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Investigation of a two-dimensional model of a micropolar continuum 

K. BERGLUND (STOCKHOLM) 

THE DIFFERENTIAL field equations of motion for a micropolar continuum are derived by con­
structing the difference equations of motion for a discrete lattice model and going to the con­
tinuum limit of a small lattice period. The model used consists of a two-dimensional quadratic 
lattice of pulleys, where central forces and torques are conveyed by central springs and crossed 
tangential rubber bands. It is found that the polar character of the resulting continuum manifests 
itself only in an antisymmetric part of the stress tensor, whereas the micropolar angular mo­
mentum and the couple stress turn out to be negligible. It is argued that this is a general feature 
of micropolar continua, modelled by ordinary classical-mechanical devices on the microlevel, 
e.g., composite materials. 

R6wnania r6i:niczkowe ruchu dla osrodka mikropolarnego wyprowadzone z r6wnan ruchu 
w formie r6i:nicowej dla dyskretnego modelu siatkowego S<! poprawne w granicy dla osrodka 
kontynualnego przy zmniejszeniu siatki. Stosowany model sklada si~ z dwuwymiarowych 
kwadratowych sieci sci~gien, gdzie sily centralne i momenty skr~aj(lce S<l przenoszone przez 
centralne spr~i:yny i skrzyi:owane, styczne gumowe ograniczniki. Wykazano, i:e polarny cha­
rakter powstalego osrodka ci(lglego przejawia si~ tylko w antysymetrycznej cz~sci tensora na­
pr~i:enia, podczas gdy mikropolarny moment p~du i napr~i:enia momentowe S(l zaniedbywane. 
Okazuje si~, i:e jest to og6lna cecha mikropolarnych osrodk6w ci(lglych modelowanych przez 
zwykle klasyczne uklady mechaniczne na poziomie mikro, np. material6w kompozytowych. 

Jl::a<P<PepeHI.J,HaJihHbie ypasHeHIUI ABHmeHH.fl AJI.fl MHI<ponoJIHpHOH cpeAbi BbiBeAeHbi H3 ypas­
HeHH.fl ABH}I{eHHH B pa3HOCTHOH cPOpMe AJI.fl AHCI<peTHOH CeToqHOH MOAeJIH, nepeXOAH B npe­
AeJie I< I<OHTHHYaJihHOR cpeAe npH yMeHbllieHHH ceTI<H. IlpHMeHHeMa.fl MOAeJih COCTOHT H3 
ABYXMepHOH I<BaApaTiiOH CTei<H CTpYH, B KOTOpoi.J I.J,eHTpaJibHbie CHJibl H CKpyq:asaiOil.J,He 
MOMeHTbi nepeHOCHTCH qepe3 I.J,eHTpaJibHbie npymHHbl H CI<pell.l,eHHhie KaCaTeJibHbie pe3HHO­
Bhle orpaHHqHTeJIH. I1oi<a3aHO, qTo llOJIHpHbiH xapai<Tep B03HHI<Illei.J CllJIOlliHOH cpeAbl npo­
HBJI.fleTCH TOJibl<O B aHTHCHMMeTpHqHOH qacTH TeH30pa HanpHmeHHH, Tal< I<ai< MHI<pOllOJIHpHbiM 
MOMeHTOM HMllYJibCa ll MOMeHTHbiM HanpHmeHHeM MO}I{HO npeHe6pe%. 0I<a3biBaeTCH, 3TO 
061I.J,ee CBOHCTBO MHI<POllOJIHpHbiX CllJIOlliHbiX cpeA, MOAeJIHpOBaHHbiX qepe3 06biKHOBeHHbie 
KJiaCCHqeci<He MeXaHHqeCI<He CHCTeMbl Ha ypOBHe MHI<pO, HanpHMep, KOMll03HTHbiX MaTepHa­
JIOB. 

1. Introduction and summary 

THE AIM of the present investigation is to illustrate to what extent a linear micropolar con­
tinuum, satisfying the usual field equations given, for example, by NowACKI [1], can be 
obtained as a continuum limit of a discrete, classical-mechanical lattice model. This 
means that on the microlevel as described by the model the micropoles and their inter­
actions are supposed to have the same order of magnitude as classical-mechanical systems 
of dimensions comparable to the lattice period as, for instance, in a composite material. 

As a representative model of this kind we consider a two-dimensional system of pulleys, 
between which central forces and torqes are applied by means of springs and rubber 
bands. When in equilibrium the pulleys form a square lattice as shown in Fig. 1, there 
positions are indicated by indices (p, q) in a coordinate system. 
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384 K. BERGLUND 

The cohesive interaction is created by the following mechanism indicated in Fig. 1: 
A. Springs parallel to the lattice between each pulley and its nearest neighbours. 
B. Diagonal springs between each pulley and its second nearest neighbours. 
C. Crossed rubber bands between each pulley and its nearest neighbours. 
It is seen from Fig. 1 that in order to calculate how a pulley (p, q) is influenced by the 

others, only the eight adjacent pulleys have to be considered. The total force on a pulley 
(p, q) is most easily obtained by examining the cases A, B and C separately and finally 

WNWJM Spring 

Rubber band 

OPulley 

p-1 p p+1 X 

FIG. 1. 

by adding the resulting expressions of forces and moments. As only small displacement~ 
from equilibrium are considered, only linear terms will be included. 

In Sec. 2 we calculate the total resulting force, Eqs. (2.17) and (2.18), from springs 
and rubber bands, exerted on the pulley (pq), giving the equations of motion for its centre 
of gravity, Eqs. (2.19) and (2.20). 

In Sec. 3 we calculate the total resulting torque, Eq. (3.2h exerted solely by the rubber 
bands on the pulley (p, q), which gives us the equation of angular momentum for this 
pulley, Eq. (3.3). 

In Sec. 4 we discuss the character of the limiting process. The performance of the 
process gives the differential field equations for the micropolar continuum, i.e., for the 
balance of momentum, Eqs. (4.5) and (4.6), and angular momentum (4.7). 

In Sec. 5 we compare our results with the current micropolar theory as described, for 
example, by NowACKI [1]. It is seen that our resulting continuum has vanishing couple 
stress and vanishing micropolar angular momentum. In fact, terms of this kind have 
vanished at the limit procedure since they depend on higher powers of the lattice period 
than those which give the antisymmetric part of the stress tensor. This latter part is con-
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INVESTIGATION OF A TWO-DIMENSIONAL MODEL OF A MICROPOLAR CONTINUUM 385 

sequently the only remaining constitutive term in the balance of angular momentum and 
it has thus to balance by itself any applied body couple. 

It may be noticed that the similar two-dimensional model with elastic rods conveying 
th'e interactions, studied by AsKAR and CAKMAK [2] and generalized to the three-di­
mensional case by TAUCHERT [3], show the same general properties as ours. In fact, an 
explicit assessment of the lattice period dependence of the constitutive constants in their 
terms for stress couple and micropolar angular momentum shows that these terms vanish 
at the limit process in the same way as ours. It seems reasonable that this is a general 
feature of all models where the microlevel can be modelled by classical-mechanical mech­
anism of the order of magnitude of the lattice period and can be made from materials 
having "ordinary" constitutive properties. In order to get a non-vanishing couple stress 
we must use a more sophisticated model where the ratio between the torque and the 
central force has a weaker dependence on the characteristic micropolar length. 

2. Calculation of the resulting force 

In the case of springs only the coordinates for the centre of the pulleys where the 
springs are assumed to be fastened will be taken into account. Thus a rotation of the 
pulleys does not influence the result. 

The forces on (p, q) from springs parallel to the lattice are calculated in the follow­
ing way: 

We study a representative pair, viz. pulley (p, q) and {p+ I, q). The displacements are 
bxp,q, byp,q and bxp+l,q' byP+t.q' respectively. As the displacements are small we restrict 
ourselves to linear terms of ~x and by. The force on {p, q) from (p+ I, q) will thus be 

(2.1) fx.(p,q),(p+t.q> = K1 (d+bxp+t,q-bXp,q-h1), 

(2.2) /,., ... ,. (p+l.q) = KL(~Yp+L .• - ~Y •.• l ( 1- ~)' 
where fx,!, are the x-component and y-component of the force respectively, K1 the 
spring constant, h1 the natural length of the springs and d the distance between the centre 
of the pulleys at equilibrium. 

In the same manner we obtain the force on (p, q) from the three other pulleys {p-I, q), 
(p, q+ I), (p, q-1): the total forces from springs parallel to the lattice are 

(2.3) n~?,.,, = K1 [ (dx,+t.,- ~x..,)- (~x,,,- dx,_ 1 .,) 

+ ( 1- ~) ((dyp,q+l- dy,,,)-(dy,,,- dy,_,_,))]. 

(2.4) ~~~~•·•> = K1 [ ( dyp,o+l - dy,,,)- ( dy,,,- dy,,,_ 1) 

+ ( 1- ~) ((~Yp+t.<- dy,,,)- (6y,,,- dy,_, ,,)) l 
The force on (p, q) from diagonal springs is calculated from the representative pair (p, q), 
{p+I , q+I). The displacements are bxp,4 , bvp,q and bxp+l,q+ 1 , byp+t.q+l· 
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We obtain 

(2.5) fx. "·•>. CP+ 1.,. 0 = K2 [ d- ;~ + ( 1-
2
:;2 ) ( h,+ 1. •+ 1 - bx, .• ) 

+ ~2_ (<5yp+l,q+1- <5yp,q), 
2y2d 

where K2 is the spring constant of the diagonal springs and h2 the natural length of the 
diagonal springs, as the expression of the force in the direction of the x-axis and, similarly, 

for the y-component. 
Thus the results of the total force from diagonal springs is 

(2.6) /!~~·•> = K2 {( 1-
2 
~2 ~ )[(bx,+ L.q+ 1 - h, .• )- (bx, .• - bx,- 1 •• -1) 

+ (<5xp+ 1.q- 1- <5xp,q)- (<5xp ,q- <5xp- 1,q+1)] 

+ .. ~- ~ (<5yp+1.q+ 1 + <5yp-1, q-1- <5yp+1 'q-1- <5yp-1 ,q+ 1)}, 
2y2 d 

(2.7) J:~~·•> = Kz {( 1-
2 
~"2 ~ )[(bY,-t.,. 1 - by, .• )- (by, .• - by,+ t.q- 1) 

+ (<5yp+1.q+t- <5yp,q)- (<5yp ,q- <5yp-1,q-1)] 

1 h2 ' + 2y2 d(<5xp+1,q+1 +<5xp-Lq-1-<5xp-t,q+t- <5xp+1.o~-l)(. 

The rubber bands are attached to the pulleys so that at equilibrium there is a right angle 
between the rubber band and the radius to the point where it is attached. 

As the bands are attached in this manner we must consider a rotation <5fP of the pulleys 
as well as the position of their centres. When we calculate the force from the rubber 
bands a representative pair will be (p, q), (p + 1, q). Consider a small displacement 
<5xp,q, <5yp,q and a small rotation <5f{Jp,q of pulley (p, q), and an analogous displacement 
<5xp+ 1 ,q, <5yp+ Lq and an analogous rotation <5fPp+ Lq of pulley (p + 1, q). The displacements 
of the ends of the rubber bands due to the small rotation <5fP are assumed to take place 
in the direction of the tangent at equilibrium. 

Let /1 and 12 be the length of the crossed rubber bands between (p, q) and (p+ 1, q). 
An expression of /1 thus is 

[ 
1 2b bd J (2.8) 11 = lo 1+d(<5xp+l,q-<5xp.q)+--zrC<5Yp+1,q-<5yp.q)- 1rc<5fPp+l.q+<5fPp.q) , 

where b = r/0 /d and r is the radius of a pulley and 15 = d 2 - 4r 2
• 

Now we can write 

(2.9) 

where (X1 and (X2 are the angles between Band 1 and the x-axis, and Band 2 and the x-axis, 
respectively. We can derive an expression for cos(X1 as follows: 

(2.10) 1 ['5 4r
2 

2b J COS(X1 =To d+dl· (<5xp+ 1 , 4 -<5Xp,q)-d(<5yp+1.q-~Yp,q) 

and similarly for cos (X2 • 
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This gives us the following expression for the x-component of the force on (p, q) 

from (p, q + 1) in the case of rubber bands: 

[ 
2/0 ( 8r

2
h3 ) J (2.11) fx.(p,q),(p+l.q) = K3 d(/o-h3)+ 2- lod2 (~Xp+l,q- ~Xp,q) ' 

where K3 is the spring constant for the rubber bands. 
The y-component of the force from (p+ 1, q) is 

(2.12) /y.<p.q>.<P+t.q) = K3[(ft -h3)sincx1 -(/2-h3)sincx2]. 

An expression of sin cx1 is 

(2 . 2b 10 2b ~ ~ 
.13) sm cx1 = To+ -d2 ( ~Yp.q+l- ~Yp,q)- lod (uxp,q+l- uxp,q) 

and similarly for sin cx2. 
Thus, the y-component of the force is 

{[
8r·

2 
2/0 l 4b

2
d } 

(2.14) /y.<p,q>.<P+l.q> = K3 dll +([2(lo-h3) _ (~YP+Lq- ~Yp.q)- T(~CfJp+J,q+ ~CfJp,q) . 

The force from (p-1, q), (p, q+ 1), (p, q-1) is obtained in a similar manner and the 
total force from the crossed rubber bands is 

(2.15) ~~~~ .• , = x3{[ 2- %~3 
J(dxp+l.q- dx,.,)- (dx, .• - dx,_,,,)] 

[ 
8r

2 
2/0 J 4b

2
d } + ([2+ d2-(/o-h3) [(~xp,q+ 1 -~Xp,q)-(~xp,q-c5Xp,q-l)]+T(c5cpp,q+l-~CfJp.q-1), 

(2.16) !)~~ .• , = x3{[2- ~:~; }<dY,.H -dy,,,)-{dy,,,-dy,,,+l)l 

[ 
8r

2 
2/0 J 4b

2
d ) + ([2 + ([2(/o-h3) [( ~Yp+t,q- ~Yp,q)- (~Yp.q- ~Yp-J,q)] +---rr-(c5cpp-t,q- c5cpp+t,p) · 

The total force on (p, q) is obtained in the following way: 

fx. (p,q) = J;~~p.q) + J;~~.q) + J;~~.q) · 
Inserting Eqs. (2.3), (2.6) and (2.15) we get 

(2.17) fx. "·'' = [ K 1 + K3 ( 2-
8:.~: ) J (5xp+ 1,,- dx,,,)- ( dx,.,- dx,_ 1 ,,)] 

[ ( h1 ) ( 8r
2 

2/0 ) J + K1 1-d +K3 lod2 +(JT Uo-h3) [(c5xp,q+l-~xp,q)-(c5xp,q-c5Xp,q-t)] 

+ Kz{( 1- 21~2 ':; )r(dxp+t.q+t- dx,+ 1.,)- ( dxP+ 1.,- dx,+l.q- 1) 

+ ( c5xp-l,q+l- ~xp-l,q)- ( c5xp-l,q- c5xp-t,q-t) + 2 [( c5xP+ 1 ,q- c5xp,q)- ( ~xp,q- c5xp- 1 ,q)] 

+ .. ~2__ [(~Yp+t,q+t-c5Yp+I.q-1)-(~Yp-t,q+l-~Yp-I.q-t)]l 
2 r 2d 

4b 2d 
+ K3 -rr;-< c5cpp,q+ 1 - c5cpp,q-1). 
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Similarly we obtain 

+ [ K, ( 1- ~) +K3 c:~2 - ~~) Uo-h3)Jr(dy,+t,,- dy,,,)- (dy,,,- dy,_t.,ll 

+K2{( 1--
2 
~2 ; ) [(by,+ t,p+t- dy,+t.4)- (byP+ 1 .,- by,+t,,_,)] 

+ (bYp- 1,q+ 1 - byp- 1 ,q)- (bYp- 1,q- byp-t.q- 1) + 2[(byP+ t..q- byp,q)- (byp,q- by,-1. 11)] 

+ 
2 
~2 ; [(dxp+t.q+t- dx,_t.4+1)- (bxp+t.q-t- dx,_ 1 ,,_ 1)]} 

4b2d 
-KJT (&pp+1,q- bq;,-1.11). 

The equations of motion for the centre of gravity of pulley with the mass m are thus 

(2.19) 
d 

m-(bx ) = + < > dt2 p,q Jx, p,q ' 

(2.20) 
d 

m-(by ) = + dt 2 p,q J y,(p,q). 

3. Calculation of the resulting moment 

In the present model torques are only conveyed by means of the rubber bands and 
since, in linear approximation, all the levers have the same magnitude r, we obtain 

(3.1) 

and similarly for the moments from (p-1, q), (p, q+ I) and (p, q-1). 
In accordance to Eq. (3. I) and the three analogous expressions, the total moment is 

{
4br 

(3.2) Mz,(p,q> = K3 T[(bY,u,q-by,_ 1 ,4)-(bx,,4 + 1 -bx,,4 _ 1)] 

- 2r 2
( bq;,+ 1 ,q + bf/Jp- 1,q + bq;p,q+ 1 + ~f/Jp,q-J + 4bq;,,q) l· 

Thus, the law of angular momentum for the pulley (p, q) with the mass m will be 

(3.3) 
d2 

mi-(bm ) = M < ) 'J dt 2 T p,q z, p,q ' 

where j is the moment of inertia per unit mass. 
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4. The continuum limit 

Going to the zero limit with the distance (d) between the pulleys, as well as with the 
radius, masses, and radius of inertia of the pulleys, we obtain a two-dimensional micro­
polar continuum. 

The limiting procedure will be done in such a way that 

a= mfd2 

will have a finite value in the limit, viz. the mass density per unit area of the two-di­
mensional continuum. The limiting procedure will also be such that the moment of inertia 
j per unit mass ( = the square of the radius of inertia) goes to zero as d2

, since we assume 
that the radius of inertia is of the order of magnitude d. 

The spring constants have a finite magnitude since a spring, composed of a square 
lattice of small, parallel springs, is easily seen to have the same spring constant as each 
of the small springs. 

The natural lengths of the springs are normally assumed to be of the same order of 
magnitude as d, so that a quotient of type h/d has a finite value in the limit. 

In the limiting procedure the calculations (2.19) and (2.20) will thus be divided with 
d2 and are therefore transformed in the following field equations: 

(4.1) 

(4.2) 

where we have put 

After division with d2 the equation of angular momentum (3.3) is transferred into the 
following field equation: 

(4.3) lim ajcp = lim[d- 2 Mz, (p,q)], 
d-+0 d-+-0 

where we have put 

1q;p ,q = q;. 

If we assti.me ;p to be of the same order of magnitude as the angular velocity of the lattice, 
i.e., Cauchy's spin-tensor, the left hand side of Eq. (4.3) will disappear and the equation 
of angular momentum will be 

(4.4) 

Passing to the limit we form difference quotients which are transformed in derivatives. 
In doing so we put 

http://rcin.org.pl



390 K. BERGLUND 

Performing this limit procedure on the law of momentum, Eqs (4.1) and (4.2), and the 
law of angular momentum, Eq. (4.4), we obtain 

.. [ ( h2 ) ( 8r
2

h3 
)] o

2
u [ ( h1) ( h2 ) (4.5) au = K1 +K2 2- ~ I- +K3 2--- --+ K1 1-- +K2 2- ---=-

2y2 d210 ox2 d dt/2 

K (~ 2/o(/o-h3) )] 0
2
U ~ FiK !!.!:____[~] K 8r

2 
_ocp 

+ 3 d2 + d2 oy2 + r 2 d oy ox + 3 d2 oy , 

(4.6) av= K1+K2 2----- +K2 2- - - --+ K1 1-- +K2 2---=-.. [ ( h2 
) (' 8r

2

h3 
)] o

2

v [ ( h1 
) ( h2 

) 

dy2 d210 oy2 d dJI2 

K (~ 2loUo-h3) )]~ .. 12K !!.!:_(~)-K ~(!cp) + 3 d2 + d2 ox2 + Jf 2 d OX oy 3 d2 ox ' 

(4.7) 

Equations (4.5) and (4.6) have the form (u1 = u, u2 = v, u3 = 0, cp1 = 0, cp2 = 0, 
f/J3 = cp): 

(4.8) au1 = Pu1, 11 +Qu1. 22 + Ru2,12 + Scp3,2, 

(4.9) aii2 = Qu2.11 +Pu2 .22+Ru1,12-Scp3,1, 

where the expressw:ms for P, Q, Rand S are given directly in Eqs. (4.5) and (4.6). 
Isotropic equations must have the form 

(4.10) 

w;here uk and f/Jk do not depend on x 3 and u3 = 0, cp1 = cp2 = 0. 
A comparison with Eqs. (4.8) and (4.9) give the following conditions for isotropy: 

(4.11) Q+R = P. 

Inserting values for Q, R and P, we get 

(4.12) K _ h1 K +y2h3 (15-4r 2
) K 

2 
- J/ 2h2 

1 h2 dlo 
3 

• 

The law of momentum now takes the form 

(4.13) 

and the law of angular momentum takes the form 

(4.14) S(eklmUm,l- 2cpk) = 0. 

5. Comparison with current micropolar theory 

The equations for a general isotropic micropolar medium are, as seen for example, 
in NOWACKI [1], 

(5.1) 

. (5.2) 

auk = (A.+ ,u- a)u:,kl+ (u+ a)uk ,ll+2aekimf/Jm,Z, 

ajiA = (fJ +y-e) f/Jl ,kl + (y +e) f/Jk .ll + 2a(ekzmUm,z- 2gyk), 

where the constants A., u, a enter into the stress-tensor and fJ, y, e enter into the couple­
stress-tensor. 
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A comparison with Eqs. ( 4.13) and ( 4.14) gives 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

A+ ,u- ex = R = y'2K2 h2 d-t, 

,u+cx = Q =P-R= Kt +K2[2-3h2(y2d)- 1]+K3 (2-8r2h3 d- 2101), 

s 
ex=-= K3 4r 2d- 2 

2 • 

j = 0, y+s = 0, 

{1, y-e have no sense in 2 dimensions. 
The inequalities 

0 ~ ex, 

(5.7) 0 ~ fl, 

0 ~ 3A+2p, 

391 

which are the necessary and sufficient conditions for the medium to have a non-negative 
internal energy, are seen to be satisfied for values which have a reasonable order of 
magnitude of the occurring constants. 

The comparable two-dimensional model with elastic rods instead of springs and 
rubber bands as studied by AsKAR and CALMAK [2] seems to have the same properties 
as ours. 

If we study the entering coefficients in the expression of the strain energy in their 
model, we observe that it does not include any terms of type "P;x, 1p;.,, "P.xx• cp,yy, because 
the coefficients which belong to these terms have an order of magnitude which is a2 times 
the order of magnitude of the other entering coefficients, where a is the distance between 
the nearest masses, and thus vanish in the limit. The result is that the couple stress is 
negligible. 

A similar model generalized to three dimensions by T AUCHERT [3] also exhibits the 
same properties and, consequently, has a negligible couple stress. 

It seems to be the case that if there is a dependence between the force and the torque 
of the same kind as in these models, viz. the torque on a micropole is a force having the 
same order of magnitude as the interacting forces times a lever which has the same order 
of magnitude as the lattice period, we can never get a non-vanishing couple stress. It is 
of no avail with a higher gradient theory because the terms of higher order vanish for 
the same reason as above. 

If, in our model, there are also antisprings i.e., springs which have a negative spring 
constant together with the parallel springs, they should have the effect th.at the interacting 
forces will have a smaller order of magnitude than the force which gives the torque. In 
that case we would be able to get a non-vanishing couple stress. The same effect might 
be obtainable by electric or magnetic forces. 

In conclusion the model studied here is linear, simple approximation gives a polar 
continuum theory with negligible angular momentum for the micropoles and with negligi­
ble _couple stress. The polar properties are thus seen to show up only as an antisymmetric 
part of the stress tensor. 
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By introducing another kind of model which does not have any dependence between 
the interacting force and moment or at least has a weaker dependence than the models 
discus~ed above, it is possible to get a non-vanishing couple stress. 
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