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Analysis of energy and mass transfer between small droplets
of liquid and a supersaturated gas mixture

H. U. VOGEL (GOTTINGEN)

SMaLL droplets of water grow due to deviations from thermodynamic equilibrium between
the droplets and the surrounding gas phase. The equations of motion, including the complete
continuum transport equations, are solved by expanding the problem in powers of the fraction
J/AR, the flux of molecules towards the droplet divided by the conductivity A and the radius R.
The second power terms calculated here are smaller than the well-known terms by a factor
of the order 1/S ~ 1/15, where S is the entropy of condensation. They involve the ratio of mean
free path length L and radius R.

Male kropelki cieczy doznajg wzrostu na skutek odchylen od réwnowagi termodynamicznej
migdzy kropelkami a otaczajaca je faza gazowq. Réwnania ruchu lacznie z kompletnymi rowna-
niami transportu ofrodka ciggltego rozwigzuje si¢ za pomoca rozwini¢cia w szeregi potggowe
wzgledem utamka J/AR (strumien czasteczek mierzony w kierunku kropli dzwlony przez
przewodno$¢ A i promieft R). Otrzymane w ten sposob czlony drugiego rzedu sa mniejsze od
znanych cziondéw wiodacych S-krotnie, gdzie S &~ 15 oznacza entropi¢ kondensacji. Wystgpuja
w nich stosunki éredniej drogi swobodnej L do promienia R.

Marible KanmM MHIKOCTH HAYMHAIOT PACTH BCJIEACTBHE OTKJIOHEHHI OT TEPMOIHHAMMUECKOrO
PABHOBECHA MEXIY KAIUIAMH M OKpYy»alomleif ra3oBod ¢asoif. YpaBHeHHS IBHIKCHHA COB-
MECTHO C NOJHBLIMH YPaBHEHHAMH TIEPEHOCA CIUIOLIHOH CpeAbl PEIIAIOTCA IPH MOMOLIH pasfio-
YKEHHA B CTENEHHbIE PAMBI 10 OTHOINEHMIO K Apo6u JIAR (IOTOK YacTHI H3MepAeMbIii B Hampa-
BIICHHHM KaIUIM JejIeHHbI Ha mposBoguMocts A m paguyc R). Ilomyuennele Takum obpasom
WieHB! BTOPOTO IOPALKA MEHBINE UeM M3BECTHBIE BeQVIINHe WieHnl B S-pa3, rae S & 15
0003HaYaeT IHTPONMIO KOHIEHCAMH. BhICTYaloT B HUX OTHOLIEHUA CpefHeil AnuHBI cBobOI-
Horo mpofera L x pamuycy R.

Droplets of water in supersaturated air grow due to deviations from thermodynamic
equilibrium between gas and droplet and in the gas phase. Born with the critical radius
of less than about 10 A, they are initially small compared with the mean free path length
L =~ 500 A. During this short stage of rapid growth the fluxes J and Q of water molecules
and of energy towards the droplet (here divided by 4x) are controlled by deviations of
chemical potential x, and temperature T between gas and droplet, and they involve kinetic
properties known as accomodation coefficients. When the radius R has become large
compared with L, gradients of u, and T in the gas phase are the controlling forces, invol-
ving the transport coefficients of the gas. Accordingly, the fluxes are initially proportional
to R? and finally to R. Aninterpolation between these limiting cases as done by GYARMATHY
[1] will involve the ratio R/L. His formula may be written in the form

Py _ R+constL | ., -J  x, =J
(1 In TR = = [S D)+ = ﬁ_]‘
Here p, = x,p and P,(T, R) are the actual and the saturation water vapour pressures.
The latter depends on the radius R and the surface tension o(T): InP,(T, R) = InP,(T)
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4 20(1) o(p, T)

R T
pressure in the gas phase, and x, and x, = 1—x, are the mole fractions of water and
air molecules in the gas phase. S(T) = dln P,(T)/dInT is the entropy jump of one water
molecule from the liquid to the gas phase (with a plane interface); at 7 = 300 K we have
S = 17.59. 4 and y are the transport coefficients of heat conduction and dffiusion; y is
the product n.D of gas molecules per volume times diffusion coefficient of water vapour in
air. At "= 300K we have y = 0.35 1. The properties of the gas in this formula are
those far from the droplet; this will be indicated by the index oo only if neccessary, because
the variations of these quantities are small.

The dimensions in this paper are based on putting Boltzmann’s constant equal to one,
i.e., one degree Kelvin = 8.31 W.s/mol. Entropies and heat capacities are then dimen-
sionless quantities and the product A+ R is a number per time intervall (mol/s).

Gyarmathy’s formula is approximate in two respects: it is an interpolation as explained
above, and its right-hand side is the leading term of an expansion in powers of J/AR
(for L <€ R). This dimensionless fraction is small due to the large value of the squared
entropy jump; S%(300 K) = 309.4. A typical value of the left-hand side is In 50 =~ 4,
hence J/AR ~ 1/S2. It might therefore seem to be more reasonable to expand in powers
of 1/S. This quantity, however, is an inherent property of several thermodynamic functions
rather than an independent variable.

We now derive the correction terms 0(J/AR)? to the right-hand side of (1). They turn
out to be smaller than the leading term only by S~* and not by S~2, because the coefficients
of these terms again involve powers of S. The largest one is

1omi).f 7\ 1
@ ' (”2 3ln T)S(AR) o
For air (x, = 0) at T = 300 K we have dln4/dlnT = 0.800. Note that the two terms of
(1) are respectively of order 1 and S—2.

Some correction terms depend on the radius R through the product (L/R)?* (J/AR)?,
the largest one multiplied by S and thus of order =3+ (L/R)2. After solving the corrected
equation (1) for J/AR we see that J is no longer strictly proportional to R, although no
interpolation has been applied yet. These terms are related to the friction and (the smaller
ones) to the kinetic energy.

The transport properties of the gas mixture are more or less well known functions of
temperature T and composition x,; we need not specify this dependence. Five coefficients
are involved: heat conductivity A, diffusion coefficient ¥ = nD, thermal diffusion coeffi-
cient «, shear and bulk viscosities 7 and §. At T = 300 K we have y = 0.35 4, 5/m, =
= 0.20 2. Here m, = 29 g/mol is the mass of one “air molecule”, and m, = 18 g/mol
is the mass of a water molecule. The effect of thermal diffusion consists in a correction
of the entropy flux and of the static entropy jump S by a transport entropy. The transport
relations can be most easily read off the dissipation function.

Products out of fluxes and gradients contribute to the dissipation per volume. The
fluxes per area are those of entropy js and of molecules j, of each kind n, to be measured
relative to the center-of-mass velocity w, and the friction tensor x. The gradients are those

, where v, is the volume per molecule in the liquid phase. p is the total
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of temperature 7, chemical potentials u, and velocity vector w. For ideal gases we have
du, = Tdin(x,p)— Tds,, hence

. . dl T . | dinx, 1 1
= — [js—Z(sn+55)Jn) L E},,[— r;: P + Sx 4 nT] — —7:gradw.

O =5 dr T

We note the identity
Zisy = 28 ) (B - L2,
@ my m;
Equation (3) suggests linear relations between gradients and fluxes of the three contribu-
tions. The first and second have been completed by terms involving a transport entropy

54 these terms do not contribute to the total sum but they formally decouple the linear
relations. The heat conduction and diffusion equations read

(4a) Jo=Esstsa)in = —2 DL
r
_ d x,  my— dlnp dlnT)
(5) Wy —W,; = D[—dr n—x2 + m' 5

m=xym;+x,ms.

The shear and isotropic parts of the tensors v and grad w are proportional to each other,
involving the viscosities  and f. The symmetry of the present problem implies div w =
= 2w/r+dw|dr = —wdlno/dr, rot w = 0. Hence

4 dl
Ter = —(3_71"'5,)"" o _4'}%’

dr
6) (divr), = : [( +ﬂ) dl““’] 4‘;—2;,
o=mZ, dm=(m—m)dx,.

We now identify ¥ = water vapour with undex 1 and a = air with 2. As there is almost
no flux of air molecules into the droplet, the conservation of species implies

J T J m, T
(Y)] w, =0, w":?x.,p’ w=?2—m?.
The momentum equation reads
(8) . J -{-g—d---r"-i = (divx)
dr dr 2 &

Let Q be the total energy flux, divided by 4z. Its density Q/r? is made up of the convection
fluxes ow* w2/2+nwZx,h,—wtt,, and of the energy flux jg relative to the velocity w.
We express the heat conduction equation (4a) in terms of jg:

(db) Je— Z Jnlbat Tsy) = —Zg

Here we have used that js is made up of the contributions jg/T— D jnttn] T. Finally, we
express jg in terms of the total energy flux density Q/r®. A transported enthalpy H(T, X)

7%
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is defined by
J .
'r_ZH = ; (Wi xenhy+Ji Tsy)

Mgy

== h,,(T)+x,+m" Tso(T, X,).

The energy equation then reads (with the term gw* w?/2 dropped):
HJ— dT
© -Ee .

- —Z-EF— WT,,.

The Egs. (5), (8) and (9), with (6) and (7) introduced into them, are the equations of motion
for the gas phase. They are subject to the following conditions: The state (x,, T, p) far
from the droplet is given; the state at the droplet » = R is in thermal equilibrium with
the liquid phase. Strictly, there is no equilibrium; instead, the state outside and the given
state inside the droplet are related by additional transport equations involving the accomo-
dation coefficients. In Gyarmathy’s interpolation formula this fact is accounted for by
the term const L.

Z“ET ), T). It is usually

expressed in terms of the saturation vapour pressure P,(T’) at a plane interface between
pure vapour and liquid water:

Thermal equilibrium at r = R implies u,(x,p, T) = p.;(p+

(10) In(x,p) = lnP(T)+ zag)iz)’t_ at r=R.
= InP,(T, R)

This is achieved by subtracting the identity u,[P,(T), T] = m[P,(T), T'] from the equilib-
rium condition. The pressure dependence of u, and g is given by u,(p, T) = Tln[p/(q,T)]
(9o = partition function/volume) and by wu(p’, T)—m(p, T) = vi(p'—p), (valid for
P'—p €2¢af ~ 4.5+ 10* bar; note that even 2¢/10A ~ 1400 bar only).

The constant fluxes J and Q are related to each other by the requirement that Q should
supply the enthalpy A,(p, T) of the condensed water molecules of the flux J:

an Q= h(Tp)J,
i g = " -
a M - Q _ H({, x,; h(Tw) , _ [Smﬂﬂin._mﬂ&“” i T ]J
- [s,+ Cput T}T‘“ ]J

First of all we integrate the equations of motion to the order J/Ar. Functions of the vari-
ables x, T, p are divided up into f(X, T, Poo) + 0f; here 6 denotes differences between
a position r and infinity., The index oo will be omitted
J
r
13) 0,p=0,

HI-Q mg—m, \J
5llnT = _-_3,_1"}'-_-_ = — (S+Ia—m——$*)b .

m,—m
= — 611nxa+x,,-5m—"s,6, InT,
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For an arbitrary function f(x, T, p) we get

(14 b = ~ 35,

with

é= ;

T T e

i m‘,_m,, .";_1_ d
m y S/ dlnx,

" a d
(for Xy = Xg = ]/2, y = 035}», S =17.59, Sy R —11’4, 0= _61111'" +0-10'_alnxa )

and
m,—m,

S, = S+x,—2—Ls,.
m

We see that the first-order variations of state functions are proportional to 1/r and of the
order of magnitude S J/Ar ~ 1/S. This fact is used for the second-order integration.
Thus the integration of the momentum equation involves the integral of the second-order
term —4(dny/dr) (w/r); here 17 may be replaced by the first-order approximation:

=]

dqp J T,
Jotro [t int binm v,
X d— o P d?- o Poo

The kinetic energy term 1/2 pdw?/dr differs from a total derivative by a third-order term,
which is dropped. All other terms are.total derivatives with respect to r. Thus the momen-
tum equation is easily integrated to the order (J/Ar)?. Similar arguments apply for the
equations (5) and (9). The result is

J 1 a— Tty 1 Mg—m,
—?;(l—?éllny)z—élnx,+x.,m m(s,.élnT+6lnp)+TéllnTﬁl(x, = s,,),

L. W4 bic

(15) op = 2w + j"(:"7;:+ﬁ)r511n.9+ = 6,7,
HI-Q 1 HI-Q _ N,
I tHh g o= Ty,

with

i m,—m, J my—m
6,lngo = é;Inm—46,InT = £r S,,[l —x,,x,,(T)s,]— y—x,“—i,

1, HI-Q 7l OH

oH my—m, 2 —m,
— = c,,,,+x,,“—m——$,,+ 6(x,m"Ts*).
These equations determine the state (x+dx, T+ 6T, p+dp) at r = R as functions of

(x, T, p) atinfinity and of the fluxes J and Q; the latter is eliminated by (11). These functions
are subject to the equilibrium condition (10), i.e., x, = 1 —x, in (10) is replaced by the
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solution x,+ dx, etc. Then (10), properly expanded in powers of (J/AR), implicitly deter-
mines this fraction as a function of the logarithm InU of the supersaturation U =
= x,p/P,(T, R). We pass over the details of these steps of the calculation. The result is:

J J ¥ 7 LN
with
2 % Ln(TIm)' = Lp(mT)~*7
and '
Cl = S¢2+ xa j.',
Xo P
C= 81+ Ldma)+52] 2 c,i—c,,—x, M= —13(’"“_’"”3
2= Va 7 n a _é’cpl Cpo xaTS* TN, s
1 b 1 %, A%
S"é" -:;6111}) ) xnz yzg
_ 4/3n+p ma—m, \* 7
G == {S=W "(T) o

- 4f3??+ﬁx“ mg,—my +L"u_}.
my m 2m

These expressions for the coefficients C are exact in the sense of an expansion in powers
of JIAR; however, we may simplify them by dropping several terms which are numerically
small. First of all we note that the product s,(m, —m,)/m is the thermal diffusion coefficient
o2, i.e., the ratio of grad In(x,/x,)/grad InT in a binary gas mixture at rest, in which
constant pressure and a given gradient of temperature T are maintained (acc. to Eq. (5)).
A lot of values of «,, for different mixtures [2] are consistent with s, ~ —1/4. Therefore
several terms involving s, may be neglected. It is physically interesting, however, that the
entropy of condensation involved in this problem is a kinetic quantity S, = S—X,%;
in this combination s, will not be dropped.

In addtition, we drop several terms which are small owing to the large value of S7.
We note, however, that also 1.5 c,;—c,, = 9.9 is a relatively large number. Finally, we
mention that terms involving the surface tension o(T) and its derivatives have been neg-
lected already in the above expressions.

The simplified formulae for the coefficients C are

Clzszs
an C.~ Sa(l+;jf"j,) SZ( = )
o _m q (1 E_dlnﬁ.)
Cam = m? milS( +v3 dinT

The correction C,(J/AR)? is smaller than the leading term C,(J/AR) by a factor of the
order 1/S,, whereas the diffusion term (x,/x,) (J/AR) in formula (1) is smaller by 1/S3
(for moderate fractions x,/x,). For this reason the latter has been dropped in (17). The
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ratio x,/x, may be large in practical cases. Then small gradients of Inx, (to be determined
by the first of Egs. (15)) do not imply small gradients of Inx, (involved in In U). In this
case the first-order solution must be replaced by

J X, J
i - Rl
(18) InU Sz R ln(1+ - R)’

and’ the second-order terms are partly corrected by the factor (l + (xa/x,) JIAR))™1,
(note that J is negative). We do not treat this case here in detail.

Fipally, we solve equation (16) for the fraction J/AR:
J InU cz(an)’ Cs (L 1:.u)2

19 ¥ oot 5 ol R0 N Rt
a4 7R C. TG C R G

Once more we see that the approximation is based on the large value of the entropy of
condensation S,; thus the second term of the right-hand side of (19) is smaller than the
first term by 1/S,. The third term is smaller than the leading term by 873 (L/R)?. This
term is unimportant in the limiting case L <€ R considered here; however, when this case
is matched to the opposite limiting case R < L, the term may not be dropped.

Finally, it is neccessary to point out that those terms in equation (16) which are of
order 1/S? and smaller should be completed by an expansion up to the order (J/AR)3,
because the largest coefficients of this power of the fraction J/AR will involve the large
factor S* so that the product will be of the order 1/S2, too.
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