11.

CHAPTERS IN THE ANALYTICAL GEOMETRY OF (n) DIMENSIONS.

[From the Cambridge Mathematical Journal, vol. iv. (1843), pp. 119-127.]

Chap. 1. On some preliminary formulce.
I TAKE for granted all the ordinary formulæ relating to determinants. It will be convenient, however, to write down a few, relating to a certain system of determinants, which are of considerable importance in that which follows: they are all of them either known, or immediately deducible from known formulæ.

Consider the series of terms

$$
\begin{array}{cc}
x_{1}, & x_{2} \ldots \ldots x_{n} \tag{1}\\
A_{1}, & A_{2} \ldots \ldots A_{n} \\
\vdots & \\
K_{1}, & K_{2} \ldots \ldots \dot{K}_{n}
\end{array}
$$

the number of the quantities $A \ldots \ldots K$ being equal to $q(q<n)$. Suppose $q+1$ yertical rows selected, and the quantities contained in them formed into a determinant, this may be done in $\frac{n(n-1) \ldots \ldots(q+2)}{1.2 \ldots \ldots n-q-1}$ different ways. The system of determinants 80 obtained will be represented by the notation

$$
\left\lvert\, \begin{array}{cccc}
x_{1}, & x_{2} & \ldots \ldots & x_{n} \tag{2}\\
A_{1}, & A_{2} & \ldots & A_{n} \\
\vdots & & & \vdots \\
\dot{K}_{1}, & K_{2} & \ldots & \dot{K}_{n}
\end{array}\right. \|
$$

and the system of equations, obtained by equating each of these determinants to zero, by the notation

$$
\left|\begin{array}{ccccc}
x_{1}, & x_{2} & \ldots & x_{n} \tag{3}\\
A_{1}, & A_{2} & \ldots & \ldots & A_{n} \\
\vdots & & & \vdots \\
K_{1} & K_{2} & \ldots & \dot{K}_{n}
\end{array}\right|=0
$$

The $\frac{n(n-1) \ldots \ldots(q+2)}{1.2 \ldots \ldots(n-q+1)}$ equations represented by this formula reduce themselves to $(n-q)$ independent equations. Imagine these expressed by

$$
\begin{equation*}
(1)=0, \quad(2)=0 \ldots \ldots(n-q)=0 . \tag{4}
\end{equation*}
$$

any one of the determinants of (2) is reducible to the form

$$
\begin{equation*}
\Theta_{1}(1)+\Theta_{2}(2) \ldots+\Theta_{n-q}(n-q) . \tag{5}
\end{equation*}
$$

where $\Theta_{1}, \Theta_{2} \ldots \Theta_{n-q}$ are coefficients independent of $x_{1}, x_{2} \ldots x_{n}$. The equations (3) may be replaced by

$$
\left\|\begin{array}{ccc}
\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots \lambda_{n} x_{n}, & \mu_{1} x_{1}+\ldots, & \ldots \tau_{1} x_{1}+\ldots \tag{6}\\
\lambda_{1} A_{1}+\lambda_{2} A_{2}+\ldots \lambda_{n} x_{n}, & \mu_{1} A_{1}+\ldots, & \ldots \tau_{1} A_{1}+\ldots \\
\vdots \\
\lambda_{1} \dot{K}_{1}+\lambda_{2} K_{2}+\ldots \lambda_{n} K_{n}, & \mu_{1} K_{1}+\ldots, & \tau_{1} K_{1}+\ldots
\end{array}\right\|=0
$$

and conversely from (6) we may deduce (3), unless

$$
\left|\begin{array}{cc}
\lambda_{1}, & \lambda_{2}, \ldots \lambda_{n} \tag{7}\\
\mu_{1}, & \mu_{2}, \ldots \mu_{n} \\
\vdots & \\
\tau_{1}, & \tau_{2}, \ldots \tau_{n}
\end{array}\right|=0
$$

(The number of the quantities $\lambda, \mu \ldots \tau$ is of course equal to n.) The equations (3) may also be expressed in the form

$$
\left|\begin{array}{ccc}
x_{1} & , & x_{2}, \tag{8}\\
\lambda_{1} A_{1}+\ldots & \omega_{1} K_{1}, & \lambda_{1} A_{2}+\ldots \omega_{1} K_{2}, \ldots \lambda_{1} A_{n} \ldots+\omega_{1} K_{n} \\
\vdots & \vdots & \\
\lambda_{q} A_{1}+\ldots \omega_{q} K_{1}, & \lambda_{q} A_{2}+\ldots \omega_{q} K_{2}, \ldots \lambda_{q} A_{n} \ldots+\omega_{q} K_{n}
\end{array}\right|
$$

the number of the quantities $\lambda, \mu \ldots \omega$ being q.
And conversely (3) is deducible from (8), unless

$$
\left|\begin{array}{c}
\lambda_{1}, \ldots \omega_{1} \tag{9}\\
\vdots \\
\lambda_{q}, \ldots \omega_{q}
\end{array}\right|=0 .
$$

Chap. 2. On the determination of linear equations in $x_{1}, x_{2}, \ldots x_{n}$ which are satisfied by the values of these quantities derived from given systems of linear equations.

It is required to find linear equations in $x_{1}, \ldots x_{n}$ which are satisfied by the values of these quantities derived-1. from the equations $\mathfrak{A}^{\prime}=0, \mathfrak{b}^{\prime}=0 \ldots \mathfrak{G}^{\prime}=0 ; 2$. from the equations $\mathfrak{A}^{\prime \prime}=0$, $\mathfrak{b}^{\prime \prime}=0 \ldots \mathfrak{\Omega}^{\prime \prime}=0 ; 3$. from $\mathfrak{A}^{\prime \prime \prime}=0, \mathfrak{b}^{\prime \prime \prime}=0 \ldots \mathfrak{Z}^{\prime \prime \prime}=0$, \&c. \&c., where

$$
\begin{align*}
& \mathfrak{A}^{\prime}=A_{1} x_{1}+A_{2} x_{2} \ldots+A_{n} x_{n}, \tag{1}\\
& \mathfrak{B}^{\prime}=B_{1} x_{1}+B_{2} x_{2} \ldots+B_{n} x_{n},
\end{align*}
$$

and similarly $\mathfrak{A}^{\prime \prime}, \mathbf{B}^{\prime \prime}, \ldots, \mathfrak{A}^{\prime \prime \prime}, \mathfrak{a b}^{\prime \prime \prime}, \ldots, \& c$. are linear functions of the coordinates $x_{1}, x_{2}, \ldots x_{n}$.

Also $r^{\prime}, r^{\prime \prime} \ldots$ representing the number of equations in the systems (1), (2) \ldots and k the number of these given systems,

$$
\left(n-r^{\prime}\right)+\left(n-r^{\prime \prime}\right)+\ldots \ngtr n-1 \text { or }(k-1) n+1 \ngtr r^{\prime}+r^{\prime \prime}+\ldots
$$

Assume

$$
\begin{align*}
0= & \lambda^{\prime} \mathfrak{A}^{\prime}+\mu^{\prime} \mathfrak{B ^ { \prime }}+\ldots, \\
& \lambda^{\prime} \mathfrak{A}^{\prime}+\mu^{\prime} \mathfrak{B}^{\prime}+\ldots=\lambda^{\prime \prime} \mathfrak{A}^{\prime \prime}+\mu^{\prime \prime} \mathfrak{B} \mathfrak{B}^{\prime \prime}+\ldots=\lambda^{\prime \prime \prime} \mathfrak{A}^{\prime \prime \prime}+\mu^{\prime \prime \prime} \mathfrak{B ^ { \prime \prime \prime }}+\ldots=\& c . \tag{2}
\end{align*}
$$

the latter equations denoting the equations obtained by equating to zero the terms involving x_{1}, those involving $x_{2}, \& c \ldots$ separately. Suppose, in addition to these, a set of linear equations in $\lambda^{\prime}, \mu^{\prime} \ldots \lambda^{\prime \prime}, \mu^{\prime \prime} \ldots$ so that, with the preceding ones, there is a sufficient number of equations for the elimination of these quantities. Then, performing the elimination, we thus obtain equations $\Psi=0$, where Ψ is a function of $x_{1}, x_{2} \ldots$ which vanishes for the values of these quantities derived from the equations (1) or (2) \ldots \&c. The series of equations $\Psi=0$ may be expressed in the form

Сhap. 3. On reciprocal equations.
Consider a system of equations

$$
\begin{align*}
& A_{1} x_{1}+A_{2} x_{2} \ldots+A_{n} x_{n}=0, \tag{1}\\
& \vdots \\
& K_{1} x_{1}+K_{2} x_{2} \ldots+K_{n} x_{n}=0,
\end{align*}
$$

(r in number).
The reciprocal system with respect to a given function (U) of the second order in $x_{1}, x_{2} \ldots x_{n}$, is said to be

$$
\left\|\begin{array}{ccc}
d_{x_{1}} U, & d_{x_{2}} U, \ldots & d_{x_{n}} U \tag{2}\\
A_{1}, & A_{2}, \ldots & A_{n} \\
\vdots & \vdots & \vdots \\
K_{1}, & \dot{K}_{2}, \ldots & \dot{K}_{n}
\end{array}\right\|=0 .
$$

($n-r$ in number).
It must first be shown that the reciprocal system to (2) is the system (1), or hat the systems (1), (2) are reciprocals of each other.
c.

Consider, in general, the system of equations

$$
\begin{align*}
& \alpha_{1} d_{x_{1}} U+\alpha_{2} d_{x_{2}} U \ldots+\alpha_{n} d_{x_{n}} U=0 \tag{3}\\
& \quad \vdots \\
& \lambda_{1} d_{x_{1}} U+\lambda_{2} d_{x_{2}} U \ldots+\lambda_{n} d_{x_{n}} U=0
\end{align*}
$$

Suppose

$$
\begin{equation*}
2 U=\Sigma\left(\alpha^{2}\right) x_{\alpha}^{2}+2 \Sigma(\alpha \beta) x_{\alpha} x_{\beta} \text {, so that } d_{x_{s}} U=\Sigma(s \alpha) x_{\alpha} . \tag{4}
\end{equation*}
$$

The equations (3) may be written

$$
\begin{equation*}
x_{1}\left\{\alpha_{1}\left(1^{2}\right)+\alpha_{2}(12) \ldots+\alpha_{n}(1 n)\right\}+\ldots+x_{n}\left\{\alpha_{1}(n 1)+\alpha_{2}(n 2) \ldots+\alpha_{n}\left(n^{2}\right)\right\}=0 \tag{6}
\end{equation*}
$$

\&c.
and forming the reciprocals of these, also replacing $d_{x_{1}} U, d_{x_{2}} U \ldots$ by their values, we have

$$
\left\|\begin{array}{|l}
x_{1}\left(1^{2}\right)+x_{2}(12)+\ldots x_{n}(1 n), \ldots x_{1}(n 1)+x_{2}(n 2) \ldots+x_{n}\left(n^{2}\right) \tag{7}\\
\alpha_{1}\left(1^{2}\right)+\alpha_{2}(12)+\ldots x_{n}(1 n), \ldots \alpha_{1}(n 1)+\alpha_{2}(n 2) \ldots+a_{n}\left(n^{2}\right) \\
\vdots \\
\lambda_{1}\left(1^{2}\right)+\lambda_{2}(12)+\ldots \lambda_{n}(1 n), \ldots \\
\vdots \\
\lambda_{1}(n 1)+\lambda_{2}(n 2) \ldots+\lambda_{n}\left(n^{2}\right)
\end{array}\right\|=0 .
$$

From these, assuming

$$
\left|\begin{array}{ccc}
\left(1^{2}\right), & (12), \ldots(1 n) \tag{8}\\
(21), & \left(2^{2}\right), \ldots(2 n) \\
\vdots \\
(n 1), & (n 2), \ldots\left(n^{2}\right)
\end{array}\right| \neq 0
$$

we obtain, for the reciprocal system of (3),

$$
\left\|\begin{array}{ccc}
x_{1}, & x_{2}, \ldots & x_{n} \tag{9}\\
\alpha_{1}, & a_{2}, \ldots & a_{n} \\
\vdots & & . \\
\lambda_{1}, & \lambda_{2}, \ldots & \lambda_{n}
\end{array}\right\|=0
$$

Now, suppose the equations (3) represent the system (2) ; their number in this case must be $n-r$. Also if θ represent any one of the quantities $\alpha, \beta \ldots \lambda$, we have

$$
\begin{gather*}
A_{1} \theta_{1}+A_{2} \theta_{2} \ldots+A_{n} \theta_{n}=0 . \tag{10}\\
\vdots \\
K_{1} \theta_{1}+K_{2} \theta_{2} \ldots+K_{n} \theta_{n}=0 .
\end{gather*}
$$

By means of these equations, the system (9) may be reduced to the form

$$
\left\lvert\, \begin{array}{ccccc}
A_{1} x_{1}+A_{2} x_{2} \ldots+A_{n} x_{n}, \ldots K_{1} x_{1}+K_{2} x_{2} \ldots+K_{n} x_{n}, & x_{r+1}, & x_{r+2}, \ldots x_{n} \tag{11}\\
0 & , \ldots & 0 & , & a_{r+1}, \\
a_{r+2}, \ldots a_{n} \\
\vdots & , \ldots & 0 & \vdots & \vdots \\
0 & , & \lambda_{r+1}, & \lambda_{r+2}, \ldots \lambda_{n}
\end{array}\right. \|=0 . .
$$

which are satisfied by the equations (1). Hence the reciprocal system to (2) is (1), or (1), (2) are reciprocals to each other.

Theorem. Consider the equations

$$
\begin{array}{ll}
\left(\mathfrak{A}^{\prime}=0,\right. & \left.\mathfrak{B}^{\prime}=0 \ldots \mathfrak{G}^{\prime}=0\right) \tag{12}\\
\left(\mathfrak{A}^{\prime \prime}=0,\right. & \left.\mathfrak{B B}^{\prime \prime}=0 \ldots \mathfrak{Z}^{\prime \prime}=0\right) \\
\left(\mathfrak{A}^{\prime \prime \prime}=0,\right. & \left.\mathfrak{B b}^{\prime \prime \prime}=0 \ldots \mathfrak{Z}^{\prime \prime \prime}=0\right),
\end{array}
$$

$\& c$.
of Chap. 2. The equations

$$
\left\|\begin{array}{ccc}
d_{x_{1}} U, & d_{x_{2}} U, \ldots & d_{x_{n}} U \tag{13}\\
A_{1}^{\prime}, & A_{2}^{\prime}, \ldots & A_{n}{ }^{\prime} \\
\vdots & & \vdots \\
G_{1}^{\prime}, & G_{2}^{\prime}, \ldots & \dot{G}_{n}{ }^{\prime}
\end{array}\right\|=0, \quad\left\|\begin{array}{ccc}
d_{x_{1}} U, & d_{x_{2}} U, \ldots & d_{x_{n}} U \\
A_{1}^{\prime \prime}, & A_{2}^{\prime \prime}, \ldots & A_{n}^{\prime \prime} \\
\vdots & \dot{O}_{1}^{\prime \prime}, & O_{2}^{\prime \prime}, \ldots
\end{array} O_{n}{ }^{\prime \prime}\right\|=0
$$

$\& c$.
which are the reciprocals of these systems, represent taken conjointly the reciprocal of the system of equations (3) of the same chapter.

Let this system, which contains $n-\left\{(n-r)+\left(n-r^{\prime}\right)+\ldots\right\}$ equations, be represented by

$$
\begin{align*}
& \alpha_{1} x_{1}+\alpha_{2} \aleph_{2} \ldots+\alpha_{n} x_{n}=0 . \tag{14}\\
& \beta_{1} x_{1}+\beta_{2} x_{2} \ldots+\beta_{n} x_{n}=0 . \\
& \vdots \\
& \zeta_{1} x_{1}+\zeta_{2} x_{2} \ldots+\zeta_{n} x_{n}=0 .
\end{align*}
$$

$$
\left|\begin{array}{cccc}
d_{x_{1}} U, & d_{x_{2}} U, \ldots & d_{x_{n}} U \tag{15}\\
\alpha_{1}, & \alpha_{2} & \ldots & \alpha_{n} \\
\vdots & & & \\
\zeta_{1}, & \zeta_{2} & \ldots & \zeta_{n}
\end{array}\right|=0
$$

containing $(n-r)+\left(n-r^{\prime}\right)+\& c . .$. equations.
Also, by the formulæ in Chap. 2,

$$
\begin{align*}
& \alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}=\lambda_{1}^{\prime} \mathfrak{A}^{\prime}+\mu_{1}^{\prime} \mathfrak{B b}^{\prime}+\ldots \sigma_{1}^{\prime} G_{\mathfrak{B}^{\prime}}\left(\lambda, \mu \ldots \sigma, r^{\prime} \text { in number }\right) . \\
& \beta_{1} x_{1}+\ldots+\beta_{n} x_{n}=\lambda_{2}^{\prime} \mathfrak{A}^{\prime}+\mu_{2}^{\prime} \mathfrak{B b}^{\prime}+\ldots \sigma_{2}^{\prime} \mathfrak{G}^{\prime} \\
& \vdots \tag{16}\\
& \zeta_{1} x_{1} \quad \ldots+\zeta_{n} x_{n}=\lambda_{\theta}{ }^{\prime} \mathfrak{A}^{\prime}+\mu_{\theta}^{\prime} \mathfrak{B b}^{\prime}+\ldots \sigma_{\theta}^{\prime} \mathfrak{G} \ldots . .
\end{align*}
$$

writing $\theta=n-\left\{(n-r)+\left(n-r^{\prime}\right)+\ldots\right\}$.
Also, assuming any arbitrary quantities $\eta_{1}, \eta_{2} \ldots \eta_{n} \ldots \phi_{1}, \phi_{2} \ldots \phi_{n}$ (the number of sets being $\left(r^{\prime}-\theta\right)$,) such that

$$
\begin{align*}
& \eta_{1} x_{1} \ldots+\eta_{n} x_{n}=\lambda_{\theta+1} \mathfrak{A}^{\prime}+\mu_{\theta+1}{ }^{\prime} \mathfrak{b}^{\prime}+\ldots \sigma_{\theta+1} G^{\prime} \tag{17}\\
& \vdots \\
& \phi_{1} x_{1} \ldots+\phi_{n} x_{n}=\lambda_{r^{\prime}} \mathfrak{A}^{\prime}+\mu_{r^{\prime}}^{\prime} \mathfrak{a b}^{\prime}+\ldots \sigma_{r^{\prime}}^{\prime}
\end{align*} \mathfrak{G}^{\prime} .
$$

From the equations (15) we deduce the $(n-r)$ equations

$$
\left\|\begin{array}{ccc}
d_{x_{1}} U, & d_{x_{2}} U, \ldots d_{x_{n}} U \tag{18}\\
\eta_{1}, & \eta_{2}, \ldots & \eta_{n} \\
\vdots & \dot{\phi}_{1}, & \phi_{2}, \ldots \\
\phi_{n}
\end{array}\right\|=0 .
$$

Hence, writing

$$
\begin{gather*}
\eta=\lambda_{1}^{\prime} A+\mu_{1}^{\prime} B+\ldots \sigma_{1}^{\prime} G . \tag{19}\\
\vdots \\
\phi=\lambda_{r}^{\prime} A+\mu_{r}^{\prime} B+\ldots \sigma_{r}^{\prime} G,
\end{gather*}
$$

and reducing, by the formula (8) of Chap. 1 , we have

$$
\left\|\begin{array}{ccc}
d_{x_{1}} U, & d_{x_{2}} U, \ldots & d_{x_{n}} U \tag{20}\\
A_{1}^{\prime}, & A_{2}^{\prime}, \ldots & A_{n}^{\prime} \\
\vdots & G_{1}^{\prime}, & G_{2}^{\prime}, \ldots
\end{array} G_{n^{\prime}}{ }^{\prime}\right\|=0 .
$$

and similarly may the remaining formulæ of (13) be deduced from the equation (15). Hence the required theorem is demonstrated, a theorem which may be more clearly stated as follows:-

The reciprocals of several systems of equations form together the reciprocal of the equation which is satisfied by the values of the variables which satisfy each of the original systems of equations. (The theorem requires that the number of all the reciprocal equations shall be less than the number of variables.)

Conversely, consider several systems of equations, the whole number of the equations being less than the number of variables. These systems, taken conjointly, have for their reciprocal, the equation which is satisfied by the values satisfying the reciprocal system of each of the given systems.

Chap. 4. On some properties of functions of the second order.
Suppose, as before, U denotes the general function of the second order, or

$$
\begin{equation*}
2 U=\Sigma\left(\alpha^{2}\right) x_{\alpha}{ }^{2}+2 \Sigma(\alpha \beta) x_{\alpha} x_{\beta} . \tag{21}
\end{equation*}
$$

Also let V denote a function of the second order of the form

$$
V=H\left(\begin{array}{cc}
\| x_{1}, & x_{2}, \ldots x_{n} \tag{22}\\
a_{1} & \alpha_{2}, \ldots a_{n} \\
\vdots & \\
\rho_{1}, & \rho_{2}, \ldots \rho_{n}
\end{array} \|\right)
$$

(H being the symbol of a homogeneous function of the second order, and the number r of the quantities $\alpha, \beta \ldots \rho$, being less than $n-1)$. [Observe that $\alpha_{1}, \beta_{1}, \ldots \rho_{1}, \ldots$ $\alpha_{n}, \beta_{n}, \ldots \rho_{n}$, or say the suffixed quantities $\alpha, \beta, \ldots \rho(r$ in number) are used to denote coefficients: α, β, without suffixes, are any two numbers in the series of suffixes $1,2,3, \ldots n$.] Then $2 U-2 k V, k$ arbitrary, is of the form

$$
\begin{equation*}
\Sigma\left[\alpha^{2}\right] x_{\alpha}^{2}+2 \Sigma[\alpha \beta] x_{\alpha} x_{\beta} . \tag{23}
\end{equation*}
$$

Suppose $X_{1}, X_{2}, \ldots X_{n}$ determined by the equations

$$
\begin{align*}
& {\left[1^{2}\right] X_{1}+[12] X_{2} \ldots+[1 n] X_{n}=0 . .} \tag{2}\\
& {[21] X_{1}+\left[2^{2}\right] X_{2} \ldots+[2 n] X_{n}=0,} \\
& \vdots \\
& {[n 1] X_{1}+[n 2] X_{2} \ldots+\left[n^{2}\right] X_{n}=0 ;}
\end{align*}
$$

equations that involve the condition that k satisfies an equation of the order $n-r$, as will be presently proved.

Then shall $x_{1}=X_{1} \ldots x_{n}=X_{n}$ satisfy the system of equations, which is the reciprocal of

$$
\left\|\begin{array}{cc}
x_{1}, & x_{2}, \ldots x_{n} \tag{25}\\
\alpha_{1}, & \alpha_{2}, \ldots \alpha_{n} \\
\vdots & \\
\rho_{1}, & \rho_{2}, \ldots \rho_{n}
\end{array}\right\|=0
$$

To prove these properties, in the first place we must find the form of V. Consider the quantities $\xi_{A}, \xi_{B}, \ldots \xi_{L},(n-r)$ in number, of the form

$$
\begin{align*}
& \xi_{A}=A_{1} x_{1}+A_{2} x_{2} \ldots+A_{n} x_{n}, \tag{26}\\
& \xi_{B}=B_{1} x_{1}+B_{2} x_{2} \ldots+B_{n} x_{n}, \\
& \vdots \\
& \xi_{L}=L_{1} x_{1}+L_{2} x_{2} \ldots+L_{n} x_{n},
\end{align*}
$$

where, if Θ represent any of the quantities $A, B \ldots L$,

$$
\begin{gather*}
\alpha_{1} \Theta_{1}+\alpha_{2} \Theta_{2} \ldots+\alpha_{n} \Theta_{n}=0, \tag{27}\\
\beta_{1} \Theta_{1}+\beta_{2} \Theta_{2} \ldots+\beta_{n} \Theta_{n}=0, \\
\vdots \\
\rho_{1} \Theta_{1}+\rho_{2} \Theta_{2} \ldots+\rho_{n} \Theta_{n}=0,
\end{gather*}
$$

$$
2 V=\left(A^{2}\right) \xi_{A}{ }^{2}+\left(B^{2}\right) \xi_{B}{ }^{2}+\ldots+2(A B) \xi_{A} \xi_{B}+\ldots=\Sigma\left(A^{2}\right) \xi_{A}{ }^{2}+2 \Sigma(A B) \xi_{A} \xi_{B} .
$$

Hence, if

$$
\begin{equation*}
2 V=\Sigma\left\{\alpha^{2}\right\} x_{\alpha}^{2}+2 \Sigma\{\alpha \beta\} x_{\alpha} x_{\beta} . \tag{28}
\end{equation*}
$$

we have for the coefficients of this form

$$
\left\{1^{2}\right\}=\Sigma\left(A^{2}\right) A_{1}^{2}+2 \Sigma(A B) A_{1} B_{1}, \quad\{12\}=\Sigma\left(A^{2}\right) A_{1} A_{2}+\Sigma(A B)\left(A_{1} B_{2}+A_{2} B_{1}\right),
$$

and consequently the coefficients of $2 U-2 k V$ are

$$
\left[1^{2}\right]=\left(1^{2}\right)-k\left\{1^{2}\right\}, \quad[12]=(12)-k\{12\} .
$$

Hence, θ representing any of the quantities $\alpha, \beta \ldots \rho$,

$$
\begin{align*}
& \theta_{1}\left\{1^{2}\right\}+\theta_{2}\{12\} \ldots+\theta_{n}\{1 n\}=0 . \tag{29}\\
& \vdots \\
& \theta_{1}\{n \mathbf{1}\}+\theta_{2}\{n 2\} \ldots+\theta_{n}\left\{n^{2}\right\}=0 ;
\end{align*}
$$

whence also

$$
\begin{aligned}
& \theta_{1}\left[1^{2}\right]+\ldots \theta_{n}[1 n]=\theta_{1}\left(1^{2}\right)+\ldots \theta_{n}(1 n), \\
& \vdots \\
& \theta_{1}[n 1]+\ldots \theta_{n}\left[n^{2}\right]=\theta_{1}(n 1)+\ldots \theta_{n}\left(n^{2}\right) .
\end{aligned}
$$

Hence, the equations for determining $X_{1}, \ldots X_{n}$ may be reduced to
$X_{1}\left[\alpha_{1}\left(1^{2}\right)+\ldots \alpha_{n}(1 n)\right]+X_{2}\left[\alpha_{1}(21) \ldots+\alpha_{n}(2 n)\right] \ldots+X_{n}\left[\alpha_{1}(n 1) \ldots+\alpha_{n}\left(n^{2}\right)\right]=0 \ldots(30)$,
$X_{1}\left[\beta_{1}\left(1^{2}\right)+\ldots \beta_{n}(1 n)\right]+X_{2}\left[\beta_{1}(21) \ldots+\beta_{n}(2 n)\right] \ldots+X_{n}\left[\beta_{1}(n 1) \ldots+\beta_{n}\left(n^{2}\right)\right]=0$,
$X_{1}\left[\rho_{1}\left(1^{2}\right)+\ldots \rho_{n}(1 n)\right]+X_{2}\left[\rho_{1}(21) \ldots+\rho_{n}(2 n)\right] \ldots+X_{n}\left[\rho_{n}(n 1) \ldots+\rho_{n}\left(n^{2}\right)\right]=0$.
$X_{1}[r+1,1]+\quad X_{2}[r+1,2] \ldots+\quad X_{n}[r+1, n]=0$,
$X_{1}[n, 1]+\quad X_{2}[n, 2] \ldots+\quad X_{n}\left[n^{2}\right] \quad=0$.
Eliminating $X_{1} \ldots X_{n}$, since the first r equations do not contain k, the equation in this quantity is of the order $n-r$.

Next form the reciprocals of the equations (25). These are

$$
\left|\begin{array}{ccc}
d_{x_{1}} U, & d_{x_{2}} U, \ldots & d_{x_{n}} U \tag{31}\\
A_{1}, & A_{2}, \ldots & A_{n} \\
\vdots & & L_{2}, \ldots \\
L_{1}, & L_{n}
\end{array}\right|=0
$$

From which we may deduce

$$
\left|\begin{array}{cccccc}
\alpha_{1} d_{x_{1}} U \ldots+\alpha_{n} d_{x_{n}} U, & \beta_{1} d_{x_{1}} U \ldots+\beta_{n} d_{x} U, \ldots \rho_{1} d_{x_{1}} U \ldots \rho_{n} d_{x_{n}} U, & d_{x_{r+1}} U, \ldots d_{x_{n}} U \\
0 & 0 & , \ldots & 0 & , & A_{r+1}, \ldots A_{n} \\
\vdots & , & & , \ldots & 0 & L_{r+1}, \ldots L_{n}
\end{array}\right|=0 \ldots(32),
$$

which are evidently satisfied by $x_{1}=X_{1}, x_{2}=X_{2} \ldots x_{n}=X_{n}$.
In the case of four variables, the above investigation demonstrates the following properties of surfaces of the second order.
I. If a cone intersect a surface of the second order, three different cones may be drawn through the curve of intersection, and the vertices of these lie in the plane which is the polar reciprocal of the vertex of the intersecting cone.
II. If two planes intersect a surface of the second order through the curve of intersection, two cones may be drawn, and the vertices of these lie in the line which is the polar reciprocal of the line of intersection of the two planes.

Both these theorems are undoubtedly known, though I am not able to refer for them to any given place.

