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Investigation of a two-dimensional model of a micropolar continuum

K. BERGLUND (STOCKHOLM)

THE DIFFERENTIAL field equations of motion for a micropolar continuum are derived by con-
structing the difference equations of motion for a discrete lattice model and going to the con-
tinuum limit of a small lattice period. The model used consists of a two-dimensional quadratic
lattice of pulleys, where central forces and torques are conveyed by central springs and crossed
tangential rubber bands. It is found that the polar character of the resulting continuum manifests
itself only in an antisymmetric part of the stress tensor, whereas the micropolar angular mo-
mentum and the couple stress turn out to be negligible. It is argued that this is a general feature
of micropolar continua, modelled by ordinary classical-mechanical devices on the microlevel,
e.g., composite materials.

Réwnania rézniczkowe ruchu dla osrodka mikropolarnego wyprowadzone z réownan ruchu
w formie roznicowej dla dyskretnego modelu siatkowego sa poprawne w granicy dla osrodka
kontynualnego przy zmniejszeniu siatki. Stosowany model sklada si¢ z dwuwymiarowych
kwadratowych sieci §ciggien, gdzie sily centralne i momenty skrecajace sa przenoszone przez
centralne sprezyny i skrzyZowane, styczne gumowe ograniczniki. Wykazano, ze polarny cha-
rakter powstatego osrodka ciaglego przejawia sig ty]ko w antysymelrycznej czescl tensora na-
prezenia, podczas gdy mikropolarny moment pedu i napre¢zenia momentowe sa zaniedbywane.
Okazuje sig, Ze jest to ogdlna cecha mikropolarnych osrodkéw ciaglych modelowanych przez
zwykle klasyczne uklady mechaniczne na poziomie mikro, np. materialdw kompozytowych.

Huddeperunansibie ypaBHEHUA OBHKEHUA NI MHKPOMONAPHOH Cpeabl BLIBE/IEHBI H3 YPaB-
HEHWA OBWKEHHA B PA3HOCTHOH (hopme 75T MUCKPETHOIH CETOUHOH MO/IejH, MepeXod B mpe-
Aelle K KOHTHHYaZbHOH cpefle MpH yMeHblIeHHHM ceTKH. [IpumensAemasas Mofenb COCTOMT M3
[BYXMEPHOH KBaJpPAaTHOH CTEKH CTPYH, B KOTOpOH LIEHTPajbHBIE CHJIBI H CKPYYMBalolIHe
MOMEHTBI TEPEHOCATCA Uepe3 LeHTPalbHbIE NPYXKHHBI H CKPELIEHHbIE KaCaTe/IbHbIE PE3HHO-
Bble orpannunTesn. Ilokasano, uTo MoNAPHBIH XapakTep BOSHHKILEH CIUIOLIHONA cpelsl IIpo-
ABJIACTCA TOJIBKO B AaHTHCUMMETPHYHOM YacTH TeH30pPa HANpPSKeHHIH , TAK KaK MHKPOMOJIAPHBIM
MOMEHTOM HMIYJIbCa M MOMEHTHBIM HampshKeHHeM MOYHO npenebpeus. OkaskiBaeTcs, 3TO
oﬁmee CBOHCTBO MHKPONOJIAPHBIX CIVIOLIHBIX Cpej, MOOC/IHPOBAaHHLIX 4Yepe3 0OBIKHOBEHHLIE
KJIACCHYeCKHe MeXaHHUeCKHE CHCTeMbl HA YPOBHE MMKDO, HAIIDHMED, KOMIMO3HTHBIX MaTepHa-
JI0B.

1. Introduction and summary

THE AIM of the present investigation is to illustrate to what extent a linear micropolar con-
tinuum, satisfying the usual field equations given, for example, by NOWACK! [1], can be
obtained as a continuum limit of a discrete, classical-mechanical lattice model. This
means that on the microlevel as described by the model the micropoles and their inter-
actions are supposed to have the same order of magnitude as classical-mechanical systems
of dimensions comparable to the lattice period as, for instance, in a composite material.

As a representative model of this kind we consider a two-dimensional system of pulleys,
between which central forces and torges are applied by means of springs and rubber
bands. When in equilibrium the pulleys form a square lattice as shown in Fig. 1, there
positions are indicated by indices (p, q) in a coordinate system.
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The cohesive interaction is created by the following mechanism indicated in Fig. 1:

A. Springs parallel to the lattice between each pulley and its nearest neighbours.

B. Diagonal springs between each pulley and its second nearest neighbours.

C. Crossed rubber bands between each pulley and its nearest neighbours.

It is seen from Fig. 1 that in order to calculate how a pulley (p, ¢) is influenced by the
others, only the eight adjacent pulleys have to be considered. The total force on a pulley
(p, q) is most easily obtained by examining the cases 4, B and C separately and finally

yl

g+1

WWWM  Spring

Rubber band

O Pulley

g1

by adding the resulting expressions of forces and moments. As only small displacements
from equilibrium are considered, only linear terms will be included.

In Sec. 2 we calculate the total resulting force, Egs. (2.17) and (2.18), from springs
and rubber bands, exerted on the pulley (pg), giving the equations of motion for its centre
of gravity, Egs. (2.19) and (2.20).

In Sec. 3 we calculate the total resulting torque, Eq. (3.2), exerted solely by the rubber
bands on the pulley (p, ), which gives us the equation of angular momentum for this
pulley, Eq. (3.3).

In Sec. 4 we discuss the character of the limiting process. The performance of the
process gives the differential field equations for the micropolar continuum, i.e., for the
balance of momentum, Egs. (4.5) and (4.6), and angular momentum (4.7).

In Sec. 5 we compare our results with the current micropolar theory as described, for
example, by NOWACKI [I]. It is seen that our resulting continuum has vanishing couple
stress and vanishing micropolar angular momentum. In fact, terms of this kind have
vanished at the limit procedure since they depend on higher powers of the lattice period
than those which give the antisymmetric part of the stress tensor. This latter part is con-
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sequently the only remaining constitutive term in the balance of angular momentum and
it has thus to balance by itself any applied body couple.

[t may be noticed that the similar two-dimensional model with elastic rods conveying
the interactions, studied by ASKAR and CAKMAK [2] and generalized to the three-di-
mensional case by TAUCHERT (3], show the same general properties as ours. In fact, an
explicit assessment of the lattice period dependence of the constitutive constants in their
terms for stress couple and micropolar angular momentum shows that these terms vanish
at the limit process in the same way as ours. It seems reasonable that this is a general
feature of all models where the microlevel can be modelled by classical-mechanical mech-
anism of the order of magnitude of the lattice period and can be made from materials
having “ordinary” constitutive propérties. In order to get a non-vanishing couple stress
we must use a more sophisticated model where the ratio between the torque and the
central force has a weaker dependence on the characteristic micropolar length.

2. Calculation of the resulting force

In the case of springs only the coordinates for the centre of the pulleys where the
springs are assumed to be fastened will be taken into account. Thus a rotation of the
pulleys does not influence the result.

The forces on (p, ¢) from springs parallel to the lattice are calculated in the follow-
ing way:

We study a representative pair, viz. pulley (p, q) and (p+1, g). The displacements are
0Xp.qs 0Vp.q and 0Xp4 1,45 OVpyy,q, Tespectively. As the displacements are small we restrict
ourselves to linear terms of éx and dy. The force on (p, q) from (p+1, ¢) will thus be

(2.1) Srow. @+1.0 = Ki(d+0xp41,4—0xp,0—hy),
h
(2-2) fy.(p.n. (p+l.q) = Kl.(ayp+ L= 6}’:-1) (1 "’Tl) s

where f;, f, are the x-component and y-component of the force respectively, K, the
spring constant, 4, the natural length of the springs and d the distance between the centre
of the pulleys at equilibrium.

In the same manner we obtain the force on (p, q) from the three other pulleys (p—1, q),
(p, g+1), (p, g—1); the total forces from springs parallel to the lattice are

(2.3) Bty = Ki | (0Xp41,4—0x,0)— (6xp,4— 0Xp—1,9)

" -
+ (l —71) ((5yp.q+1 . ayp.q) - (5yp.q'_ ayp.a—l))

(24) f;:}p,m — Kl (ayp.iul - 6yp.c) o= (6}’,,.,—‘ ayp.q—l)

L.

P =
+ (l -— "j') ((‘5yp+1 a- 6}';7.4)‘_(6}’;’.@_ ayp—l.a)) .

The force on (p, ) from diagonal springs is calculated from the representative pair (p, g),
(p+1,g+1). The displacements are 6x,,,, 0Vp,q and 0,4y, g415 OVpit.as1-
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We obtain
h,
2.5  fogao.@riarn = Kz[d ]/— +(1 2dy3 )(6x,,+1 a+1— 0%p,q)
h
+ zl/i;d (éyp+1 g+l 6}';),4),

where K, is the spring constant of the diagonal springs and A, the natural length of the
diagonal springs, as the expression of the force in the direction of the x-axis and, similarly,
for the y-component.

Thus the results of the total force from diagonal springs is
1 hy

el 7) [(B%ps 1. g1 = 8%p.) = (8Xp.a= 8Xp_1. 01

26) [Dp =K {(

+(axp+1 q-1 6xp.q)'_(6xp.q"' 6xp-1.q+1)]

1
e 2[/2 d (ayp+1 q+1+5yp-1 g=1 éyp+l.q—1_ayp-l.q+1)}$
@7 f;g?p 9 = 2{(“% p )[( Vp-1.a+1—p.d) = (0Vp.a—= OVps1,0-1)
- +(ayp+l g+l 6ypq) (aypq éyp-l 1-1)]
R flem—s 2]/2 ;(6xp+1 q+l+axp—1 -1 6.'{, Li q+1—axp+1 q«l)l’

The rubber bands are attached to the pulleys so that at equilibrium there is a right angle
between the rubber band and the radius to the point where it is attached.

As the bands are attached in this manner we must consider a rotation dg of the pulleys
as well as the position of their centres. When we calculate the force from the rubber
bands a representative pair will be (p,¢q), (p+1, g). Consider a small displacement
0xp,45 0Pp.q and a small rotation d¢, , of pulley (p, g), and an analogous displacement
0Xp41,4» OVp+1,o and an analogous rotation dg,,, , of pulley (p+1, g). The displacements
of the ends of the rubber bands due to the small rotation dp are assumed to take place
in the direction of the tangent at equilibrium.

Let /, and I, be the length of the crossed rubber bands between (p, q) and (p+1, ).
An expression of /; thus is

1 2b bd
(2.8) I = Iol:l - ?(axp+ @ axp.q)"' ‘!j'g" (5)’p+: 5 q‘-éyp.e)_ ‘}g (6?’p+1 ks 69”?-9)]9

where b = rly/d and r is the radius of a pulley and /2 = d%—4r2.
Now we can write

(2.9) S0, w+ig = K [(7; = hs)cosa, + (I, —hs)cos as],

where «, and «, are the angles between Band 1 and the x-axis, and Band 2 and the x-axis,
respectively. We can derive an expression for cosa, as follows:

1118 42
(2.10) Cosay = To[‘? az (0xp41,4— 0x,, q)_“—(a)’pu a— 0V, q)]

and similarly for cosa,.
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This gives us the following expression for the x-component of the force on (p, q)
from (p, g+1) in the case of rubber bands:

2, 8rzh
2.11) e, 1.0 = Ks[ > (lo— 3)+(2_ ‘,od;)(éxpﬂ_q*—éx,,,)],

where K; is the spring constant for the rubber bands.
The y-component of the force from (p+1, gq) is

(2.12) Sy 0. +1.0 = Ksl(ly —h3)sinay — ([, —hs3)sina,].
An expression of sine, is

2b
(2.13) sina, = ——+ dz (6y,, a+1—0Vp.0— f d (é.r,, a+1—0xp.0)

and similarly for sina,.
Thus, the y-component of the force is

8r 21, 4b%d
(2-14) fy-(?.a).t9+1.ql = KS l[dzz + dzo (10 3)-] (éyp+1.q_ 6}’9»4)_ ?(EWPH .w+6'PP-q)}-
The force from (p—1, q), (p, g+1), (p, ¢—1) is obtained in a similar manner and the
total force from the crossed rubber bands is

8r2h; |
(2.15) J(rR(p Q= Ka: I d; [(axp-t-l.a_5xp.o)—(éxp.q_6xp—-1.¢)]
0 -

8r2 2l 4b%d
l:dz F d"? (lo—h3) (dxp.q-rl 6xp q) (5xp a 6xp ::—-1)]+ P (a?’p g+1 = é'pp q-l)}

L

2—-
[

[ 8r2n
(2.16) ;.R()p.q] = Ks{ 2- Td_: [(0¥p.0-1—0Yp.0)— (8Yp.o— p.asr1)]

8rz  2I
l:dz + d: (!0 ka):’[(ayp+le 5}’,, q') (éypq ayp—l q)]'l" !2 (aq)p—lq 6¢Jp+l.p)}-

The total force on (p, q) is obtained in the following way:
o = S0+ S0+ ik
Inserting Eqs. (2.3), (2.6) and (2.15) we get

8r2hs ] -
@1 fuo = [K1+K3(2—- 1’; = )][(6)(,“,,—éxp.q)—(éxp,,—éx,_llq)]

1 If
o P (Y P e TR (ORI CA S

1
b {(l_.Z—-IE d }[(5;:,“ 017 0Xp4 1,0 = (0Xp 41,0 0Xp41,0-1)
+(0Xp- 1,041 = 0Xp-1,0) = (0Xp_1,4— 0xp_ 1 - 1) +2[(0%p, 1,4— 0Xp,0) — (8Xp,a— 0xXp_1 )]

+“2‘T/3‘E[( Vo+t1.9+1— ts}’p+1 —1)= (a}’p—t g+1 ”"6yp-l - V]
4b2d

+K;—: (‘S‘Pp ¢+1_6?’pc 1)
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Similarly we obtain
8r2h3
(2-18) f;r () Kl"'KJ 2""—7" [(ayp.wl"a}’p.q)“(éyp.q_ 6}’?.4—1)]
lod
h 8rz2 2l
+|:Kl (l t;)+K3(I :_ii'_ O)UI} hs)][(éy;Wl q 6}’; q) (5.]”; q ayp—l q)]

+K2{( I/z d) (6yp+l P+1_5}'p+, 4) (6yp+i q_éyjﬂl q-l)]

+ (éyp—l.w+l o 5}’;-—1 .q)"' (6yp— 1.9~ 6}’9— 1.9- 1)+2[(6yp+x,.q_ ayp.q)_ (ayp.q_ a}'p—l.q)]

1 b
T2 d

= [(0xps1.041—0Xp_1,q41)—(0Xps1,0-1—0Xp_y o 1)]}

4b
-K3— '(6%5“ g é?’p—l c)

The equations of motion for the centre of gravity of pulley with the mass m are thus

(2.19) dtz (0x,.9) = fe.p.0r»
d
(2.20) m—z (5.0 = fr..0-

3. Calculation of the resulting moment

In the present model torques are only conveyed by means of the rubber bands and
since, in linear approximation, all the levers have the same magnitude r, we obtain

3.1 M .10 = K[(lh=h3)—(a=h3)lr = K3r(l, = 13)

and similarly for the moments from (p—1,q), (p, g+1) and (p, g—1).
In accordance to Eq. (3.1) and the three analogous expressions, the total moment is

‘ 4br

(32) Mz,(p.q) = Ka [(6yp+1 q ayp-i.q)"’(axp.q-il —6xp.q-l)]

=2r*(0@p4 1,0+ OPp-1,0+ 0Pp.a41 + 0Pp.a-1 +45tp,_q)} .

Thus, the law of angular momentum for the pulley (p, ¢) with the mass m will be

,d?
(3.3 mlw(a%.q) =M .05

where j is the moment of inertia per unit mass.
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4. The continuum limit

Going to the zero limit with the distance (d) between the pulleys, as well as with the
radius, masses, and radius of inertia of the pulleys, we obtain a two-dimensional micro-
polar continuum.

The limiting procedure will be done in such a way that

g = m|d?

will have a finite value in the limit, viz. the mass density per unit area of the two-di-
mensional continuum. The limiting procedure will also be such that the moment of inertia
J per unit mass (= the square of the radius of inertia) goes to zero as d2, since we assume
that the radius of inertia is of the order of magnitude d.

The spring constants have a finite magnitude since a spring, composed of a square
lattice of small, parallel springs, is easily seen to have the same spring constant as each
of the small springs.

The natural lengths of the springs are normally assumed to be of the same order of
magnitude as d, so that a quotient of type h/d has a finite value in the limit.

In the limiting procedure the calculations (2.19) and (2.20) will thus be divided with
d? and are therefore transformed in the following field equations:

@.1) oii = lim[d~f;, .0l
d—=0

42 o = lim[d~%f, .0l
d—0

where we have put
U= 0x,, ©=0y,,

After division with d? the equation of angular momentum (3.3) is transferred into the
following field equation:

4.3) limgjg = lim[d~2M,, 0],
d—0 -0

where we have put
550 = @-

If we assiime @ to be of the same order of magnitude as the angular velocity of the lattice,
i.e., Cauchy’s spin-tensor, the left hand side of Eq. (4.3) will disappear and the equation
of angular momentum will be

(4-4) lim[d_zMz.(p-al] = 0.
d—0

Passing to the limit we form difference quotients which are transformed in derivatives.
In doing so we put

Ax = Xp+1.a—Xpq = Xpa—Xp-1.4 = d,

Ay = Ypa+1—Vpa = Vpa—Vpa-1 = d.
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Performing this limit procedure on the law of momentum, Eqs (4.1) and (4.2), and the
law of angular momentum, Eq. (4.4), we obtain

[~ 2 = 62
@5 oii= K1+Kz(zﬂ- "2_)%(2_3;’2) - [xl(l-’;l +1<,(z-._”27)

2)/2 dl, | | ox? dy2

8r2  2(ly— ka)) o*u 0% 8r? Op
+K3(_‘}T+ 3y +|/2K2 yox +K3?2—'5,

. | 8r2hy\7 0% hy h,
46 = Rtk +K g li=2e g b s
R 2( 1/ 2( a1, ) oy [ ‘( d) ’( d|/2)
8r2  2l(lo—hi) ) Bzv o%u 8r2 [ o
thlet— a2 ’/Mz axay) %@ \ox )

8r2| dv Ou
4.7) Ky~ [ 5_2?’] =1,

Equations (4.5) and (4.6) have the form (u; = u, u, =9, u; =0, ¢, =0, ¢, =0,
P3 = @):

(4.8) oily = Puy yy +Quy 25+ Rz 12+ S9s,2,

4.9 oily = Qa1+ Py 25+ Ry, 13— 5931,

where the expressions for P, Q, R and S are given directly in Egs. (4.5) and (4.6).
Isotropic equations must have the form

(4.10) oy = Aty o+ But, j,— Cers @y 5»

where u; and @, do not depend on x; and u3 =0, ¢, = ¢, = 0.
A comparison with Egs. (4.8) and (4.9) give the following conditions for isotropy:

(4.11) Q+R = P.
Inserting values for @, R and P, we get

(12 —4r2
@12) K, = F%z X, +l/2h3}g; [043' ) k..
The law of momentum now takes the form
(4.13) ol = Quypy+ Rity y + Seprs @,
and the law of angular momentum takes the form
4.1 S(extmttm,i—2¢) = 0.

5. Comparison with current micropolar theory

The equations for a general isotropic micropolar medium are, as seen for example,
in Nowack1 [1],
(5.1) oy = (A+pu—o)u; g+ (p+ &) e 1+ 20Exim Pm.15
(5.2) ojfx = (B+y—&)Qru+ (¥ +&) @it 20(Eumtmi—294),
where the constants 4, u, o enter into the stress-tensor and f, y, ¢ enter into the couple-
stress-tensor.
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A comparison with Egs. (4.13) and (4.14) gives

(5.3) At+u—a=R=y2K,hd,

(5.4) pta =0 = P—R =K +K,[2=3h,(y2d)" "]+ K5(2—8r2h;d~-2I3"),
(5.5) o« = :;— = Ky4r3d-?,

(56) j=0,?+3=0,

B, y—e have no sense in 2 dimensions.
The inequalities

o,

VAR

s

0
(Ch) 0
0 < 34424,

which are the necessary and sufficient conditions for the medium to have a non-negative
internal energy, are seen to be satisfied for values which have a reasonable order of
magnitude of the occurring constants.

The comparable two-dimensional model with elastic rods instead of springs and
rubber bands as studied by AsKAR and CALMAK [2] seems to have the same properties
as ours.

If we study the entering coefficients in the expression of the strain energy in their
model, we observe that it does not include any terms of type y%, ¥5, ¥ xx, @,,y, because
the coefficients which belong to these terms have an order of magnitude which is a? times
the order of magnitude of the other entering coefficients, where a is the distance between
the nearest masses, and thus vanish in the limit. The result is that the couple stress is
negligible.

A similar model generalized to three dimensions by TAUCHERT [3] also exhibits the
same properties and, consequently, has a negligible couple stress.

It seems to be the case that if there is a dependence between the force and the torque
of the same kind as in these models, viz. the torque on a micropole is a force having the
same order of magnitude as the interacting forces times a lever which has the same order
of magnitude as the lattice period, we can never get a non-vanishing couple stress. It is
of no avail with a higher gradient theory because the terms of higher order vanish for
the same reason as above.

If, in our model, there are also antisprings i.e., springs which have a negative spring
constant together with the parallel springs, they should have the effect that the interacting
forces will have a smaller order of magnitude than the force which gives the torque. In
that case we would be able to get a non-vanishing couple stress. The same effect might
be obtainable by electric or magnetic forces.

In conclusion the model studied here is linear, simple approximation gives a polar
continuum theory with negligible angular momentum for the micropoles and with negligi-
ble couple stress. The polar properties are thus seen to show up only as an antisymmetric
part of the stress tensor.
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By introducing another kind of model which does not have any dependence between
the interacting force and moment or at least has a weaker dependence than the models
discussed above, it is possible to get a non-vanishing couple stress.
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