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On displacement functions in the discrete elasticity theory 

I K. H. BOJDA I (GLIWICE) 

THE PAPER deals with generalization of the Moisil method of resolving the system of differential 
equations to the case of equations of linear discrete elasticity theory. A way of reduction of 
the number of equations and displacement functions is presented. As the particular case of 
the theory the discrete Cosserat medium and monopolar discretized body are considered. The 
procedure was iilustrated with the example of net shield with freely supported hinges construc
ted from the three families of rods. 

W pracy uog6lniono spos6b MoisiJa rozwiklania uktadu r6wnail r6i:niczkowych na przypadek 
r6wnan liniowej dyskretnej teorii spr~iystosci. Podano r6wniez pewien spos6b redukcji liczby 
r6wnan i funkcji przemieszczen. 

B pa6oTe o6o6meH cnoco6 MoHcHJIH pa3perneHHH CHCTeMbi ~mp<l>epeHWfaJibHbiX ypaaHeHHH 
Ha cnyqaH ypaaHeHHH JIHHeHHOH ~HCI<peTHOH TeOpHH ynpyroCTH . .IJ:aeTC.fl TO)f{e CTIOC06 pe
~YI<l(HH '[mcna ypaaHeHHH H <I>YHI<l\HH nepeMemeHHii. Kai< 'lJaCTHbiH cnyqaii paccMoTpeHbi 
~HCI<pernaH cpe~a Koccepa H o~HonoJIIQCHoe ~HCI<peTH3HpOBaHHoe Teno. UenoCTb no~o~a 
HJIJIIOCTpHpyeTcH Ha npHMepe perneT'lJaToro ~Hci<a, c rnapHHpHbiMH y3naMH, o6pa30BRHHoro 
H3 Tpex ceMeHCTB crep)f{Heii. 

1. Introduction 

THE MAIN role of displacements functions is to reduce the combined system of displace
ment equations to equations of simple structure. In the theory of elasticity a very useful 
way of resolving the system of partial differential equations was given by G. C. MoiSIL [5]. 
This method was applied among others in papers ([6], pp. 279, 505), ([7], pp. 185, 189), 
([2], p. 119), [1]. 

In this paper the Moisil procedure was generalized to the case of displacement equa
tions of the linear discrete elasticity theory. A certain manner of reducing a number of dis
placement functions particularly useful in the theory of elastic .discretized bodies is also 
discussed. This is so since in this theory the boundaiy conditions are prescribed in a dif
ferent way than in the classic theory of elasticity. In the further part of this work the 
particular form of the operators appearing in the displacement equations of Cosserats 
discrete media [10] and unipolar discretized bodies [4] are presented. Media with regular 
structure and homogeneous in the sense of independence of the properties of the place 
are considered. The same notation as in the works [3, 4, 8, 9, 10, 11] is used. 

In particular, the symbols LJAcp and LJAcp denote the right and left derivatives of the 
function cp. The indices a, b, ... , run the numbers 1, 2, ... , n, the indices ex, fJ, ... , -the 
numbers 1, 2, ... , r, the indices k, 1- the numbers 1, 2, 3, the indices KL the numbers 
1 , 2 and the indices A, (/> the series I, II, ... , m. The summations convention is used. 

4 Arch. Mech. Stos. nr 3/77 

http://rcin.org.pl



412 K. H. BOJDA 

2. Displacement functions 

The system of displacement equations for the discrete elasticity theory, [8], consists 
of the equilibrium equations 

(2.1) 

and constitutive equations which, in the linear theory, may be presented in the following 
form: 

(2.2) T1 = A:f LJ~~Jq" + n:bt/', 
-la = BfaLJt/Jq" + Cabcf· 

The quantities T1 and ta in Eqs. (2.1) and (2.2) are the components of the state of 
stress; fa is the exterior load, rf are the generalized coordinates of the particle ex. The 
quantities A1f, B1b, Cab characterize the elastic properties of the considered discrete 
systems. 

Substituting Eq (2.2) into Eq. (2.1), we obtain the following displacement equations: 

(2.3) A~fJALJ~~Jcf+B1,LJAcf-Bfat1t~>cf-Cabcf+fa = 0. 

Introducing the o~erators 

(2.4) 

Equation (2.3) may be written in the form 

(2.5) Labcf+fa = 0. 

From Eq. (2.4) it follows that the operators Lab are commutative and linear. 
The linearity of operation is understood here in its common sense, that is, if 

fP1,fP2E{fiJ: (qJ: D~R)}, 

ex 1 ,ex2eR, 
then · 

where D is the set of particles ex of a discrete medium, and R is the set of real numbers. 
Then, expressing the generalized coordinates q" of the particle a in terms of the dis

placement functions 

in the following manner, 

(2.6) 

we receive the equations 

(2.7) detLFa+la = 0, 

where L = [Lab] and the matrix V' is obtained from the matrix L by replacing a-th 
column by the vector F. 

The system of Eqs. (2. 7) consists of n equations, each of which contains only one 
unknown function Fa. Thus, each equation may be solved independently. 

http://rcin.org.pl



ON DISPLACEMENT FUNCTIONS IN THE DISCRETE ELASTICITY THEORY 413 

Let us now discuss a certain way reducing the system (2. 7) to the smaller number of 
equations. 

Denote by L: the commutative endomorphisms with the operators Lab 

L:: C(D) --+ C(D), 

C(D) = -{q;: (q;:D--+ R)}, jj c D, 

such that 

(2.8) !\ ( { <p = 0} c Ker L:) , 
oc,a 

where Ker L~ is a kernel of L:. 
As it results from Eq. (2.8), the operators L~ cannot be the injections. If one may 

determine such functions 

IPa: D--+ R, 

that 

(2.9) 

then expressing Fa in terms of the new displacement functions fl>a in the following way, 

we obtain the equations 

(2.10) 

The quantities tf are calculated in this case from the formulae 

(2.11) 

where Dba is a co-factor of the element Lba of the matrix L; the matrix Laa being obtained 
from the matrix L by replacing the a-th column by the vector La = (L:). 

When r < n, the system of Eqs. (2.10) contains fewer equations than the system (2.7). 
For example, if for a certain fixed value 

occurs, then 

and 

Fa = ~~k>f!>. 

Hence, the multiplications through ~~k> are here the endomorphisms L~ (et= (k)). The 
system (2.1 0) reduces in this case to the single equation 

det L f/> + <p = 0, 

and tf is evaluated from the formula 

4* 
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The procedure analogous to that described by the relation (2.9) is broadly used in 
the classical theory of elasticity; for example, in deriving the stress equation for shields 
it is frequently assumed that the mass forces Xi have the potential V 

xi = - a i v, i = 1 , 2. 

In all particular cases the equations for the displacement functions are determined 
from Eq. (2.7) or Eq. (2.10), and only the shape of the operators is different. 

3. Some ,Particular cases 

The discrete Cosserats medium is a particular case of the discrete media considered 
in the previous sections. In the theory of discrete Cosserats media one assumes [10] 

qa = bk uk + bf- 3vk, 

T1 = <5~ T~+ <5L3M~, 

la= <5L3ek/T~l~, 

la = b~fk+ <5~-3nk, 

where the quantities uk and vk are the components of the displacement state and /~ are 
the components of the vector connecting the centre of the mass body d with the centre 
of the mass body fA d in a reference co11figuration. 

The linear constitutive equations have the form 

where 

T~ = A~1<~>y~+B~<~>x~, 

M~= B~Ay~+F~<~>x~, 

y~ = L1Auk+e~,v'IJL 
X~ = LJAvk, 

are the components of the displacement state. 
Hence, the following relations hold: 

(3.1) 

A1t = <5~ b~A~,cz, + <5~ <5L 3 Bfl<~> + <5~- 3 <5~B~A + <5~- 3 <5L 3 F~<~>, 

B~b = <5~ <5~- 3 e~, I'; A~,<~>+ <5~- 3 <5L 3 e~, l~B'f//, 

C~b = <5~-3 <5C-3e1k,emnpl~l:l,A1:. 

Substituting Eq. (3.1) into Eq. (2.4), we obtain 

(3.2) 

The operators appearing at the right hand side of Eq. (3.2) have the following form: 

Akl = A~t L1AL1<1>, 

Bk, = B~~<~>LfAL1<~>+e"mll~Ar:'!IA, 
ckl = B~ALfA ";j<P + ekmn ~~ A1,<1> 11<1>, 

G _ vAtl> A A + n /mB<I>A A + n/mBA<I> A + n r /m/p AA<P kl - rkl LJALJ<P e ml t1> nk LJA ekm ll nl LJ<I> ekm e pi A t1> nr · 
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The components of the displacement state are evaluated from the formulae 

uk = qk, 

For the net shields we have [3] 

tf = l5K uK + l5~ V • 

Hence, 

and the operators Lab have the following form 

where 

Lab = l5~l5b AxL + l5~l5iBx+ l5~ l5fCL + l5~ l5iG, 

AKL = A1:fJALlll>, 

Bx = B~~Z>iiALl~Z>+eLMf~A~fJA, 

CL = BfA JALl~Z>+eMN if A~fLl~Z>, 

G F:ri.Q A A + N fMBcM A + NfM BAll> L1 + N R fMJPAAtP = LJALJ<P e M t1> N LJA eM A N 11> eM e. P A t1> NR· 

But for the net plates [3] 

Thus 

and 

where 

A= AAil>LJ-ALlll>, 

BL = B-"'fJALl~Z>+eMLI~AA<~>JA, 

C = Bli>~LfALl~Z>+exMlf AA~Z>LJ~Z>, 

DxL = F~fJALl~Z>+eMLI: B<~>~LfA +exMI~ BAfLl~Z>+exMeRL/f 1: AA~Z>. 

415 

In the formulae for the net shields and plates the following notations are introduced 

F£111>- p:rttP ?3 - . 

The monopolar discretized body is a particular case of the discrete Cosserat medium (4]. 
For this case 
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Hence, 

(3.3) 
uk = q", 

Lab = b! b~Ak, 
where 

In plane problems the indices k, I, ... , should be replaced by K, L, .... 

4. Example 

Consider a net shield with free supported hinges and formed from three families of 
rods. For the purpose of computation the two-dimensional monopolar discretized body 
was chosen. The range of the difference structure m for this body is three. For the case 
considered according to Eq. (3.3) we have 

Lab = b:b~A~fJALJtiJ. 

tlence, Eqs. (2.7) now assume the form 

(4.1) 

where 
CADtiJr = A1TA~f-A1fA~f. 

Since the expression for A~f is 

where A =1= $, 

(4.2) 
where A=$, 

then 

(4.3) 

In formulae (4.2) and (4.3), E is the modulus of longitudinal elasticity of the materia 
of the rods, AA is the cross-section area of the rods belonging to the family A, tf are the 
components of the unit vector parallel to the direction of the axis of the rod of the family 
A. The components of the displacement vector uK are evaluated from the following 
formulae 

If 

12 = 0, 
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then, 
IK = ~k<p, 

FK = ~_i(]). 

In this case the system '(4.1) reduces to the single equation 

(4.4) 

417 

and the components of the displacement state are evaluated from the following formulae: 

(4.5) 
U

1 = A1f3ALJtr>(]>, 

If, moreover, 

<p = 0, 

then, Eq. ( 4.4) is homogeneous 

(4.6) 

The displacement function satisfying Eq. (4.6) determines two possible displacement 
states: one given by Eq. (4.5) and the second given by the following formulae 

U1 = -AffLJALJtr>(]>, 
(4.7) 

u2 = A1TJ"ALJ<IJ(]>· 
The formulae (4.7) result from the relation 

where 

should be assumed. 

!K = ~i<JJ, 
FK = f5i;(]), 

<p=O 

The application of the displacement functions discussed above will be specially suitable 
when the displacements are prescribed on the boundary. 
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