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Analysis of energy and mass transfer between small droplets 
of liquid and a supersaturated gas mixture 

H. U. VOGEL (GOITINGEN) 

SMALL droplets of water grow due to deviations from thermodynamic equilibrium between 
the droplets and the surrounding gas phase. The equations of motion, including the complete 
continuum transport equations, are solved by expanding the problem in powers of the fraction 
Jf AR, the flux of molecules towards the droplet divided by the conductivity A and the radius R. 
The second power terms calculated here are smaller than the well-known terms by a factor 
of the order 1/S"' 1/15, where S is the entropy ofcondensation. They involve the ratio of mean 
free path length L and radius R. 

Male kropelki cieczy doznaj~ wzrostu na skutek odchylen od r6wnowagi termodynamicznej 
rni~dzy kropelkarni a otaczaj~~ je f~ gazowl;l. R6wnania ruchu l~cznie z kompletnyrni r6wna­
niami transportu osrodka ci~lego rozwi'lZt\ie si~ za pomo~ rozwini~cia w szeregi pot~gowe 
wzgl~dem ulamka Jf A.R (strumien c~steczek mierzony w kierunku kropli dzielony przez 
przewodnosc A i prornien R). Otrzymane w ten spos6b czlony drugiego rz~du ~ mniejsze od 
znanych czlon6w wiod~cych S-krotnie, gdzie S ~ 15 oznacza entropi~ kondensacji. Wyst~puj~ 
w nich stosunki sredniej drogi swobodnej L do promienia R. 

Manbie KaTIJlH >I<H,z:u<OCTH HatiHHaiOT paCTH BCJieACTBHe OTKJIOHeHHH OT TepMOAHHaMWieCKOrO 
paBHOBeCHH Mem,zzy KaiiJIHMH H OKpymaromeif ra30BOH <fla30H. YpaBHeHIDI ABIDKeHHH COB­
MeCTHO C llOJIHbiMH ypaBHeHHHMH nepeHOCa CllJIOIWIOH cpeAbl peWaiOTCH npH llOMOmH pa3JIO­
>KeHHH B CTeneHHLie pHAbl no OTl{pWemn<> K AP06H J~).R (nOTOK tiaCTJ~Q H3Mep.ReMbiH B Hanpa­
BJieHHH KanJIH AeJieHHLm Ha npc>BOAWmCTb A. H PaAHYC R). lloJiytieHHLie TaKHM o6pa3oM 
liJieHbi BToporo nopH,z:u<a MeH&we t~eM H3BeCTHbie BeAYmHe liJleHbi B S-pa3, rAe S ~ 15 
0003HallaeT 3HTpOllHIO KOHAeHca~H. BbiCTynaiOT B HHX OTHOWeHHH cpeAHeH AJIHHbl CB060A­
HOrO npo6era L K paAHYcy R. 

Droplets of water in supersaturated air grow due to deviations from thermodynamic 
equilibrium between gas and droplet and in the gas phase. Born with the critical radius 
of less than about 10 A, they are initially small compared with the mean free path length 
L ~ 500 A. During this short stage of rapid growth the fluxes J and Q of water molecules 
and of energy towards the droplet (here divided by 4n) are controlled by deviations of 
chemical potential ftv and temperature T between gas and droplet, and they involve kinetic 
properties known as accomodati<;>n coefficients. When the radius R has become large 
compared with L, gradients of ftv and Tin the gas phase are the controlling forces, invol­
ving the transport coefficients of the gas. Accordingly, the fluxes are initially proportional 
to R2 and finally to R. An interpolation between these limiting cases as done by GYARMA THY 

[1] will involve the ratio R/L. His formula may be written in the form 

(I) In Pv = R+constL [sz(T) -J + ~ - J]. 
P(T, R) R AR Xv yR 

Here Pv = XvP and Pv(T, R) are the actual and the saturation water vapour pressures. 
The latter depends on the radius R and the surface tension a(T): lnPv(T, R) = lnPv(T) 
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+ 2ui{) v,(p; T) , where v1 is the volume per molecule in the liquid phase. pis the total 

pressure in the gas phase, and xv and X a = 1 - x" are the mole fractions of water and 
air molecules in the gas phase. S(T) = dlnPv(T)/dln T is the entropy jump of one water 
molecule from the liquid to the gas phase (with a plane interface); at T = 300 K we have 
S = 17.59. A and y are the transport coefficients of heat conduction and dffiusion; y is 
the product n.D of gas molecules per volume times diffusion coefficient of water vapour in 
air. At T = 300 K we have y = 0.35 A. The properties of the gas in this formula are 
those far from the droplet; this will be indicated by the index oo only if neccessary, because 
the variations of these quantities are small. 

The dimensions in this paper are based on putting Boltzmann's constant equal to one, 
i.e., one degree Kelvin = 8.31 W.s/mol. Entropies and heat capacities are then dimen­
sionless quantities and the product A· R is a number per time intervall (mol/s) . 

. Gyarmathy's formula is approximate in two respects: it is an interpolation as explained 
above, and its right-hand side is the leading term of an expansion in powers of J I AR 
(for L ~ R). This dimensionless fraction is small due to the large value of the squared 
entropy jump; S2(300 K) = 309.4. A typical value of the left-hand side is In 50 ~ 4, 
hence Jf).R ""' 1/S2 • It might therefore seem to be more reasonable to expand in powers 
of 1/ S. This quantity, however, is an inherent property of several thermodynamic functions 
rather than an independent variable. 

We now derive the correction terms O(Jf AR)2 to the right-hand side of (1). They turn 
out to be smaller than the leading term only by s-l and not by s- 2

, because the coefficients 
of these terms again involve powers of S. The largest one is 

(2) 

For air (xv = 0) at T = 300 K we have oln A/ oln T = 0.800. Note that the two terms of 
(I) are respectively of order 1 and s- 2 • 

Some correction terms depend on the radius R through the product (L/R)2 • (l/AR) 2 , 

the largest one multiplied by Sand thus of order s- 3 • (L/R)2 • After solving the corrected 
equation (1) for Jf ).R we see that J is no longer strictly proportional to R, although no 
interpolation has ·been applied yet. These terms are related to the friction and (the smaller 
ones) to the kinetic energy. 

The transport properties of the gas mixture are more or less well known functions of 
temperature T and composition x"; we need not specify this dependence. Five coefficients 
are involved : heat conductivity A., diffusion coefficient y = nD, thermal diffusion coeffi­
cient ex, shear and bulk viscosities 'YJ and p. At T = 300 K we have y = 0.35 A., 'YJ /m a = 

= 0.20 A. Here ma = 29 gfmol is the mass of one "air molecule", and m"= 18 g/mol 
is the mass of a water molecule. The effect of thermal diffusion consists in a correction 
of the entropy flux and of the static entropy jumpS by a transport entropy. The transport 
relations can be most easily read off the dissipation function. 

Products out of fluxes and gradients contribute to the dissipation per volume. The 
fiuxes per area are those of entropy j 5 and of molecules jn of each kind n, to be measured 
relative to the center-of-mass velocity w, and the friction tensor -r. The gradients are those 
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of temperature T, chemical potentials p, and velocity vector w. For ideal gases we have 
dp, = Tdln(x,p)- Tds,, hence 

(3) entr. prod. [. Y'( ) . ] dinT \""'· [dlnx,p dinT] I 
I = - ]s--- s,+s* ln ·-d-- ~)n d + s*-d- - -T't': gradw. vo. r r r 

We note the identity 

£j,J,. = (h e2 (wl- w2) ( /1 - 12 ) . 
e m1 m2 

Equation (3) suggests linear relations between gradients and fiuxes of the three contribu­
tions. The first and second have been completed by terms involving a transport entropy 
s*; these terms do not contribute to the total sum but they formally decouple the linear 
relations. The heat conduction and diffusion equations read 

(4a) . '""'( ) . , dinT 
]s-~ s,+s* 1], = -A~; 

(5) -D(_!!_1 ~ m2 -m I ( dlnp dinT)] w1 -w2 = n + --+s*----
dr x 2 m dr · dr , ' 

m= x 1 m1 +x2m2. 

The shear and isotropic parts of the tensors 't' and grad w are proportional to each other, 
involving the viscosities rJ and {3. The symmetry of the present problem implies div w = 

= 2wfr+dwfdr = -wdlne/dr, rot w = 0. Hence 

(~- ) dine w T,, = - 3 n+P w~- 4n-,, 

(6) . d [( 4 ) dine ] dn w (diV't') = -- -n+/3 w-- -4--, 
r dr 3 dr drr 

e =m~' dm = (m1-m2)dxl. 

We now identify v = water vapour with undex 1 and a = air with 2. As there is almost 
no flux of air molecules into the droplet, the conservation of species implies 

(7) W4 = 0, 

The momentum equation reads 

J T 
Wv=~--, 

r XvP 

J m11 T 
w=--­

r2 m p · 

dp d w2 
. 

(8) dr +e dr 2 = (diV't'),. 

Let Q be the total energy flux, divided by 4n. Its density Q/r 2 is made up of the convection 
fluxes ew· w2/2+nw£x,h,-wt-c,, and of the energy flux jE relative to the velocity w. 
We express the heat conduction equation (4a) in terms ofjE: 

(4b) 
~ dT iE- L,.; j,(h, + Ts*) = - Adr . 
" 

Here we have used that is is made up of the contributions jE/T-}; j,p,,fT. Finally, we 
n 

express jE in terms of the total energy flux density Qfr 2. A transported enthalpy H(T, x,) 

7* 
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is defined by 

~ H =}; (wkxknhk+ATs*), 
r k 

~ H = h
11
(T)+xa mn-mv Ts*(T, X 11). 

m 

The energy equation then reads (with the term ew • w2 /2 dropped): 

(9) 
HJ-Q dT - = -A.--w-r r2 dr rr· 

H. U. VOGEL 

The Eqs. (5), (8) and (9), with (6) and (7) introduced into them, are the equations of motion 
for the gas phase. They are subject to the following conditions: The state (x11 , T, p) far 
from the droplet is given; the state at the droplet r = R is in thermal equilibrium with 
the liquid phase. Strictly, there is no equilibrium; instead, the state outside and the given 
state inside the droplet are-related by additional transport equations involving the accomo­
dation coefficients. In Gyarmathy's interpolation formula this . fact is accounted for by 
the term const L. 

Thermal equilibrium at r = R implies p,,(x, p, T) = p,1( p + 2"~T), T). It is usually 

expressed in terms of the saturation vapour pressure P 11(T) at a plane interface between 
pure vapour and liquid water: 

(10) ln(xvp) = lnP.,(T)+ 2af) ~} at r = R. 

= lnP11(T, R) 

This is achieved by subtracting the identity ,U11 [P11(T), T] = ~t1 [P11(T), T] from the equilib­
rium condition. The pressure dependence of f-tv and p,1 is given by p,11(p, T) = Tln [p / ( q11 T)] 
(q, =partition function/volume) and by p,1(p', T)-,u1(p, T) = v1(p'-p), (valid for 
p'-p ~ 2ezaf ~ 4.5 • 104 bar; note that even 2a.j10A ~ 1400 bar only). 

The constant fll1Xes J and Q are related to each other by the requirement that Q should 
supply the enthalpy h1(p, T) of the condensed water molecules of the flux J: 

(11) Q = h,(TR) • J, 

(12) 
HJ-Q 

T 
H(T,xv)-h,(TR) J _ [s(T) ma-mv T-TR]J 

T - +x" m s*+cp,l T 

* [ S.+c,., T-./R ]J. 
First of all we integrate the equations of motion to the order Jf A.r. Functions of the vari­
ables x, T, p are divided up into f(x00 , T 00 , p00) + {Jj; here {) denotes differences between 
a position rand infinity. The index oo will be omitted 

(13) 
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For an arbitrary functionf(x, T,p) we get 

(14) 

with 

A • a ( ma-mv A 1 ) a 
t5::::;::: ainT + Xv m s* + y Sa 8Inxa ' 

(ror x, = x, = 1/2, y = 0.35A, S = 17.59, s. "' -1/4, 3 = ill: T + 0.10 Ol!x, ) 

and 

. ma-mv 
Sa=;=S+xa s*. 

m 

We see that the first-order variations of state functions are proportional to I lr and of the 
order of magnitude S • J I Ar ,..., 1 IS. This fact is used for the second-order integration. 
Thus the integration of the momentum equation involves the integral of the second-order 
term -4(drJidr) (wlr); here 'YJ may be replaced by the first-order approximation: 

00 ·~ _ J dr4 d'YJ ~ ~ -f d2_ 4 d'Yj ~ mv Too=_ d'Yj : mv Too= -~dlj]· 
r dr r 

0 
r d.!_ r moo Poo d.!_ r moo Poo r 

r r 

The kinetic energy term Il2edw2 ldr differs from a total derivative by a third-order·term, 
which is dropped. All other terms are. total derivatives with respect to r. Thus the momen­
tum equation is easily integrated to the order (JIAr) 2

• Similar arguments apply for the 
equations (5) and (9). The result is 

J ( 1 ~ ) m a- mv 1 .i .i ( m a- mv ) yr l-2u1 lny = -dlnxa+Xv m (s*dlnT+dlnp)+Tu 1 lnTu1 Xv m s*, 

(15) ~P = ~ w2 +7(~ 'l+P)~.Ine+; ~•'1• 
HJ-Q +_I dt HJ-Q dl T+ 'YJ 2 

ATr 2r AT - n J.T ~ ' 

with 

These equations determine the state (x + dx, T + dT, p + dp) at r = R as functions of 
(x, T, p) at infinity and of the fluxes J a·nd Q; the latter is eliminated by (11). These functions 
are subject to the equilibrium condition (10), i.e., xv = 1-xa in (10) is replaced by the 
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solution x..,+ t}x.., etc. Then (10), properly expanded in powers of (Jf A.R), implicitly deter­
mines this fraction as a function of the logarithm In U of the supersaturation U = 
= x..,p/P..,(T, R). We pass over the details of these steps of the calculation. The result is: 

(16) lnU= -c,(~)-c2(~r -c.(~ ~f. 
with 

A.~ Ln(T/m)112 = Lp(mT)- 112 

and 

C . s3(1 1 ; 1 ") s2[ 3 ma-mv 1 ~ ( ma-m.., )] 
2 = a +2u fill. + a 2Cpz-Cpv-Xa m S*-2u m S* 

1 X a A ... 1 X a A 2 

+S ---t}lny----, 
a 2 x.., y 2 x; y2 

C3 =- :;{s. 4/~:P[I-x,x.( m.;,m• fs.]-s. ;;. .iln(AT) 

4/31]+{3 ma-mv m..,} 
- my Xa m + 2m • 

These expressions for the coefficients C are exact in the sense of an expansion in powers 
of J/A.R; however, we may simplify them by dropping several terms which are numerically 
small. First of all we note that the product s.(m1 - m2 )/m is the thermal diffusion coefficient 
cx12 , i.e., the ratio of grad ln(x1 /x2)/grad lnTin a binary gas mixture at rest, in which 
constant pressure and a given gradient of temperature Tare maintained (ace. to Eq. (5) ). 
A lot of values of cx12 for different mixtures [2] are consistent with s* ,..., -1/4. Therefore 
several terms involving s* may be neglected. It is physically interesting, however, that the 
entropy of condensation involved in this problem is a kinetic quantity Sa = S- X a cx..,a; 
in this combination s* will not be dropped. 

In addtition, we. drop several terms which are small owing to the large value of s;. 
We note, however, that also 1.5 Cpz-Cpv = 9.9 is a relatively large number. Finally, we 
mention that terms involving the surface tension (](T) and its derivatives have been neg­
lected already in the above expressions. 

The simplified formulae for the coefficients Care 

cl ~ s2, 

(17) C 3 ( 1 din A. ) 2( 3 C C ) 
2 ~ Sa 1 + 2 dinT +Sa 2 pl- P" ' 

m; rJ ( 1 f3 din A. ) 
C3 ~ - m2 m A. Sa 3 + -;y; - dinT . 

The correction C2 (Jf A.R)2 is smaller than the leading term C1 (J/ A.R) by a factor of the 
order 1/Sa, whereas the diffusion term (xafx,) (J/A.R) in formula (1) is smaller by 1/S~ 
(for moderate fractions xafx,J. For this reason the latter has been dropped in (17). The 
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ratio X 0 /Xv may be large in practical cases. Then small gradients of lnxa (to be determined 
by the first of Eqs. (15)) do not imply small gradients of lnxv (involved in In U). In this 
case the first-order solution must be replaced by 

(18) 1 2 J 1 ( Xa J ) nU= -Sa--n 1+--- , 
J..R Xv yR 

and· the sec~md-order terms are partly corrected by the factor (1 + (xafxv) (Jf J..R))-I, 
(note that J is negative). We do not treat this case here in detail. 

Fipally, we solve equation (16) for the fraction Jf J..R: 

(19) _!_ = _ lnU + C2 (lnU)
2 

+ C3 (~ lnU)
2 

J..R C 1 C 1 C 1 C 1 R C 1 • 

Once more we see that the approximation is based on the large value of the entropy of 
condensation Sa; thus the second term of the right-hand side of (19) is smaller than the 
first ten~ by 1/Sa. The third term is smaller than the leading term by S; 3 (L/R)l. This 
term is unimportant in the limiting case L ~ R considered here; however, when this case 
is matched to the opposite limiting case R ~ L, the term may not be dropped. 

Finally, it is neccessary to point out that those terms in equation (16) which are of 
order 1 I S 2 and smaller should be completed by an expansion up to the order (Jf J..R) 3, 

because the largest coefficients of this power of the fraction Jf J..R will involve the large 
factor S4 so that the product will be of the order 1 / S2

, too. 
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