2 
k= 1 i=4 k=n-l 

1 n-2 n-1 

-MIIu~W1-M{2 [llz7W+IIu~WJ+r };llz,W+r };llufrll 2
}}, 

k=O k=O k=O 

where d = cb-d2 • 
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Let us estimate a1 (zk, v). Once more from (5.14) and (5.12) we have 
k-1 3 1 

(5.22) 6 a.(zk, 2-r(z~+U~));. ~ J; {J.: [(G-e,)[[Vz?-'II 2 -G[[Vzill 2
] 

1 n-2 

-Gr2 [11Vz?t- 1 ll 2 + 11Vz?tii 2]-M {2·tluit-rll 2 + lluitll 2
- r {211Vztll 2 

r=O k=O 
n-1 n-2 

+ 611VU~,[l 2 +'<3 6 [llvzr,II 2 +IIVU~,rW)}}. 
where G = max(G, J.+G). 

It is easy to verify that the other two terms can be estimated using the formulae of 
summation by part and the e -inequality as follows 

k-1 

(5.23) }; {a2(zk, 2rz~+2ru~)+a3(z~, 2r(zk+uk))} 
n= 1 

3 n-1 5 n-1 5 3 n-1 n-l 3 

~ -n:6 2 211z~W-re7 2 2 llzfii 2 -Mr {2l, {211Diu~ll+ 2 2llu~tll 2l}. 
i=l k=O i=4 k=l i=4j=l k=l k=Oi=l 

An upper bound for the right-hand side of {5.16) is given by 
n-1 3 

(5.24) r 2 {2 {esllz~ill 2 + M[lluhll 2 + r4 11Vu~-rll 2 + 11Vu~;ll 2] 
k=l i=1 

5 

+egiiVz~ 11 2
} + 2 {e1 ollz~ll 2 + M[llu~ll 2 + 11Vu~ll 2] +e10l1Vz~W} + r 4

}. 

i=4 

Substituting (5.17), (5.18) and (5.21)-(5.24) in (5.16), taking suitable Ej, () larger than 
fJ0 (G, J.) and applying the Gronwall's lemma we obtain (5.7). This completes the proof. 

6. Alternating-direction Galerkin (finite-element) methods for rectangular parallelepipeds 

By AD-Galerkin method we mean the Galerkin method in which the total number 
of arithmetic operations needed to perform one time step is O(m), where m is the number 
of unknowns at each time step. This method has been formulated for the parabolic and 
hyperbolic equations in [5]. Here we extend this method to our problem. We shall use the 
notations from the Sects. 4 and 5 and the following new ones: 

5 

u = (u4, usY, (u,v) = 2 f U;V;dQ, A= A() 1A, 
i=4 !) 

where here Q = (0, /1) x (0, /2 ) x (0, /3). 

Let Jll be a m-dimensional subs pace of HJ(Q) such that D; Di w (i < j) and D1 D2 D3 w 
belong to L 2 (Q) for w E .A. The equation ().I) is approximated by 

3 

(6.1) e 2 {(U;~f, V;)+Jo(U~t' V;)}+al(Uk, v)+a2(Uk, v) 
i=l 

5 

+a3(Ut v) + (Ao u:, v> + <AVUk, Vv) +l1 (u: ,v) = -2 (F~, v) 
i=l 
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for V viE vU, k = I, ... , N-I with initial conditions (5.5) and (5.6). Here 

J0 (z, w) = fh 2(Vz, Vw)+(Pr4
}; D,Diz, D1Diw)+(Pr6 (D 1 D2D 3z, D 1 D 2D3w), 
l<i 

J 1 ("i, H') = r 2 2; <AAD1Diz, D,Diw) +r3<AA2DtD2D3z, D 1 D2D3w) , 
l<j 

()-positive parameter. 
Note that for zn = un- un where un, un.are the solutions of (5.1)-(5.3) and of (6.I)~ 

(5.5), (5.6), it is possible to obtain a similar estimate to (5. 7). 
We are now in a position to describe the AD-Galerkin method. Let vH be the subspace 

of HA(Q) such that the basis of vi! is a tensor product of the functions of one space variable. 
Let for i = 1 , 2, 3 

and let 

Denote 

Jti = span( ail, ... , <X;N;), 

J( = Jll ®vlt2®.A3. 

/j 

(f, g)i = J fgdxi. 
0 

The solution Uf of (6.1) is sought for in the form 

Ut(x) = 2 ~f.spq<Xspq(x), where <Xspq(x) = <X 15(X1)a2p(x2)a3q(x3). 
s,p,q 

Let Ch Ai be the following matrices 

Ci = { ( aip, etiq)i};:q= 1, A i = { (Di aip, Di aiq)i};,'q= 1. 

Let Ii be the Ni x Ni identity matrix and let i be a 2 x 2 identity matrix. Using these nota
tions we can rewrite (6.1) as follows 

3 

(6.2) n (P1 + Or2Q1)~~t =if>~, i = I, 2, 3, 
I= 1 

3 

(6.3) n (P[ + rQl)~~ = -;j;k, 
/=I 

where 

for i = I, 2, 3, 

P2 = lt®C2®/3, Ql = lt®A2®l3, 

P~ =it ®(l®C2)®/3, Q~ = /1 ®(A®A2)®!3. 

The matrices Pb P~, Qb Qi are defined in a similar way where i = I and 3; 

l:k _ {l:k }Nt,N2 ,N3 l:k {t:k t:k } \i - ~spq s,p,q=1 ' \ispq = ~4.spq• ~S.spq · 
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The vectors~\ [Jk, ;_spq are defined similarly; (;k = {fk,gk}; 

3 

·- _ {I(,., '~-) -1 - - \ -vu-k-1 v- -~G-k - } 
cPspq - - \ ~ DjU jt Ao p, 1Xspqj + <A , 1Xspq ) + <Ao , 1Xspq) • 

j=l 

The Eqs. (6.2) and (6.3) are considered under the foJlowing initial conditions: 

(6.4) (UP, CXspq) = (u0 ;, CX1>pq), i = I, ... , 5 

(6.5) (U/, CXspq) = (uli, CXspq), i = I, ... , 5, 

where u1 i is defined in (5.6). 
Let us define a basis of vU which is convenient in numerical calculations. Let n; denote 

the grid on [0, /;] ·of the form · 

n; = {x;:x; =jhb j = 0, ... ,Ni+I, (N;+I)hi = /i}, 

and let wp(x;) = (xi- phi)/h;. 
The functions a;p(x;) are defined by 

(6.6) 

for p = 1, : . . ,N;. 

Xi E [(p-l)h;, h;] 
X; E [ph;, (p+ l)h;] 
X; E [0, (p-J}h;]U [(p+ l)h;, /;] 

The matrices Ci and A i are now tridiagonal. Hence the total number of arithmetic 
operations needed to solve (6.2) and (6.3) is of order of N x N1 x N 2 x N 3 • 

THEOREM 6.1. Let the assumptions of theorem 5.1 hold. Besides, let the following 
functions D 1 D2 D3 u;,D'5DsDpui for i=1, ... ,5,s,p=I,2,3 belong to L 2 (Qr), 
where u is the solution of (5.1)-(5.3). Then AD-Galerkin method of (6.2)-(6.5) with the 
basis (6.6) is convergent if T-+ 0 and h-+ 0, where h = max {h1 , h2 , h3 }. Moreover 

where 11· llu is defined in (5. 7), z~ = uf- U~, i = I , ... , 5; u1j, Uf are the solutions of 
(5.I)-(5.3) and (6.1), (5.5), (5.6). It is possible to verity that this theorem follows from 
the estimate (5.7) which holds for zk, and from the fact that 

llu- ullH 1(.0) = O(h) 

provided u E H 2 (Q), where u is the projection of u into Jt (see [8]). 
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