3.

ON CERTAIN DEFINITE INTEGRALS.

[From the Cambridge Mathematical Journal, vol. III. (1841), pp. 138-144.]

In the first place, we shall consider the integral

$$
V=\iint \ldots(\mathfrak{n} \text { times }) \frac{d x d y \ldots}{\left\{(a-x)^{2}+(b-y)^{2} \ldots\right\}^{\frac{1}{2} \mathfrak{n}-1}}
$$

the integration extending to all real values of the variables, subject to the condition

$$
\frac{x^{2}}{h^{2}}+\frac{y^{2}}{h_{1}^{2}}+\ldots<\text { or }=1
$$

and the constants a, b, \&c. satisfying the condition

$$
\frac{a^{2}}{h^{2}}+\frac{b^{2}}{h_{1}^{2}} \ldots>1
$$

We have

$$
\begin{gathered}
\frac{d V}{d a}=-(\mathfrak{n}-2) \iint \ldots(\mathfrak{n} \text { times }) \frac{(a-x) d x d y \ldots}{\left\{(a-x)^{2}+(b-y)^{2} \ldots\right\}^{\frac{1}{n} n}}, \\
=-(\mathfrak{n}-2) \frac{2 h h, \ldots \pi^{\frac{1}{2} \mathfrak{n}} a}{\sqrt{ }\left(\xi+h^{2}\right) \cdot \Gamma\left(\frac{1}{2} \mathfrak{n}\right)} \int_{0}^{1} \frac{x^{\mathfrak{n}-1} d x}{\sqrt{\left[\left\{\xi+h^{2}+\left(h_{,}^{2}-h^{2}\right) x^{2}\right\}\left\{\xi+h^{2}+\left(h_{/ \prime}{ }^{2}-h^{2}\right) x^{2}\right\} \ldots\right]},}
\end{gathered}
$$

ξ being determined by the equation

$$
\frac{a^{2}}{\xi+h^{2}}+\frac{b^{2}}{\xi+h_{1}^{2}} \ldots=1
$$

by a formula [see p. 12] in a paper, [2], "On the Properties of a Certain Symbolical Expression," in the preceding No. of this Journal: ξ having been substituted for the η^{2} of the formula.

Let the variable x, on the second side of the equation, be replaced by ϕ, where

$$
x^{2}=\frac{\xi+h^{2}}{\xi+h^{2}+\phi}
$$

we have without difficulty

$$
\frac{d V}{d a}=-(\mathfrak{n}-2) \frac{h h_{,} \ldots \pi^{\frac{2}{2} n} a}{\Gamma\left(\frac{1}{2} \mathfrak{n}\right)} \int_{0}^{\infty} \frac{d \phi}{\left(\xi+h^{2}+\phi\right) \sqrt{ }}
$$

where

$$
\Phi=\left(\xi+h^{2}+\phi\right)\left(\xi+h_{\prime}^{2}+\phi\right) \ldots
$$

and similarly

$$
\begin{aligned}
& \frac{d V}{d b}=-(\mathfrak{n}-2) \frac{h h_{1} \ldots \pi^{\frac{1}{2} n} b}{\Gamma\left(\frac{1}{2} \mathfrak{n}\right)} \int_{0}^{\infty} \frac{d \phi}{\left(\xi+h_{,}^{2}+\phi\right) \sqrt{ } \Phi}, \\
& \& c . \ldots \ldots
\end{aligned}
$$

From these values it is easy to verify the equation

$$
V=\frac{(\mathfrak{n}-2) h h_{,} \ldots \pi^{\frac{1}{2} n}}{2 \Gamma\left(\frac{1}{2} \mathfrak{n}\right)} \int_{0}^{\infty}\left(1-\frac{a^{2}}{\xi+h^{2}+\phi}-\frac{b^{2}}{\xi+h_{,}^{2}+\phi} \cdots\right) \frac{d \phi}{\sqrt{\Phi}}
$$

For this evidently verifies the above values of $\frac{d V}{d a}, \frac{d V}{d b}$, \&c. if only the term $\frac{d V}{d \xi} d \xi$ vanishes; and we have

$$
\frac{d V}{d \xi}=\frac{(\mathfrak{n}-2) h h_{,} \ldots \pi^{\frac{3 n}{2 n}}}{2 \Gamma\left(\frac{1}{2} \mathfrak{n}\right)} \int_{0}^{\infty} d \phi \cdot \frac{d}{d \xi}\left(1-\frac{a^{2}}{\xi+h^{2}+\phi} \cdots\right) \frac{1}{\sqrt{ } \Phi}
$$

or, observing that

$$
\frac{d}{d \xi}\left(1-\frac{a^{2}}{\xi+h^{2}+\phi}-\cdots\right) \frac{1}{\sqrt{(\Phi)}}=\frac{d}{d \phi}\left(1-\frac{a^{2}}{\xi+h^{2}+\phi} \cdots\right) \frac{1}{\sqrt{(\Phi)}}
$$

and taking the integral from 0 to ∞,
in virtue of the equation which determines ξ.
No constant has been added to the value of V, since the two sides of the equation vanish as they should do for $a, b \ldots$ infinite, for which values ξ is also infinite and the quantity

$$
\left(1-\frac{a^{2}}{\xi+h^{2}+\phi} \cdots\right) \frac{1}{\sqrt{ }(\Phi)}
$$

which is always less than $\frac{1}{\sqrt{ }(\Phi)}$, vanishes.
Hence, restoring the values of V and Φ,

$$
\begin{gathered}
\iint \ldots(\mathfrak{n} \text { times }) \frac{d x d y \ldots}{\left\{(a-x)^{2}+(b-y)^{2} \cdots\right\}^{\frac{2}{n}-1}} \\
=\frac{(\mathfrak{n}-2) h h_{,} \ldots \pi^{\frac{1}{3 n}}}{2 \Gamma\left(\frac{1}{2} \mathfrak{n}\right)} \int_{0}^{\infty}\left(1-\frac{a^{2}}{\xi+h^{2}+\phi}-\frac{b^{2}}{\xi+h_{\imath}^{2}+\phi} \cdots\right) \frac{d \phi}{\sqrt{\left\{\left(\xi+h^{2}+\phi\right)\left(\xi+h_{,}^{2}+\phi\right) \ldots\right\}}}
\end{gathered}
$$

the limits of the first side of the equation, and the condition to be satisfied by a, b, \&c., also the equation for the determination of ξ, being as above.

The integral

$$
V^{\prime}=\iint \ldots(\mathfrak{n} \text { times }) \frac{d x d y \ldots}{\left\{(a-x)^{2}+(b-y)^{2} \ldots\right\}^{\mathfrak{n}^{n}}},
$$

between the same limits, and with the same condition to be satisfied by the constants, has been obtained [see p. 11] in the paper already quoted. Writing ξ instead of η^{2}, and $x^{2}=\frac{\xi}{\xi+\phi}$, we have

$$
V^{\prime}=\frac{h h_{,} \ldots \pi^{\frac{1}{2} \mathfrak{n}}}{\Gamma\left(\frac{1}{2} \mathfrak{n}\right)} \int_{0}^{\infty} \frac{d \phi}{(\xi+\phi) \sqrt{ }\left\{\left(\xi+h^{2}+\phi\right)\left(\xi+h_{l}^{2}+\phi\right) \ldots\right\}},
$$

where

$$
\frac{a^{2}}{\xi+h^{2}}+\frac{b^{2}}{\xi^{2}+h_{i}^{2}} \cdots=1 .
$$

Let $\nabla=\frac{d^{2}}{d a^{2}}+\frac{d^{2}}{d b^{2}}+\ldots$ Then by the assistance of a formula,

$$
\nabla^{q} \frac{1}{\left(a^{2}+b^{2} \ldots\right)^{i}}=2 i(2 i+2) \ldots(2 i+2 q-2)(2 i+2-\mathfrak{n}) \ldots(2 i+2 q-\mathfrak{n}) \cdot \frac{1}{\left(a^{2}+b^{2} \ldots\right)^{i+q}}
$$

given in the same paper [see p. 6], in which it is obvious that $a, b \ldots$ may be changed into $a-x, b-y$, \&c....; also putting $i=\frac{1}{2} n$; we have

$$
\iint \ldots(\mathfrak{n} \text { times }) \frac{d x d y \ldots}{\left\{(a-x)^{2}+\ldots\right\}^{\frac{\mathfrak{n}}{}+q}}=\frac{h h_{,} \ldots \ldots \pi^{\pi^{\mathfrak{n}}}}{2^{2 q} \cdot 1 \cdot 2 \ldots q \cdot \Gamma\left(\frac{1}{2} \mathfrak{n}+q\right)} \int_{0}^{\infty} d \phi \cdot \nabla^{q} \frac{1}{(\xi+\phi) \sqrt{ }\left\{\left(\xi+h^{2}+\phi\right) \ldots\right\}} .
$$

Now in general, if $\chi \xi$ be any function of ξ,

$$
\nabla \chi \xi=\chi^{\prime} \xi\left(\frac{d^{2} \xi}{d a^{2}}+\frac{d^{2} \xi}{d b^{2}} \ldots\right)+\chi^{\prime \prime} \xi\left\{\left(\frac{d \xi}{d a}\right)^{2}+\left(\frac{d \xi}{d b}\right)^{2} \cdots\right\}=\chi^{\prime} \xi \Sigma\left(\frac{d^{2} \xi}{d a^{2}}\right)+\chi^{\prime \prime} \xi \Sigma\left(\frac{d \xi}{d a}\right)^{2} \text {, suppose. }
$$

But from the equation

$$
\Sigma \frac{a^{2}}{\left(\xi+h^{2}\right)}=1,
$$

we obtain

$$
\begin{gathered}
\frac{2 a}{\xi+h^{2}}-\left\{\Sigma \frac{a^{2}}{\left(\xi+h^{2}\right)^{2}}\right\} \frac{d \xi}{d a}=0, \\
\Sigma\left(\frac{d \xi}{d a}\right)^{2}=\frac{4}{\Sigma \Sigma \frac{a^{2}}{\left(\xi+h^{2}\right)^{2}}} .
\end{gathered}
$$

Also

$$
\frac{2}{\xi+h^{2}}-4 \frac{a}{\left(\xi+h^{2}\right)^{2}} \frac{d \xi}{d a}+2\left\{\Sigma \frac{a^{2}}{\left(\xi+h^{2}\right)^{2}}\right\}\left(\frac{d \xi}{d a}\right)^{2}-\left\{\Sigma \frac{a^{2}}{\left(\xi+h^{2}\right)^{2}}\right\} \frac{d^{2} \xi}{d a^{2}}=0 ;
$$

whence taking the sum Σ, and observing that

$$
\begin{gathered}
-4 \Sigma \frac{a}{\left(\xi+h^{2}\right)^{2}} \frac{d \xi}{d a}=-8 \frac{\Sigma \frac{a^{2}}{\left(\xi+h^{2}\right)^{3}}}{\Sigma \frac{a^{2}}{\left(\xi+h^{2}\right)^{2}}}=-2 \Sigma \frac{a^{2}}{\left(\xi+h^{2}\right)^{3}} \cdot \Sigma\left(\frac{d \xi}{d a}\right)^{2} \\
2 \Sigma \frac{1}{\xi+h^{2}}-\left\{\Sigma \frac{a^{2}}{\left(\xi+h^{2}\right)^{2}}\right\} \Sigma\left(\frac{d^{2} \xi}{d a^{2}}\right)=0
\end{gathered}
$$

we find

$$
\Sigma\left(\frac{d^{2} \xi}{d a^{2}}\right)=\frac{2 \Sigma \frac{1}{\xi+h^{2}}}{\Sigma \frac{a^{2}}{\left(\xi+h^{2}\right)^{2}}}
$$

and we hence obtain

$$
\nabla \chi \xi=\frac{2 \chi^{\prime} \xi \Sigma \frac{1}{\xi+h^{2}}+4 \chi^{\prime \prime} \xi}{\Sigma \frac{a^{2}}{\left(\xi+h^{2}\right)^{2}}}
$$

Hence the function

$$
\int_{0}^{\infty} d \phi \cdot \nabla \frac{1}{(\xi+\phi) \sqrt{ }\left\{\left(\xi+h^{2}+\phi\right) \ldots\right\}}
$$

(observing that differentiation with respect to ξ is the same as differentiation with respect to ϕ) becomes integrable, and taking the integral between the proper limits, its value is
where

$$
-\frac{2 \chi_{0} \xi \Sigma \frac{1}{\xi+h^{2}}+4 \chi_{0}{ }^{\prime} \xi}{\Sigma \frac{a^{2}}{\left(\xi+h^{2}\right)^{2}}}
$$

We have immediately

$$
\chi_{0} \xi=\frac{1}{\xi \sqrt{ }\left\{\left(\xi+h^{2}\right)\left(\xi+h_{1}^{2}\right) \cdots\right\}}
$$

or

$$
\begin{gathered}
\frac{\chi_{0}^{\prime} \xi}{\chi_{0} \xi}=-\frac{1}{2}\left(\frac{2}{\xi}+\Sigma \frac{1}{\xi+h^{2}}\right) \\
2 \chi_{0} \xi \Sigma\left(\frac{1}{\xi+h^{2}}\right)+4 \chi_{0}^{\prime} \xi=-4 \frac{\chi_{0} \xi}{\xi}
\end{gathered}
$$

whence

$$
\int_{0}^{\infty} d \phi \cdot \nabla \frac{1}{(\xi+\phi) \sqrt{ }\left\{\left(\xi+h^{2}+\phi\right) \ldots\right\}}=\frac{4}{\xi^{2} \sqrt{ }\left\{\left(\xi+h^{2}\right)\left(\xi+h_{,}^{2}\right) \ldots\right\}\left\{\frac{a^{2}}{\left(\xi+h^{2}\right)^{2}}+\frac{b^{2}}{\left(\xi+h_{\ell}^{2}\right)^{2}}+\ldots\right\}}
$$

Hence restoring the value of ∇, and of the first side of the equation,

$$
\begin{gathered}
\iint \ldots(\mathfrak{n} \text { times }) \frac{d x d y \ldots}{\left\{(a-x)^{2}+(b-y)^{2} \ldots\right\}^{\frac{1}{n} n+q}} \\
=\frac{h h_{,} \ldots \pi^{\frac{2}{2} n}}{2^{2 q-2} \cdot 1.2 \ldots q \cdot \Gamma\left(\frac{1}{2} \mathfrak{n}+q\right)}\left(\frac{d^{2}}{d a^{2}}+\frac{d^{2}}{d b^{2}} \ldots\right)^{q-1} \frac{1}{\xi^{2} \sqrt{ }\left\{\left(\xi+h^{2}\right)\left(\xi+h_{\ell}^{2}\right) \ldots\right\}\left\{\frac{a^{2}}{\left(\xi+h^{2}\right)^{2}}+\frac{b^{2}}{\left(\xi+h_{,}^{2}\right)^{2}}+\ldots\right\}},
\end{gathered}
$$

with the condition

$$
\frac{a^{2}}{\xi+h^{2}}+\frac{b^{2}}{\xi+h_{1}^{2}} \ldots=1
$$

from which equation the differential coefficients of ξ, which enter into the preceding result, are to be determined.

In general if u be any function of $\xi, a, b \ldots$

$$
\left(\frac{d^{2}}{d a^{2}}+\frac{d^{2}}{d b^{2}} \cdots\right) u=\frac{4 \frac{d^{2} u}{d \xi^{2}}+2 \frac{d u}{d \xi} \Sigma \frac{1}{\xi+h^{2}}+4 \frac{d^{2} u}{d \xi d a} \Sigma \frac{a}{\xi+h^{2}}}{\Sigma \frac{a^{2}}{\left(\xi+h^{2}\right)^{2}}}+\Sigma \frac{d^{2} u}{d a^{2}},
$$

from which the values of the second side for $q=1, q=2$, \&c. may be successively calculated.

The performance of the operation $\left(\frac{d}{d a}\right)^{p}\left(\frac{d}{d b}\right)^{q}\left(\frac{d}{d c}\right)^{r} \cdots$, upon the integral V^{\prime}, leads in like manner to a very great number of integrals, all of them expressible algebraically, for a single differentiation renders the integration with respect to ϕ possible. But this is a subject which need not be further considered at present.

We shall consider, lastly, the definite integral

$$
U=\iint \ldots(\mathfrak{n} \text { times }) \frac{(a-x) f\left(\frac{x^{2}}{h^{2}}+\frac{y^{2}}{h_{1}^{2}}+\ldots\right) d x d y \ldots}{\left\{(a-x)^{2}+(b-y)^{2} \ldots\right\}^{\}^{3 n}}},
$$

limits, \&c. as before. This is readily deduced from the less general one

$$
\iint \ldots(\mathfrak{n} \text { times }) \frac{(a-x) d x d y \ldots}{\left\{(a-x)^{2}+(b-y)^{2} \ldots\right\}^{\frac{n^{n}}{}} .}
$$

For representing this quantity by $F(h, h, \ldots)$, it may be seen that

$$
U=\int_{0}^{1} f\left(m^{2}\right) \frac{d}{d m} F(n h h, m h, \ldots) d m
$$

but in the value of $F(h, h, \ldots)$, changing h, h, \ldots into $m h, m h, \ldots$ also writing $m^{2} \phi$ instead of ϕ, and $m^{2} \xi^{\prime}$ for ξ, we have
where

$$
F(m h, m h, \ldots)=\frac{h h_{1} \ldots \pi^{\frac{k n}{}}}{\Gamma\left(\frac{1}{2} \pi\right)} a \int_{0}^{\infty} \frac{d \phi}{\left(\xi^{\prime}+h^{2}+\phi\right) \sqrt{ }\left(\Phi^{\prime}\right)} ;
$$

and

$$
\begin{gathered}
\Phi^{\prime}=\left(\xi^{\prime}+h^{2}+\phi\right)\left(\xi^{\prime}+h_{1}^{2}+\phi\right) \ldots \\
\frac{a^{2}}{\xi^{\prime}+h^{2}}+\frac{b^{2}}{\xi^{\prime}+h_{1}^{2}}+\ldots=m^{2} .
\end{gathered}
$$

Hence

$$
\begin{aligned}
& \frac{d}{d m} F(m h, m h, \ldots)=\frac{d \xi^{\prime}}{d m} \frac{d}{d \xi^{\prime}} F(m h, m h, \ldots), \\
= & \frac{h h_{,} \ldots \pi^{3 n}}{\Gamma\left(\frac{1}{2} \mathfrak{n}\right)} a \frac{d \xi^{\prime}}{d m} \int_{0}^{\infty} d \phi \frac{d}{d \xi^{\prime}} \frac{1}{\left(\xi^{\prime}+h^{2}+\phi\right) \sqrt{ }\left(\Phi^{\prime}\right)},
\end{aligned}
$$

or, observing that $\frac{d}{d \xi^{\prime}}$ is equivalent to $\frac{d}{d \phi}$, and effecting the integration between the proper limits,

$$
\frac{d}{d m} F^{\prime}(m h, m h, \ldots)=-\frac{h h_{1} \ldots \pi^{\frac{3 n}{}}}{\Gamma\left(\frac{1}{2} \mathfrak{n}\right)} a \frac{1}{\left(\xi^{\prime}+h^{2}\right) \sqrt{ }\left\{\left(\xi^{\prime}+h^{2}\right)\left(\xi^{\prime}+h_{1}^{2}\right) \ldots\right\}} .
$$

c.

Substituting this value, also $f\left\{\frac{a^{2}}{\xi^{\prime}+h^{2}}+\frac{b^{2}}{\xi^{\prime}+h_{\imath}^{2}}+\ldots\right\}$ for $f\left(m^{2}\right)$, in the value of U, and observing that $m=0$ gives $\xi^{\prime}=\infty, m=1$ gives $\xi^{\prime}=\xi$, where ξ is a quantity determined as before by the equation

$$
\begin{gathered}
\frac{a^{2}}{\xi+h^{2}}+\frac{b^{2}}{\xi+h_{1}^{2}}+\ldots=1 \\
U=-\frac{h h, \ldots \pi^{\frac{2}{2} \pi} a}{\Gamma\left(\frac{1}{2} \mathfrak{n}\right)} \int_{\infty}^{\xi} \frac{f\left\{\frac{a^{2}}{\xi^{\prime}+h^{2}}+\ldots\right\} d \xi^{\prime}}{\left(\xi^{\prime}+h^{2}\right) \sqrt{\left\{\left(\xi^{\prime}+h^{2}\right)\left(\xi^{\prime}+h_{2}^{2}\right) \ldots\right\}}}
\end{gathered}
$$

we have
or writing $\phi+\xi$ for $\xi^{\prime}, d \xi^{\prime}=d \phi$, the limits of ϕ are $0, \infty$; or, inverting the limits and omitting the negative sign,

$$
U=\frac{h h_{1} \ldots \pi^{\frac{2}{2} n} a}{\Gamma\left(\frac{1}{2} \mathfrak{n}\right)} \int_{0}^{\infty} \frac{f\left\{\frac{a^{2}}{\xi+h^{2}+\phi}+\frac{b^{2}}{\xi+h_{1}^{2}+\phi}+\ldots\right\} d \phi}{\left(\xi+h^{2}+\phi\right) \sqrt{\left\{\left(\xi+h^{2}+\phi\right)\left(\xi+h_{1}^{2}+\phi\right) \ldots\right\}}}
$$

which, in the particular case of $\mathfrak{n}=3$, may easily be made to coincide with known results. The analogous integral

$$
\iint \ldots(\mathfrak{n} \text { times }) \frac{f\left\{\frac{x^{2}}{h^{2}}+\frac{y^{2}}{h_{1}^{2}}+\ldots\right\} d x d y \ldots}{\left\{(a-x)^{2}+(b-y)^{2} \ldots\right\}^{t^{\frac{n}{n}}}}
$$

is apparently not reducible to a single integral.

